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Extracellular vesicles (EVs) are increasingly recognized as important intermediaries
of intercellular communication. They have significant roles in many physiological
and pathological processes and show great promise as novel biomarkers of
disease, therapeutic agents, and drug delivery tools. Existing studies have
shown that natural killer cell-derived EVs (NEVs) can directly kill tumor cells
and participate in the crosstalk of immune cells in the tumor
microenvironment. NEVs own identical cytotoxic proteins, cytotoxic receptors,
and cytokines as NK cells, which is the biological basis for their application in
antitumor therapy. The nanoscale size and natural targeting property of NEVs
enable precisely killing tumor cells. Moreover, endowing NEVs with a variety of
fascinating capabilities via common engineering strategies has become a crucial
direction for future research. Thus, here we provide a brief overview of the
characteristics and physiological functions of the various types of NEVs,
focusing on their production, isolation, functional characterization, and
engineering strategies for their promising application as a cell-free modality for
tumor immunotherapy.
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1 Introduction

Cancer immunotherapy has gained widespread attention as a clinically proven
therapeutic strategy, and the relay transfer of natural killer (NK) cells has emerged as a
promising approach to controlling the immune system against cancer. As the first line of
defense against tumors and viral infections, NK cells can induce antigen-independent
immune responses against malignant cells. A growing number of scientific reports and
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clinical studies have demonstrated that NK cell-based
immunotherapy has promising antitumor effects (Laskowski
et al., 2022). Furthermore, NK cell therapy or chimeric antigen
receptor (CAR) NK cell therapy has unique advantages over existing
hot T-cell immunotherapy (Biederstadt and Rezvani, 2021; Rafei
et al., 2021). NK cells recognize and kill tumors by combining signals
generated by independent inhibitory and activating receptors,
effectively inhibiting tumor escape through antigen
downregulation (Basar et al., 2020). Currently, a wide spectrum
of research is being conducted on NK cell-related cancer therapies,
including CAR NK, engineered NK cells, and allogeneic natural
killer cell infusion (Tang et al., 2018; Liu et al., 2021). However,
despite several clinical trials, the prospects for NK cell-based
therapies for solid tumors are not optimistic. Challenges include
difficulty in ex vivo expansionmeeting clinical grade, tumor immune
escape, limited in vivo persistence, and limited infiltration into solid
tumors (Oh et al., 2019; Bald et al., 2020). Moreover, the tumor
microenvironment (TME) inhibits NK cell responses (Fang et al.,

2018; Lian et al., 2021). These factors directly hinder or limit the use
of NK cells in solid tumor therapy.

Extracellular vesicles (EVs) can be divided into three subgroups
based on their biological origin, including exosomes (30–150 nm in
diameter), microvesicles (150–1,000 nm), and apoptotic vesicles
(50–2,000 nm). The role of EVs secreted by immune cells in
antitumor therapy has received more attention in recent years,
with many studies confirming their great potential (Shen and
Ren, 2018; Choi et al., 2022a). Among them, NK cell-derived
EVs (NEVs) have gained more attention for their unique
biological properties. NEVs possess NK cell surface receptors and
cytotoxic proteins that function similarly to parental cells, enabling
them to kill tumors directly in the TME. Unlike cells, nanoscale
NEVs can easily diffuse and infiltrate solid tumors and own natural
targeting and biocompatibility properties. Furthermore, there have
been few types of research showing that immunosuppressive TME
affects NEVs. Therefore, the emergence of NEVs may overcome the
limitations of NK cells in immunotherapy. Numerous studies have

FIGURE 1
The cell sources of NEVs could be mainly divided into peripheral blood mononuclear cells (PBMC) and other cell lines. In the purification process of
NEVs, the more mature isolation methods include ultracentrifugation (UC), ultrafiltration, and size exclusion chromatography (SEC). Purified NEVs have
anti-tumor activity and immunomodulatory effects, and engineered modifications can confer new functions on NEVs. Common NEVs engineering
techniques can be classified as exogenous and endogenous modifications. Exogenous modifications: (A) NEVs can be used to prepare the PTX-
NEVs drug delivery system through electroporation (Han et al., 2020). (B) The therapeutic potential of doxorubicin-loaded NEVs shows promising
antitumor activity in vivo against the MCF-7 induced tumor model (Pitchaimani et al., 2018). (C) Light-activatable silencing NK-derived exosomes
(LASNEO) are orchestrated by engineering the NEVs with hydrophilic small interfering RNA (siRNA) and hydrophobic photosensitizer Ce6 (Zhang et al.,
2022). (D) NEVs are used as a versatile toolkit to synergistically improve adoptive T-cell therapy for solid tumors (Nie et al., 2021). (E) NEVs are in
combination with their biomimetic core–shell nanoparticles for tumor-targeted therapy (Wang et al., 2019). Endogenousmodifications: (F) The NK cell is
lentivirally transduced to express and load BCL-2 siRNAs (siBCL-2) into NEVs (20).
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thoroughly investigated the biological basis for tumor killing by
NEVs and found that they carry a variety of bioactive molecules,
including membrane toxicity receptors, cytotoxic proteins,
cytokines, and microRNAs (miRNAs). This is the biological basis
for NEVs natural tumor-killing and tumor-targeting properties, as
well as the ability to interact with immune cells such as tumor-
associated macrophages (TAM) and cytotoxic T lymphocyte (CTL)
(Federici et al., 2020). Due to the above advantages, engineered
NEVs have received a lot of attention to enhance their tumor-killing
capabilities. Current research focuses on the use of engineered
modifications to enhance the functionality of NEVs (Yang et al.,
2021a). Nevertheless, many challenges remain in the development of
NEVs, such as cell source production methods and interaction
mechanisms. This review aims to summarize the latest research
on the production, application, mechanism, and modification of
NEVs (Figure 1).

2 Preparation of NEVs

2.1 NK cell source

For both NK cells and NEVs used in therapeutic studies, the
optimal source of NK cells is currently a controversial topic.
Peripheral blood mononuclear cells (PBMC) and cell lines are
the two main sources of NK cells used in therapeutic studies.
PBMC can be obtained from patient blood or blood collected
from healthy adult volunteers. Among them, PBMC-induced NK
cells from cancer patients had fewer clinical adverse effects and a
higher safety profile (Sakamoto et al., 2015; Fang et al., 2018; Fang
et al., 2022). However, their cytotoxic properties are compromised,
with significantly reduced expression of activating receptors such as
NKG2D, DNAM-1, and NKp46, which directly affects their derived
EVs (Cianga et al., 2021). In contrast, healthy population-derived
allogeneic NK cells have high yield and cytotoxicity but a low safety
profile (Federici et al., 2020). It is worth noting that PBMC-derived
NK cells are difficult to use in tumor therapy on a large scale and for
a long time due to the restriction of donor and blood groups (Shah
et al., 2015). Another important source is NK cell lines, such as NK-
92 or NK-92MI, are important sources of NK cells and have become
one of the important alternatives to autologous NK cell biologics.
Moreover, the NK-92 cell line is the only human NK cell line
approved for clinical use by the FDA. NK-92 can be expanded in
culture in the presence of cytokines (NK-92MI amplification in vitro
is not cytokine-dependent). It is inexpensive to administer, and
there is substantial evidence that it is relatively safe (Gong et al.,
1994). A study comparing the distribution of cytolytic proteins in
NEVs from primary NK and NK-92 cells and found strong
similarities and the same satisfactory tumor-killing effect
(Aarsund et al., 2022).

Furthermore, umbilical cord blood (UCB), hematopoietic stem
and progenitor cells (HSPCs), induced pluripotent stem cells
(iPSCs), and CAR NK cells are valuable sources of NK cells (Li
et al., 2018; Kundu et al., 2021; Boyd-Gibbins et al., 2022). CAR-NK
and iPSC-NK cells could benefit from advances in manufacturing
and genome engineering techniques to create NK cells and NEVs
with context-dependent functions and enhanced potency and
specificity. Future research is required to confirm the differences

in the composition and effects of EVs produced by NK cells from
different sources. The common cellular sources of NEVs production
and their advantages and disadvantages are summarized in Table 1.

2.2 Production of NEVs

The most common method for isolating EVs is cell culture
supernatant collection. Since there is no “gold standard protocol” for
the preparation of pure EVs, the properties and functions of EVs
may vary depending on the culture and isolation methods.
Differences in cell culture oxygen content and inoculation surface
have been shown to affect EVs production (Zhang et al., 2017; Liu
et al., 2020). Differences in cultural media also have an impact on
EVs extraction. It has been shown that exogenous proteins
introduced into cell culture can affect the type and characteristics
of exosomes (Whitford and Guterstam, 2019; Chen et al., 2020).
However, it has also been shown that the emergence of serum-free
media modifies the biology of EVs (Mendt et al., 2018).

Obtaining EVs through natural secretion is hampered by the low
yield. The advent of exosome-mimetic vesicles (EMs) with higher
yield is expected to resolve this issue (Ou et al., 2021). Large-scale
production of EMs could be an alternative to conventional EVs
production. When cytoplasmic membranes are forced to rupture,
they reassemble into smaller vesicles. Thus, EMs with diverse sizes
can be produced using diverse filter membranes and micro-
extruders. A study reported that the production of EMs using
this method was 250 times higher than naturally secreted EVs
(Lee et al., 2020). More recently, similar methods have been used
to produce NK EMs, with tumor-killing abilities and impressive
stability under physiological conditions, which could also be loaded
with chemotherapeutic drugs for targeted cancer therapy
(Pitchaimani et al., 2018; Zhu et al., 2018). However, more
research is needed to investigate the differences in efficacy and
safety with naturally secreted EVs.

Either artificially generated EMs or naturally secreted EVs
typically contain multiple types of biological impurities.
Therefore, it is essential to ensure that the purified products are
inherently EVs without other contaminants before performing any
functional analysis of the EVs. The current EVs isolation and
purification methods and their advantages and disadvantages are
summarized in Table 2.

2.3 Storage of NEVs

As a promising cell-free therapy, achieving long-term and stable
storage of NEVs plays a key role in their clinical application.
Therefore, it is necessary to explore preservation techniques to
protect the biological activity of NEVs for transport and clinical
applications. Common conservation techniques include freezing,
lyophilization, and spray drying (Kusuma et al., 2018;
Charoenviriyakul et al., 2019; Zhang et al., 2020a). Any frozen
storage may “frostbite” the EVs, and the use of antifreeze may
extend their shelf life. The traditional approach of adding DMSO
during cryopreservation can protect the biological activity of EVs
(Wu et al., 2015). Furthermore, alginate is considered as the most
effective disaccharide antifreeze agent and prevents EVs aggregation

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Qi et al. 10.3389/fbioe.2023.1122585

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1122585


and increases its stability without changing EVs morphology (Bosch
et al., 2016; Charoenviriyakul et al., 2018). A recent study reported
that PBS supplemented with human albumin and trehalose
buffer significantly improved the short and long-term
preservation of EVs samples stored at −80°C, and maintained
stability over multiple freeze-thaw cycles (Gorgens et al., 2022).
Moreover, the storage of EVs also varies from different sources and
modifications (Agrawal et al., 2017). Multiple studies on NEVs have
analyzed the impact of storage on NEVs and concluded that the
existing technology could effectively ensure the storage stability of
NEVs (Jong et al., 2017; Farcas and Inngjerdingen, 2020). In
summary, the rational use of various EVs storage methods can
significantly improve the storage stability of EVs and provide greater
application benefits.

3 Function mechanisms of NEVs

In recent years, as research on NEVs have continued, knowledge
about the mechanisms underlying their function has been gained.
Several studies have confirmed the ability of NEVs to target and kill
tumor cells, which have been summarized in Table 3. This section

highlights the characteristics and mechanisms of the currently
known NEVs in oncology therapy.

3.1 NEVs exert antitumor effects through
their contents and membrane proteins

NEVs contain many substances acting as tumor killers, such as
membrane proteins, toxic proteins, and miRNAs. In this section, we
will elaborate on each section individually (as shown in Figure 2).

Several studies have shown that NEVs can express NK cell surface
receptors (Zhu et al., 2019; Choi et al., 2020). These receptors include
Natural Killer Lytic-Associated Molecule (NKLAM), Fas-L, DNAX
accessory molecules-1 (DNAM-1/CD226), and NKG2D (CD314)
(Enomoto et al., 2021). The expression of the natural cytotoxic
receptor (NCR), NKp44 (CD336), NKp30 (CD337), NKp46
(CD335), and CD16 varies according to cell sources and activation
status (Lugini et al., 2012). Moreover, NEVs induce apoptosis through
a classical ligand/receptor interaction between Fas-L on the
membrane surface and Fas on the target cell membrane. Fas-L
binding to the membrane receptor results in the formation of the
death-inducing signaling complex (DISC), which activates the

TABLE 1 Advantages and disadvantages of the mainstream NK cell sources.

PBMC (autologous) PBMC (allogeneic) Cell line CAR NK/iPSC-NK

Advantages Easy access and high security High tumor-killing activity (Broader
activation receptors), success in multiple
clinical trials

Simple access to a large number of cells,
immortality, low cost, easy to engineer
(transgenic, material modifications)

Without the requirement of an
autologous collection, more versatile

Disadvantages Difficult to obtain sufficient
numbers of cells, low tumor-
killing activity

Difficult to obtain, expensive, and limited
by donor and blood type, in vitro
amplification weakens activity, risk of
immune rejection, and graft-versus-host
disease (GVHD) (Shah et al., 2015)

Safety concerns (few clinical trials),
irradiation before use, general
cytotoxicity, and lack of agonist
receptors (Goldenson and Kaufman,
2021)

Higher risk of graft-versus-host
disease (GVHD), cytokine release
syndrome (CRS), low cytotoxicity
after irradiation (cell line origin), and
low persistence in vivo

TABLE 2 The advantages and disadvantages of the mainstream EVs isolation method.

Isolation method Advantages Disadvantages

Differential
ultracentrifugation (UC)

Easy to use, high productivity, and low requirement for technical
expertise without complex sample pre-treatment Coughlan et al. (2020)

The process is time-consuming, recovery rates vary widely,
reproducibility is poor, and purity is not high. Langevin et al. (2019),
Yang et al. (2020)

Density gradient
ultracentrifugation

Providing a purer sample for subsequent applications Konoshenko
et al. (2018)

The process requires not only expensive equipment but also trained
technicians. In addition, since density gradient ultracentrifugation
depends only on the density difference between different solutes in the
sample, the method cannot separate substances with densities similar
to those of EVs, and its capacity is largely limited by the narrow loading
zone Li et al. (2017)

Ultrafiltration It is an ideal alternative to classic ultracentrifugation strategies, due to
the short separation times, high throughput, and the ability to
customize the selection of sample subpopulations by adjusting the pore
size of the screen. Heinemann and Vykoukal (2017), Yu et al. (2018)

The clogging of the filter by vesicles could lead to high experimental
costs and low separation yields. In addition, the ultrafiltration process
may deform the vesicles and fail to remove contaminants of similar size
to the target product Chen et al. (2020)

Size exclusion
chromatography (SEC)

The purity of the isolated sample is high and its natural biological
activity can be maintained to a large extent. Moreover, the sample
requirement is low, and the screening pore size can be adjustedMa et al.
(2019)

EVs prepared by SEC columns are usually time-consuming and costly,
it exhibits a wider size distribution, especially in the smaller size range,
indicating the presence of contaminants of similar size to EVs. Guo
et al. (2021)

The advantages and disadvantages of each option described above. The results of each isolation method used to isolate EVs from different cell sources may vary (Yang et al., 2020). Differential

ultracentrifugation is currently the primary method of NEVs isolation, but a growing number of studies have shown that employing multiple centrifugation techniques simultaneously yields

better results (Patel et al., 2019).
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extrinsic apoptotic pathway by activating the caspase pathway (Lavrik
and Krammer, 2012; Sparrow and Bodman-Smith, 2020). The
CD47 expressing on the NEVs surface interacts with its receptor

on macrophages, SIRP-α, to inhibit the elimination of NEVs by
macrophage via phagocytosis, thus enabling longer cycle times
(Jaiswal et al., 2009; Wang et al., 2019).

TABLE 3 Existing studies for NEVs.

Cell
source

Size(nm) Isolation method Engineering strategy Cytolytic activity
(cells)

Year of
publication

References

Human
PBMCs

40–100 UC K562; Jurkat; PHA-
activated PBMCs

2012 Lugini et al. (2012)

Human
PBMCs

40–150 UC SK-N-SH; CHLA-255 2017 Shoae-Hassani et al.
(2017)

Human
PBMCs

50–200 PEG8000 precipitation and
dialysis

NALM-6, SupB15,
CHLA255

2017 Jong et al. (2017)

NK-92MI
cells

100–150 UC B16F10 2017 Zhu et al. (2017)

NK-92MI
cells

118 ± 33.1 UC D54/F 2018 Zhu et al. (2018)

NK-92 cells 190–460 UC 2018 Korenevskii et al.
(2018)

NK-92 cells 88 ± 1 density gradient
ultracentrifugation

Load with Dox MCF-7 2018 Pitchaimani et al.
(2018)

Human
PBMCs

Mean 92.45 SEC MYCN-amplified CHLA-
136 and LAN-5

2019 Neviani et al. (2019)

NK-92MI
cells

106.9 ± 21.6 UC U87-MG 2019 Zhu et al. (2019)

Human
PBMCs

Mean 100 UC Load with nanomaterials and
therapeutic miRNAs

MDA-MB-231. CHLA-255 2019 Wang et al. (2019)

Human
PBMCs

60–150 UC Mia PaCa-2; PANC-1 2019 Sun et al. (2019)

Human
PBMCs

Exo:
124 ± 3.8

UC 2020 Federici et al. (2020)

MV:
315.2 ± 4.8

Human
PBMCs

135.9 ± 0.5 UC NALM-18 2020 Di Pace et al. (2020)

Human
PBMCs

UC HepG2; SW-620; MKN-74;
MCF-7; T98G

2020 Choi et al. (2020)

NK-92 cells Mean 100 UC Load with paclitaxel MCF-7 2020 Han et al. (2020)

NK3.3 133–193 Exo Quick-TC (SBI), UC K562, Jurkat, MDA-MB-
231, MCF7

2021 Cochran and
Kornbluth (2021)

NK-92MI
cells

80–130 The anti-CD63 conjugated
magnetic beads

Patient-derived circulating
tumor cell lines in non-
small cell lung cancer

2021 Kang et al. (2021)

NK-92 cells Mean 100 UC Combined with CTL B16-OVA 2021 Nie et al. (2021)

NK-92MI
cells

30–150 centrifugal filters and Exosome
Purification kit

Endogenous loading BCL-2
siRNAs (siBCL-2)

ER+ MCF-7, T-47D,
MCF-10A

2021 Kaban et al. (2021)

NK-92MI
cells

Mean 120 UC Load with hydrophilic siRNA
and the hydrophobic
photosensitizer Ce6

HepG2-Luc, CT26,
RAW264.7

2022 Zhang et al. (2022)

Human
PBMCs

165–209 UC 2022 Dosil et al. (2022)

NK-92MI
cells

100–130 UC Hep3B, HepG2, Huh7 2022 Kim et al. (2022)
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Perforin, granzyme A, B, granulysin, and tumor necrosis factor α
(TNF-α) are all found in NEVs (Korenevskii et al., 2018; Cochran
and Kornbluth, 2021). The perforin in NEVs can penetrate the cell
membrane and allow cytotoxic proteins (granzyme A, B, granulysin)
to enter the target cell and induce apoptosis by disrupting the outer
mitochondrial membrane potential and cleaving caspases (Leon
et al., 2017; Wu et al., 2019). Among them, granzyme B targets
and cleaves cystathionine-3 and -7 directly, leading to the rapid
initiation of apoptosis. It also induces an intrinsic apoptotic pathway
by cleaving Bid to tBid (BH3 interacting domain death agonist
protein), which disrupts the outer mitochondrial membrane
potential and releases cytochrome C (MacDonald et al., 1999).
The specific target of granzyme A in the apoptotic pathway is the
SET complex, an ER-associated complex whose cleavage causes
single-stranded DNA damage (Lieberman, 2010). Granulysin can
induce apoptosis by binding to target cell membranes through
electrostatic interactions based on its positive N-terminal charge.
This process can disrupt cell membranes, active Caspase-9, and
Caspase-12 by damaging mitochondria, as well as damaging the
endoplasmic reticulum and activating Caspase-7 (Sparrow and
Bodman-Smith, 2020). One quantitative analysis study
demonstrated that NK-92 EVs revealed higher levels of perforin
and Fas-L than NK cells and performed more effective inhibition of
tumor proliferation (Zhu et al., 2017).

Regulatory miRNAs found in NEVs demonstrate tumor-killing
and immunomodulation ability. Among these, miR-3607-3p
encapsulated in NEVs inhibits cancer cell migration and
invasion; miR-3607-3p-enriched NEVs may inhibit the malignant

transformation of pancreatic cancer by directly targeting IL-26, and
decreased miR-3607-3p levels were associated with poor prognosis
and tumor metastasis (Sun et al., 2019). Another study
demonstrated that miR-186-5p in NEVs can inhibit the growth
and spread of neuroblastoma and induce apoptosis, andmiR-186-5p
containing NEVs was also taken up by NK cells to reduce the
inhibition of cytotoxicity by the TME (Neviani et al., 2019). A recent
study suggests that miR-10b-5p, miR-92a-3p, and miR-155-5p
found in NEVs play a crucial role in immune regulation (Dosil
et al., 2022). In addition, more information was summarized in
Table 4.

3.2 Immunomodulatory effects of NEVs

EVs secreted by numerous immune cells can be used to regulate
innate and acquired immune responses (Lugini et al., 2012; Hong
and Kim, 2022). NEVs possess similar immunomodulatory
functions in the immune system (Figure 2). On the one hand,
NEVs can effectively reduce the number of pre-tumor
M2 macrophages or induce tumor-killing M1 macrophage
polarization, which attenuates TAM-mediated CTL inhibition via
the change of TAM -secreted cytokines and membrane surface
proteins, and induces a direct antitumor effect of
M1 macrophage (Bellora et al., 2014; Jia et al., 2020; Nie et al.,
2021). NEVs can also act directly on T-cell activation or indirectly by
stimulating monocytes to positively influence T-cell activation
(Figures 3A–E) (Federici et al., 2020). Analyzing the miRNA

FIGURE 2
The surface receptors of NEVs, loaded cytotoxic proteins, and functional miRNAs induce apoptosis in tumor cells. In addition to stimulating the
polarization of macrophages towards M1 and activating T cells directly or via activated monocytes, NEVs can also activate resting NK cells, thereby
augmenting their tumor-killing ability.
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TABLE 4 The functions of miRNAs contained in NEVs.

miRNAs Functions References

miR-3607-3p This miRNA inhibits cancer cell migration and invasion Sun et al. (2019)

miR-186-5p This miRNA impairers neuroblastoma tumor growth and inhibits
tumor immune escape by targeting the TGF-β pathway

Neviani et al. (2019)

miR-92a, miR-155 These miRNAs promote IFN-γ production Dosil et al. (2022)

miR-10b-5p, miR-92a-3p These miRNAs promote GATA3 downregulation and subsequent
T-bet de-repression, reprogramming recipient T cells towards the
Th1 phenotype

Yu and Kim (2020), Dosil et al. (2022)

miR-207 This miRNA alleviates depression-like symptoms in mice Li et al. (2020)

miR-122-5p, miR-409-3p, and miR-451a These miRNAs demonstrate protein translational modifications
dependent mechanism of miRNA-specific shuttling into NEVs

Dosil et al. (2022)

miR-20a-5p, miR-25-3p These miRNAs are transferred through the immune synapse, with
an impact on germinal center reaction and antibody production

Fernandez-Messina et al. (2020)

FIGURE 3
(A) NEVs activate monocytes. Flow cytometry analysis of CD80–CD86 geo mean fluorescence intensity (gMFI) of gated CD14+ cells in PBMCs
cultured in the presence or absence of NEVs, and/or lipopolysacharide (LPS) for 24 h. Upper panels: Representative dot plots showing
CD80–CD86 expression in the presence of NEVs, lower panel: Flow cytometry of human leukocyte antigen DR isotype (HLA-DR) gMFI of CD14+ gated
monocytes (Federici et al., 2020). (B) Flow cytometry analysis of CD25 expression by CD3+ gated T cells in PBMCs evaluated after 72 h of culturewith
NEVs (Federici et al., 2020). (C) The graph shows the results obtained with PBMCs of different healthy donors (n = 3), in the presence or absence of
transforming growth factor beta (TGFβ)/interleukin (IL)-10 (10 ng/ml each) (Federici et al., 2020). (D)NEVs affect the interaction betweenmonocytes and
T cells. Flow cytometry analysis of 72 h proliferation and CD25 expression by CD3, CD4, and CD8 T cells cultured in the presence of monocytes
(medium), monocytes preconditioned with NEVs (Federici et al., 2020). (E) NEVs induce the release of cytokines by PBMCs. Cytometric bead array-
measured cytokine production of 72 h PBMCs cultured (Federici et al., 2020). (F–H) Activation of resting NK cells by NEVs affects the expression of natural
cytotoxicity receptors on their surface and tumor-killing viability (Shoae-Hassani et al., 2017). (F) NK cells were stained with specific NCRs monoclonal
antibodies, a resting NK cell expresses different levels of NCRs. (G) The NEVs induce the expression of NCRs especially NKp44 similar to cytokine-
activated NK. (H) In vitro cytotoxicity of peripheral blood natural killer cells against neuroblastoma (NB) cells. NEVs strongly stimulated NK activity in the
presence of IL-21.
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types in NEVs reveals that they promote T-cell activation and induce
DC expression of MHC-II and CD86 (Dosil et al., 2022).
Furthermore, NEVs contribute to NK cell activation. A study
demonstrated that NEVs pre-exposed to tumor cells could
activate resting NK cells in humans, leading to higher levels of
NCR and acquiring greater tumor-killing capacity (Figures 3F–H)
(Shoae-Hassani et al., 2017). However, the immunomodulatory
function of NEVs is still unknown due to the lack of in-depth
mechanistic studies.

4 Characteristics of NEVs for
therapeutic

4.1 Penetration

The TME and biological barrier, which are difficult to overcome
in traditional tumor therapy, are important reasons that affect the
therapeutic effect. NEV has a smaller molecular diameter and
greater tissue penetration into solid tumors compared to whole
cells. For example, the small molecular size of NEVs allows them to
easily cross the blood-brain barrier (BBB) and enter the cancer
reservoir to kill or deliver the drugs to central nervous system (CNS)
tumors (Neviani et al., 2019; Weng et al., 2021; Choi et al., 2022b).

4.2 Natural targeting

Multiple studies have confirmed the ability of NEVs to target
tumors (Lugini et al., 2012; Zhu et al., 2019; Sayitoglu et al., 2020).
This characteristic may be attributed to themembrane proteins CXC
receptors (CXCR3 and CXCR4), NCR, NKG2D, and DNAM-1 on
the surface of NEVs, which can induce cancer cell lysis while
targeting tumor cells (Deng et al., 2018; Wang et al., 2019; Di
Pace et al., 2020; Sayitoglu et al., 2020; Aarsund et al., 2022).
However, there is still some controversy about the targeting
mechanism of NEVs.

4.3 Biocompatibility

NEVs enter target cells through micropinocytosis, and the
number of internalized NEVs correlates with tumor cell
cytotoxicity (Azarmi et al., 2020; Di Pace et al., 2020; Enomoto
et al., 2021). It was discovered that co-incubating NEVs with target
cells for approximately 30 min resulted in detection in target cells
and induced maximal cytotoxic effects after 8–14 h (Zhu et al., 2017;
Di Pace et al., 2020). Furthermore, it has been demonstrated that the
acidic tumor microenvironment promotes the uptake of NEVs by
tumor cells (Parolini et al., 2009; Fais, 2013).

4.4 Security

All current NEVs research has addressed the safety of NEVs at
the cellular or animal level. Some studies point out that NEVs
derived from PBMC have cytolytic activity against cancer cells but
not against normal resting PBMC cells or normal cells (Lugini et al.,

2012; Groot Kormelink et al., 2018). Furthermore, numerous studies
have concluded that NEVs do not pose serious safety concerns in
animal studies (Han et al., 2020; Kaban et al., 2021; Zhang et al.,
2022). Existing research can provide initial confirmation of the
safety of NEVs. However, because most of them are in vitro
experiments, safety issues will become an issue that has to be
addressed for the future development of NEVs.

4.5 Adjustability

EVs-secreting behavior of NK cells is independent of cell
activation status (Fais, 2013; Aarsund et al., 2022). However, the
killing activity of NEVs is closely related to the state of cell activation
(Lugini et al., 2012). This process is regulated by many factors; for
example, NEVs exhibited stronger cytotoxic effects and elevated
levels of cytotoxicity-related molecules in hypoxic environments
(Jiang et al., 2021). NEVs pre-exposed to the tumor environment
may have higher cytotoxicity (Shoae-Hassani et al., 2017).
Furthermore, the cytotoxicity of NEVs can be modulated by
various cytokines (Markova et al., 2021; Aarsund et al., 2022).
Namely, higher quality NEVs would be produced by appropriate
regulation of NK cells based on the above characteristics in the
future.

5 Engineering strategy for NEVs

Endowing EVs with a variety of fascinating capabilities via
common engineering strategies has become a crucial direction for
much applied research. Common EVs engineering techniques can
be classified as endogenous and exogenous modifications. The
primary objective is to increase the targeting ability or transform
them into drug carriers (Gudbergsson et al., 2019; Zhang et al.,
2020b). Existing engineering studies of NEVs are few but have
shown satisfactory results.

5.1 Exogenous modifications

NEVs are suitable for drug delivery systems (DDS) due to their
strong penetration, antitumor activity, and natural targeting. The
current strategy is transporting exogenous drugs into NEVs, with
engineering methods mainly including electroporation,
ultrasonication, extrusion, freeze-thaw cycles, and saponin
treatment (Thakur et al., 2022). NEVs were used in a study to
enhance the antitumor effects of the drug by encapsulating paclitaxel
via electroporation (Figure 1A) (Han et al., 2020). Another study
reported that NEVs loaded with doxorubicin by ultrasonication
demonstrated excellent antitumor activity against MCF-7 human
breast cancer cells both in vitro and in vivo (Figure 1B) (Pitchaimani
et al., 2018). A recent study using NEVs loaded with hydrophilic
siRNA and the hydrophobic photosensitizer Ce6 showed obvious
tumor-killing effects due to not only the anti-tumor property of the
NEVs but also the combination of the powerful gene silencing effect
by the delivery of siRNA and significant photodynamic therapeutic
effects with reactive oxygen species (ROS) generated after laser
irradiation (Figures 1C, 4A) (Zhang et al., 2022). The use of
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NEVs in drug delivery overcomes most of the drawbacks of
conventional nanomaterial drug delivery systems.

Surface engineering is another type of exogenous modification
of interest. Surface engineering of NEVs can improve their targeting
or binding to other substances, increasing their stability and
duration of action in vivo. Introducing nanomaterials and
inserting lipophilic components into the membrane by fusion
with liposomes or adsorbing molecules is the main approach for
the surface engineering of NEVs (Yang et al., 2021a). The linkage
can also be formed through covalent bonds on the vesicle surface
through azide-alkyne cycloaddition reactions (Richter et al., 2021).
In a recent study, NEVs were modified with dibenzocyclooctynes
(DBCO), and CTL was modified with azide groups, respectively,
which were subsequently linked via biorthogonal chemistry. Due to

the pH-responsive structure, the NEVs could be released at low PH,
exploiting their ability to target tumors during circulation and
promote CTL to kill tumors (Figures 1D, 4B) (Nie et al., 2021).
Another study reported using cocktail therapy by combining NEVs
with dendrimer core loaded with therapeutic miRNAs for tumor-
targeted therapy (Figures 1E, 4C) (Wang et al., 2019).

5.2 Endogenous modifications

Endogenous modification is also an essential method for the
functionalization of NEVs. It is intended to engineer the membrane
and contents of NEVs by genetically modifying the parent cells
expressing the specific target product or chimeric protein. A genetic

FIGURE 4
(A) Schematic illustration of light-activatable silencing NK-derived exosomes (LASNEO) mediated synergetic tumor eradication. (B) Binding of NEVs
to CLTs via click chemistry reaction. (C) Schematic design of the NN/NKEXO cocktail for tumor targeting and drug delivery. (D) Loading of BCL-2 siRNAs
(siBCL-2) in NK-92MI-derived EVs by lentiviral transfection.
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engineering study of the NK-92MI using lentiviral transduction to
express BCL-2 siRNA (siBCL-2), which is enriched in NEVs and
successfully enhanced tumor-killing ability by inhibiting
overexpression of BCL-2 in breast cancer (Figures 1F, 4D)
(Kaban et al., 2021). A study reported that EVs isolated from
mesothelin-targeted CAR-T cells maintained most of the parental
cells’ characteristics and had the same therapeutic potential without
significant side effects (Yang et al., 2021b). Moreover, the
administration of CAR cell-derived EVs is relatively safer than
CAR cell therapy (Fu et al., 2019). However, there still exists no
detailed study using CAR NK-derived EVs. Take as a whole, genetic
engineering enables good control over the generated EVs; once the
corresponding cell line is established, no further work is required to
generate the modified EVs, making it an ideal method for the mass
production of engineered EVs in the future.

6 Discussion

This review highlights the challenges and potential of NEVs in
cancer therapy, which has demonstrated tremendous advantages in
recent years as an emerging cell-free therapy in cancer
immunotherapy, including smaller size, greater tissue penetration,
lower acquisition costs, and independence from inhibitory TAM
compared to conventional NK cell therapies. The NEVs inherit the
tumor-killing and natural targeting abilities of their parent cells. It is
associated with relatively few immune side effects due to the absence
of cellular involvement. Therefore, in addition to cell therapy, NEVs
have the potential to play a crucial role in future tumor
immunotherapy.

The role of NEVs is still poorly understood, and researchers
continue to investigate it. One study showed that NK-92MI cells-
derived EVs could inhibit TGF-β1-induced HSC proliferation and
activation, preventing liver fibrosis by carrying miR-223 (Wang
et al., 2020a; Wang et al., 2020b). Another study demonstrated that
miR-207-containing NEVs alleviated symptoms of chronic mild
stress in mice, suggesting that NEVs may also have a role in the
treatment of depression (Wang et al., 2020a; Wang et al., 2020b).
Moreover, NEVs ameliorated lung injury in a mouse model of
Pseudomonas aeruginosa lung infection by promoting
M1 macrophage polarization. This suggests that NEVs may play
a protective role in inflammation, especially in diseases with an
imbalanced M1/M2 macrophage ratio (69). As the in-depth
functions of NEVs have not yet be investigated, following
research may need to focus on the functional contained
biomolecules and the critical roles in the immune regulation process.

Despite the large number of studies demonstrating the efficacy
of NEVs in cancer therapy, the development of NEVs still faces
significant challenges. Not only do NEVs face these challenges, but
all therapeutic EVs developments must also overcome them. The
first is the heterogeneity of EVs, which complicates quality control
and hinders a comprehensive understanding of their function. The
main reason comes from the cell source and isolation methods for
the production of EVs. The optimal cell source and isolation method
for EVs is still under investigation. Ultracentrifugation is the most
widely-used EVs isolation method, which needs to be integrated
with another isolation method to improve the separation purity. The
second challenge is selecting designs that improve the cycling

stability and the cytotoxicity of NEVs. As mentioned above,
although various endogenous and exogenous modification
methods are used, there is no effective method to improve the
loading efficiency of bioactive molecules without compromising the
integrity of EVs, and most modification methods may cause
clustering. Furthermore, it is necessary to evaluate the need for
these modifications and their improvement in therapeutic efficacy.
A reliable method to determine whether the loaded EVs contain
active molecules is still urgently needed (Wahlgren et al., 2012).
Finally, due to the insufficient number of studies and inconsistent
experimental conditions, there is no uniform standard on how
numerous NEVs and how long it will take to achieve the desired
anticancer effect, as well as what delivery method and treatment
regimen should be employed during treatment to achieve improved
clinical outcomes. Therefore, there is still much work to be
done before the utilization of NEVs in clinical settings. Although
the full-scale mechanism and function of NEVs need to be
addressed, NEVs are a highly promising cell-free therapeutic
option, which are easily to be obtained, modified, and stored in
comparison with cells. The increasing number of studies on
engineering NEVs have also proved it as an excellent vector
for personalized modification. The unique anti-tumor properties
of NEVs convince us that the anti-tumor strategy based on
NEVs is worthy of comprehensive and in-depth study. Future
research should take full advantage of NEVs and integrate it with
multiple therapeutic strategies including sonodynamic therapy,
photodynamic therapy, photothermal therapy and radiotherapy,
so as to achieve more powerful tumor-killing effects. We hope
this review will contribute to the promotion of multidisciplinary
research on NEVs in a concerted effort to make NEVs the next-
generation of cancer therapeutic strategy.
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