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The manufacturing of antibody-drug conjugates (ADCs) involves the addition of a
cytotoxic small-molecule linker-drug (= payload) to a solution of functionalized
antibodies. For the development of robust conjugation processes, initially small-
scale reaction tubes are used which requires a lot of manual handling. Scale-up to
larger reaction vessels is often knowledge-driven and scale-comparability is solely
assessed based on final product quality which does not account for the dynamics
of the reaction. In addition, information about the influence of process
parameters, such as stirrer speed, temperature, or payload addition rates, is
limited due to high material costs. Given these limitations, there is a need for a
modeling-based approach to investigate conjugation scale-up. In this work, both
experimental kinetic studies and computational fluid dynamics (CFD) conjugation
simulations were performed to understand the influence of scale and mixing
parameters. In the experimental part, conjugation kinetics in small-scale reaction
tubes with different mixing types were investigated for two ADC systems and
compared to larger bench-scale reactions. It was demonstrated that more robust
kinetics can be achieved through internal stirrer mixing instead of external mixing
devices, such as orbital shakers. In the simulation part, 3D-reactor models were
created by coupling CFD-models for three large-scale reaction vessels with a
kinetic model for a site-specific conjugation reaction. This enabled to study the
kinetics in different vessels, as well as the effect of process parameter variations in
silico. Overall, it was found that for this conjugation type sufficient mixing can be
achieved at all scales and the studied parameters cause only deviations during the
payload addition period. An additional time-scale analysis demonstrated to aid the
assessment ofmixing effects during ADC process scale-upwhenmixing times and
kinetic rates are known. In summary, this work highlights the benefit of kinetic
models for enhanced conjugation process understanding without the need for
large-scale experiments.
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1 Introduction

Antibody-drug conjugates (ADCs) are highly potent
biopharmaceuticals that combine the targeting specificity of a
monoclonal antibody with the potent cytotoxicity of
chemotherapy. In the last decade, ADCs have made considerable
progress: In 2021, ten ADCs were approved by the Food and Drug
Administration (FDA) and >80 are in clinical trials (Dean et al.,
2021). For the coupling of the cytotoxic drug/payload to the
monoclonal antibody (mAb), functional groups such as lysine
residues or free thiols after reduction of interchain disulfide
bonds are used (Tsuchikama and An, 2018). However, these
conjugation techniques often cause heterogeneous drug-load
profiles and a variety of positional isomers (Matsuda and
Mendelsohn, 2021), (Kommineni et al., 2020). In the
development of scalable and robust ADC processes, a major
challenge is the characterization of critical process parameters
(CPP) in each synthesis step that impact critical quality attributes
(CQAs) (Matsuda and Mendelsohn, 2021). Especially, the drug-to-
antibody ratio (DAR), drug load profile and aggregate level are
important CQAs as they directly influence the product safety,
efficacy and pharmacokinetics (Stump and Steinmann, 2013).
Different site-directed conjugation methods have been developed
that aim to synthesize more homogenous ADC products, control the
site of attachment, and achieve more stable conjugates (Panowski
et al., 2014), (Jackson, 2016). But even for these methods, product-
related impurities, such as under- and over-conjugated species or
aggregation still occur (Hutchinson et al., 2018; Cao et al., 2019;
Coumans et al., 2020).

At the same time, regulatory agencies increasingly promote the
understanding of both product and process already in the
development phase according to the concept of Quality by Design
(QbD) (ICH, 2008). As the needed intermediates for ADCs are costly
and difficult to handle, scale-down models (SDM) are often used in
process development. These models are typically designed by
selecting one scale-down parameter to be similar along scales.
However, this approach becomes difficult for larger scale
differences, because certain factors, such as the power input per
volume ratio (P/V), are impractical to be kept constant. (Marques
et al., 2010; Tajsoleiman et al., 2019; Montes-Serrano et al., 2021).
For ADCs, no systematic approach has been reported and scale-
comparability is assessed based on constant ADC quality attributes,
such as the DAR or aggregate level (Hutchinson et al., 2018).

Due to the ongoing digitalization of bioprocesses, the use of
process models describing complex biopharmaceutical processes are
promoted (Gargalo et al., 2020). Different types of statistical or
computational approaches, such design of experiment (DoE),
mechanistic or hybrid models and computational fluid dynamics
(CFD) were recently applied, also aiming to extrapolate beyond the
design space and predict larger scales (Roush et al., 2020; Smiatek
et al., 2020; Sinner et al., 2021). Within the last years, computational
fluid dynamics (CFD) have gained more attention for (bio)-reactor
scale-up due to the ability to provide high resolution results of the
complete flow pattern at various scales (Scully et al., 2020), (Werner
et al., 2014). The goal is to establish an advanced process model that
allows to examine the effects of scale, turbulence, and mixing
parameters completely in silico. In the field of biotechnology,
CFD was recently applied to study bioreactor mixing

performance (Wutz et al., 2020; Xing et al., 2020; Martinetz
et al., 2021), predict large-scale mixing times and oxygen mass
transfer (Scully et al., 2020), (Bach et al., 2017; Wutz et al., 2018;
Nadal-Rey et al., 2022) and explore inhomogeneity effects on the cell
metabolism (Haringa et al., 2017). However, most studies focus on
comparably slow bio-chemical processes, such as fermentation, with
characteristic times in the range of min to hours, while typical
chemical reactions being significantly faster (down to nano-sec).
There are only a few cases, where CFD and mechanistic models were
coupled to predict the mixing effect on the course of chemical
reactions (Vicum et al., 2004). Due to high computational demand
elegant ways to minimize the computational effort by using
compartment modeling (Yang et al., 2019), (Öner et al., 2018) or
surrogate models (Kaya et al., 2022) were also developed.

In the field of ADCs, mostly statistical approaches, such as
design of experiments (DoE) are utilized to optimize the process and
gain a solid understanding of the CPP-CQA relationship (Stump
and Steinmann, 2013). For scale-up prediction, the use of process
models has not been reported yet. Especially the conjugation step is
considered to demand adequate mixing and careful considerations
of the payload addition method or rate. In addition, single-use
reactors are becoming more commonly used in ADCmanufacturing
(Marcq and Damelin, 2018), (Schmidhalter et al., 2019). However,
their reactor design and mixing geometry is different from
conventional stirred vessels which might add further possibilities
to affect the product. In an earlier study (Hu et al., 2017), CFD
models were generated to compare different reaction vessels based
on mixing times simulations, while the importance for ADC
reactions was not discussed. Recently, a mechanistic kinetic
model for a site-directed conjugation was developed by Andris
et al. (Andris et al., 2019), showing that the model could
successfully optimize concentrations and reaction times. Since the
dataset was limited to small-scale experiments and not compared to
large-scale data, evidence of the potential to predict scale-up
parameter is still lacking. In addition to the differences in size
and geometry, manual handling in small scales vs a higher
degree of automation in larger scales may result in fundamental
differences in flow characteristics and mass transfer. These effects
might impact the conjugation reaction.

Here, we present a thorough investigation of scale effects and
mixing parameters on the course of ADC conjugation reactions by
applying experimental kinetic studies and the coupling of CFD
models with an ADC conjugation kinetic model. In the
experimental kinetic studies, the influence of mixing in typically
used small reaction tubes is analyzed for two model ADCs aiming to
produce robust conjugation kinetics. One ADC has a target DAR
value of 2, and conjugation is achieved by site-specific attachment to
inserted cysteine residues. The second ADC has a target DAR value
of 8, and the conjugation workflow is based on stochastic
conjugation to interchain disulfide bonds after reduction. It is
shown, how well this test tube scale (~1 mL) mimics the
conjugation reaction in a glass reactor at lab-scale (100 mL) at
industrial-relevant concentrations. In the second modeling part,
CFD simulations are performed for three differently sized vessels
typically used for pilot and large-scale ADC manufacturing (up to
50 L), namely, two conventional glass stirred vessels and one single-
use vessel. The steady-state results and mixing time simulations are
considered for a CFD-based vessel comparison. Subsequently, a
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kinetic model for the site-directed conjugation reaction is
incorporated in the CFD models resulting in a full 3D reactor
model and is further used to study in silico how scale and
process parameters affect the course of the conjugation reaction.

2 Materials and methods

2.1 Experimental conjugation kinetic studies
with two model ADCs

Two types of kinetic studies with ADC1 and 2 were conducted:
1) Mixing kinetic studies to determine optimal mixing conditions
for small-scale conjugation reactions by using either external mixing
or internal mixing. 2) Conjugation kinetics with the optimized
small-scale conditions vs lab-scale conjugation to evaluate the
scale comparability.

2.1.1 Chemicals, ADCs and functionalization steps
Two ADCs were investigated within the experimental part of

this study: ADC1 with two engineered cysteines for a site-directed
DAR 2 conjugation and ADC2 for a cysteine-linked DAR
8 conjugation. For DAR 2, a functionalized mAb solution was
generated through a full reduction with tris(2-carboxyethyl)
phosphine hydrochloride (TCEP, EMD Millipore), followed by a
buffer exchange using Vivaspin 20 (30 kDa MWCO, Cytiva) and a
re-oxidation of the interchain disulfides with (L)-dehydroascorbic
acid (DHAA, Sigma-Aldrich). For the ADC2 with a DAR of 8, a mild
reduction of the interchain disulfides with TCEP was performed. In
both cases, conjugation was carried out with a maleimide-
functionalized payload that was dissolved in DMSO (Sigma-
Aldrich). All other solutions were prepared with 20 mM sodium
phosphate buffer (J.T. Baker), 1 mM EDTA (EMD Millipore),
pH 7.0.

2.1.2 Conjugation kinetics
For all studies, functionalized mAb solution was prepared by the

procedure described above. MAb solutions with ADC1 were diluted
to a concentration of 10 mg/mL and conjugated with 5x molar
payload excess. In case of ADC2, a lower concentration of 1.5 mg/
mL was tested, and conjugations were performed with 11x molar
payload excess. As mixing vessel for the small-scale experiments,
reaction tubes (1.5 mL Safe-Lock tubes, Eppendorf) were used.
Preliminary studies with ADC2 showed that thorough initial
payload mixing is required to prevent lower DAR values or
inconsistent kinetics, especially when an orbital shaker is used for
subsequent mixing (Supplementary Figure S1). To solely assess the
influence of the final mixing, the initial payload mixing was
conducted by one end-over-end rotation of the tube (tube
rotator, VWR). Final mixing was either achieved by “external”
mixing (Eppendorf thermomixer C) or internally with a magnetic
stir bar (Magnetic stir bar, Merck, Part #23226) placed inside the
tube. Two shaking/mixing speeds for each condition were tested.
Conjugations with ADC2 were performed in duplicates.

Lab-scale conjugations were performed to compare the kinetics
with the optimized small-scale mixing system. The mAb
concentrations were set to 5 mg/mL (ADC1) or to 20 mg/mL
(ADC2) and the same payload excesses as in the small-scale were

used. The stirrer-based mixing was found to lead to more ideal
kinetics in the small-scale reactions and was therefore used for the
comparison to the lab-scale kinetics. Lab-scale conjugations were
conducted with 100 mL mAb solution in a stirred glass reactor
(Chemglass, inner diameter = 108 mm,Model CG-1949-x-300), that
was also included in the CFD study (later referred to as GST-1). The
anchor stirrer (Chemglass, impeller diameter = 81 mm, Model CG-
2081-A-04) was installed so that the stirrer was close to the bottom
surface. The stirrer speed was set to 60 rpm and payload solution was
manually added with a pipette to the stirred mAb solution.

2.1.3 Reference analytics
To obtain data on conjugation kinetics, samples were taken at

defined timepoints over 1 h and immediately quenched with
N-Acetyl cysteine (Sigma-Aldrich). Each sample was further
treated with reducing buffer, incubated at 37 °C for 30 min and
analyzed using reversed-phase ultra-high-performance liquid
chromatography (RP-UHPLC). A detailed description of the
applied protocol, method and chromatography system can be
found in (Cao et al., 2019). The DAR was calculated based on
the peak areas of unconjugated/conjugated light and heavy chain
peaks.

2.2 CFD simulations for large-scale vessels

Multiple CFD simulations were performed, and their individual
purpose is shortly described in the following. First, steady-state and
transient mixing time simulations were conducted to characterize
three industrially relevant mixing vessels. Validation of the CFD
models was done based on available mixing times. Next, a calibrated
kinetic model for the site-directed conjugation reaction was
incorporated in the existing CFD models. This enabled to study
the direct impact of mixing geometry and scale on the conjugation
kinetic and is referred to as 3D-model. The significance of the 3D-
model to accurately describe the conjugation reactions was
estimated by comparing the predicted kinetics with the 0D-
model (ideal mixing assumption). For one of the studied vessels
the influence of varying process parameters was further exemplarily
studied. Due to GMP limitations, a validation of the large-scale
conjugation kinetic could only be performed for the smallest mixing
vessel.

2.2.1 Geometries and meshes
The studied geometries comprise three disparate, unbaffled

vessels: A 300 mL “lab-scale” glassed stirred tank (GST-1)
equipped with an anchor stirrer (Chemglass, Model CG-1949-x-
300), a 50 L “large-scale” glass stirred tank (GST-2) equipped with a
45 pitched-blade stirrer (Chemglass, Model CG-1968-81) and a 50 L
“large-scale” single-use mixer (SUM) equipped with an eccentric
bottom-mounted agitator (Mobius MIX Bag, Merck Millipore).
Liquid volumes and stirrer speeds were selected to be comparable
to real process conditions. All geometries were designed in ANSYS
DesignModeler. An overview of the vessels and the parameters is
given in Table 1. The exact dimensions are tabularized in the
Supplementary S2. For the GST-1, the whole volume was
modelled as a single rotating frame having the same rotational
speed as the stirrer. For both large-scale vessels (GST-2 and SUM),
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the fluid domain was divided into two zones, a cylindrical rotating
zone around the impeller and a stationary zone for the remaining
volume, to model the stirrer motion using the multiple reference
frames (MRF) approach. The water surface was assumed to be flat.
The geometries were discretized with Poly-Hexcore meshes using
the integrated FLUENT mesher. Five boundary layers of prism cells
were applied for the walls (vessel, impeller and shaft) in order to
resolve the transition of the flow in the near-wall region. The mesh
close to the impeller was further refined because of higher expected
gradients. The resulting meshes consisted of approximately 687,000
(GST-1), 26,000 (GST-2) and 38,000 (SUM)mesh elements per liter.
The higher mesh cell density for the GST-1 was due to the larger
impeller area relative to the volume which had to be refined. Overall,
a minimum orthogonality of 0.2 or greater and a maximum
skewness less than 0.8 was achieved. To judge sufficient spatial
discretization, mesh independency tests were performed for each
vessel at the highest stirrer speed based on global average velocity
magnitude and turbulence parameters (Supplementary Figure S4).
The final meshes and mesh metrics are depicted in the
Supplementary S3.

2.2.2 Steady-state simulations and P/V ratio
Steady-state CFD simulations were performed for the

predictions of the stationary flow field. All simulations were run
using the finite volume method with pressure-based solvers in
ANSYS Fluent v2020 R2. Turbulence models are required since

all impeller Reynolds numbers (Reimp) are in the transitional or fully
turbulent regime. In a preliminary study, two frequently used
Reynolds-averaged Navier Stokes (RANS) models, namely, the
k-ε-RNG and the Reynolds Stress Model (RSM) model, were
compared. Since the k-ε-RNG was found to be more stable and
achieve similar results in less computational time, it was applied in
this work. The physical properties of the fluid were assumed to be
equal to water with 10% DMSO (a typical media composition for
conjugation reactions). The density was set to 1,010.5 kg m-3 and the
dynamic viscosity to 0.00106 kg m-1 s-1. The liquid surface was
defined as no-shear (free slip), tank and stirrer walls were treated
with zero velocity (no-slip) boundary condition. The near-wall
region was modeled with standard wall function. The SIMPLEC
algorithm was used for pressure-velocity coupling. Further, the
second-order upwind scheme for interpolation and Green-Gause
node based for gradient determination were used. The simulations
were run for at least 10,000 iterations and convergence was judged
based on continuity of volume-averaged velocity magnitude,
impeller torque and turbulent energy dissipation ε) as well as
scaled residuals. The flow was assumed to be stationary when no
considerable deviation of these values was observed (data are shown
in the Supplementary Figure S5). The stationary impeller torque (M)
was used to calculate the simulated P/V:

P

V
� 2πpNpM

V
(1)

TABLE 1 Geometries and parameters of the studied reaction vessels. *For GST-2, three stirrer speeds were investigated in the parameter study. **For the SUM a
lower stirrer speed of 250 rpm was added because mixing time data were available only for this stirrer speed.

3D view Name Volume
liquid

Impeller type Speed/
rpm

Reimp

Lab-scale glass stirred tank
(GST-1)

300 mL 2 blades, anchor-style, centric 60 6,218

Large-scale glass stirred tank
(GST-2)

22 L 4 blades, pitched bladed (45°), centric 60, 80*, 120* 22141,29,522,
44,282

Single-use mixer (SUM) 25 L 4 blades, 15° angle, bottom mounted,
eccentric

250**, 400 15,765, 25,224
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where N is the stirrer speed and V is the liquid volume.

2.2.3 Mixing time studies—Computational
Tracer simulations using the species transport model were

performed for computational mixing time studies. The flow in
each vessel was initialized with the respective steady-state result
and subsequently “frozen”. This approach was expected to be valid,
since the flow fields in GST-1 and GST-2 were considerably steady
and did not fluctuate (see Supplementary Figure S5). For the SUM,
the flow field fluctuated slightly, but a comparison between frozen
and dynamic approach showed only minor differences in the
simulated mixing times which justifies the use of the frozen
approach also in this case. After the initialization, a non-reactive
species mimicking a 1 M NaCl solution was added below the water
surface at a position analogue to experimental procedure (exact
addition positions are described in Supplementary S3). With the
defined tracer volume, a tracer concentration of 0.1% (v/v) was
reached. The tracer diffusion coefficient was specified to D =
1*10−9 m2/s. A first-order implicit methods for the temporal
discretization was used. Within a preliminary time step analysis,
the time step size was gradually reduced until convergence of the
simulated mixing time curve was achieved. This analysis was done
for the GST-2 at 120 rpm due to the highest average velocity
gradients and resulted in a time step size of 0.01 s to be sufficient
for all vessels. The Courant number was smaller than unity for most
mesh cells to ensure numerical stability and convergence. The
simulations were run for up to 300 s. Similar to published
literature (Spann et al., 2019), a homogenization criterion of 95%
was selected to determine mixing times. For a complete
representation of the whole vessel, the global mixing indicator
Mglobal was chosen which is quantified by the squared deviation
of concentrations in the entire fluid domain:

Mglobal t( ) � 1 −
����������������
1
V
∫ c t( )

c∞
− 1( )2

dV

√
(2)

where V is the vessel volume, c(t) is the cell concentration over time
and c∞ is the volume-average mean concentration. The time to
reach 95% homogenization (Mglobal � 0.95) is the simulated mixing
time. For GST-1 (at 60 rpm) experimental mixing time data were
performed in the laboratory, whereas for the SUM (at 250 rpm) data
were available from the vendor. In both cases, the local tracer
concentration at the probe position was taken from the
simulation. For the SUM, mixing times for the 99% criterion
were available and therefore evaluated.

2.2.4 Mixing time studies—Experimental
Salt spiking experiments could be performed for GST-1 at equal

volume and stirrer speed to the CFD simulations. The vessel was
filled with desalted water as model fluid. The stirrer speed was set
and 30 μL of 1 M KCl (Merck KGaA) solution was manually added
with a pipette to the top of the liquid surface. The conductivity of the
vessel solution was measured externally: A peristaltic pump
(Minipuls 3, Gilson, Middleton, USA) was used to continuously
pump the solution through PEEK tubing to an in-line pH/C-
900 conductivity monitor (Cytiva, Uppsala, Sweden) at a flow
rate of 1 mL/min. Since the influence on the volume of the
reactor was assumed to be neglectable (<1%), the outflowing

solution was discarded to prevent flow field disturbances.
Analogue to the CFD simulations, the mixing time was
determined at 95% of the final conductivity. The tubing dead
volume was determined and measurements were conducted in
triplicates. Mixing time data and position for the SUM were
available from the vendor.

2.2.5 CFD reaction modeling of the ADC
conjugation reaction

The ordinary differential equations (ODEs) of the kinetic model
describing the DAR 2 conjugation reaction scheme were taken from
a previous work (Andris et al., 2019). The model consists of two
consecutive conjugation steps and a parallel reaction for the
payload/drug inactivation:

1. conjugation rate � k1 mAb[ ] Drug[ ], k1 � 0.797 mMps( )−1
(3)

2. conjugation rate � k2 mAb1Drug[ ] Drug[ ], k2 � 1.476 mMps( )−1
(4)

Drug sink rate � k3 Drug[ ], k3 � 0.00155 s−1 (5)
In short, the model assumes that mAb and payload react to the

mono-conjugate (mAb1Drug) and afterwards to the desired bi-
conjugate (mAb2Drug). The values of the three calibrated rate
constants were taken from previous small-scale experiments
using the surrogate payload NPM (Andris et al., 2019). In the
original model, an initial distribution in % of available cysteines
on the mAb is considered which consequently leads to seven ODEs.
The percentages of mAbs with two, one and zero activated cysteines
were set to 88.59, 8.60% and 2.81%, which was calculated from the
final ratio of mAb, mAb1Drug and mAb2Drug in the validation run.
Since this assumption does not affect the time-course of the reaction
but increases the computational demand, it was thus only adopted in
the reaction simulations for the validation for better agreement with
the experimental data and neglected in the remaining CFD
simulations.

For the CFD reaction models (3D-model), the reaction is
considered as homogeneous liquid reaction system. To predict
the course of the ADC conjugation reactions in stirred vessels,
simultaneously solving the differential equations of momentum,
energy, mass and species is required. The ODEs were implemented
as volumetric reactions in the species transport equation in
FLUENT. This was realized by adding a rate of production Ri

and a source term Si representing the rate of creation to the
mass conservation equation which takes the following differential
form for the ith species:

z

zt
ρYi( ) + ∇ · ρ v

.
Yi( ) � −∇Ji. + Ri + Si (6)

where ρ is the liquid density, ] is the fluid viscosity, Yi is the species
mass fraction and Ji

.
is the diffusion flux of species i. Constant

density was assumed for all species and the increase in volume was
neglected due to the rather small volume of added payload of 1.67%
(v/v) with respect to the total volume. The finite-rate model was
chosen to calculate the production term. This approach computes
the chemical reaction rate of each species directly with neglecting
turbulence-chemistry interaction. Backward reactions were set to
zero and the liquid temperature was assumed isothermal. For
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initialization, the entire fluid domain was homogenously patchedwith
the desired mAb concentration. The payload addition was performed
sub-surface. Addition positions can be found in the Supplementary
S3. Instant addition was implemented by initializing a spherical
domain with a payload concentration of 10 mM. For addition over
time a source term in the same region was implemented, which
generated a constant amount of payload in each time step for the
feeding times. A time step size of 0.01 s was also used for these studies.
This was determined by initializing the entire volume for GST-2 as
perfectly-mixed (as assumed in the 0D-model) and lowering the time
step size until the kinetics converged against the predictions of the 0D-
model. The transient reaction simulations were performed with
similar settings as the mixing time studies and were run for 300 s
since all mAb is conjugated during this period.

2.2.6 Validation of CFD reaction modelling
A validation run for the CFD reaction modeling was performed

in the GST-1 vessel using 300 mL mAb solution with 1.5 mg/mL
(ADC1) and 5x molar payload excess. The stirrer speed was set to
60 rpm and a surrogate payload dissolved in DMSO was added over
1 min with a syringe pump (Nemesys S). Time samples were
quenched with NAC and the conjugation kinetic of the intact
ADC species was determined with a non-reducing RP-UHPLC
method. The same protocol, system and column as described in
(Andris et al., 2019) was used.

2.2.7 Vessel comparison and parameter study
Using the 3D-models, the kinetics in three mixing vessels were

compared. Furthermore, a parameter study was conducted,
exemplarily for GST-2, that covered the variation of three
process parameters in typical ranges. The investigated parameters
are summarized in Table 2. Only one parameter was varied at a time
while the other parameters were kept constant at the standard
condition of 60 rpm, 5 mg/mL mAb concentration, 5x molar
payload excess and 60 s addition time.

Analogously, the original kinetic model was expanded with a
fed-batch term assuming ideal-mixing. This resulted in a classical
0D-model which serves as a reference for the effect of vessel scale
and process parameter when comparing the outcome of 0D- and
3D-model. This deviation between both simulations was quantified
using the absolute difference in the DAR value over time:

ΔDAR t( ) � DAR0D t( ) − DAR3D t( ) (7)
whereas the DAR values were calculated with:

DAR t( ) � cmAb,1Drug t( ) + 2pcmAb,2Drug t( )
cmAb,0

. (8)

In case of the 3D-model, the concentrations of the conjugated
species were obtained from the volume-averaged species
concentrations at each time step. The 0D-model was simulated in
MATLAB R2020a and the differential equations were solved using
the ode45 solver.

2.2.8 Time-scale analysis
As an alternative approach to fully modeling the dynamic

reaction, one can compare the time-scales of reaction and mixing
to receive an expectation regarding the predominating
mechanism to be considered. An inhomogeneity of reactant
concentration in large-scale reactors operated in fed-batch
may be caused by weak distribution of the added reactants.
This characteristic time can be quantified with the mixing
time (Nadal-Rey et al., 2021). For chemical reactions one can
calculate the characteristic time τR for a bimolecular reaction
according to (Vicum et al., 2004):

τR � 1
ki c̃1 + c̃2( ), (9)

where ki is the kinetic rate of the ith reaction and ~cj is the local
concentration of the jth species. If the characteristic reaction time is
significantly larger than the mixing time, the reaction can be
considered as ideal-mixed, while for larger mixing times in
comparison to the reaction time the process becomes mixing-
sensitive.

3 Results and discussion

The first part of this chapter deals with the experimentally
determined conjugation kinetics and the comparability between
small- and lab-scale conjugation kinetic. In the second part, the
CFD results for the three studied vessels are analyzed involving
typical scaling parameters such as P/V, resulting flow fields and
mixing times. The chosen process parameters at which the vessels
were compared can be found in Table 1. Finally, the CFD-simulated
ADC conjugation kinetics are compared among the vessels and the
influence of process parameters on the reactions is studied for
GST-2.

3.1 Experimental conjugation kinetic studies

3.1.1 Small-scale conjugation kinetic studies
The resulting DAR kinetics from the RP-UHPLC analysis are

shown in Figure 1A for the DAR 2 species. The DAR increases
rapidly for all reactions and the mAb is entirely conjugated after
900 s. Notably, the curves deviate during the initial phase of the
conjugation reaction with the orbital shaker at 1,000 rpm having
the largest offset from the ideal conjugation kinetic. This might
be caused by an experimental artefact, but also demonstrate the
requirement for proper mixing which cannot be ensured using
the orbital shaker. Since conjugation reactions were performed
over 1 h and the curves deviate only during the initial reaction
period, the final DAR values and the drug load profile (data not
shown) were not affected by the mixing type. The achieved
average final DAR of all runs is 1.90 which is lower than the

TABLE 2 Investigated process parameters within the parameter study
conducted for the GST-2. Standard conditions were 60 rpm, 60 s addition time,
5 mg/mL mAb and 5x molar payload excess.

Parameter Range

Stirrer speed 60, 80 and 120 rpm

Payload addition time 0 (Batch), 60 and 300 s

cmAb 5 and 10 mg/mL
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theoretical DAR of 2. This can be caused by the previously
described pre-inactivation of cysteines (Andris et al., 2019)
that originate from reformed disulfide bridges from reactive
thiols formed during the reduction and re-oxidation step
(Coumans et al., 2020). The averaged kinetics for the DAR
8 species are shown in Figure 1B). The error bars represent
the standard deviation of each duplicate. Similarly, the DAR
curve increases rapidly while final DAR values are reached at
approx. 300 s. All kinetics show no considerable deviation
between the mixing types and final DAR values range between
7.5 and 7.8. Overall, the effect of the mixing on the final DAR for
both molecules was rather small if the reaction was run for 1 h. In
summary, the conjugation kinetic study demonstrated that
internal stirring in reaction tubes may be favored. Using the
orbital shaker only results in acceptable kinetics when initial
mixing is conducted properly.

3.1.2 Conjugation kinetic comparison of reaction
tubes and lab-scale stirred vessel

Product quality and DAR of an ADC are usually tested after the
conjugation reaction is complete. It was of interest to study changes in
conjugation state over the course of the reaction and to compare the
small-scale reaction tubes with a larger reactor set-up. Figure 2 shows the
comparison of the DAR-course in reaction tube vs lab-scale stirred tank
(GST-1) for both the site-specific conjugation to inserted cysteines (left
panel) and the stochastic conjugation to reduced interchain disulfide
bonds (right panel). For both ADCs the kinetics follow the same course
at the two scales. In both cases slightly higherDAR values are achieved in
the lab-scale vessel. However, the observed difference is within assay
variability. Furthermore, no considerable difference in the drug load
profiles was present (data not shown). These experiments demonstrate
that the internally stirred reaction tube shows good comparability to the
lab-scale vessels for the conjugation chemistries studied.

FIGURE 1
Comparison of the RP-UHPLC determined DAR conjugation kinetics performed in small-scale reaction tubes with different mixing systems and
speeds. (A) ADC1 at a concentration of 10 mg/mL conjugated with 5x molar payload excess and (B) ADC2 at a concentration of 1.5 mg/mL conjugated
with 11x molar payload excess. Runs were performed in duplicates and error bars represent the standard deviations.

FIGURE 2
Comparison of the small- and lab-scale DAR conjugation kinetics determined by RP-UHPLC. (A) Kinetics for ADC1 at 5 mg/mL and 5xmolar payload
excess and (B) kinetics for ADC2 at 20 mg/mL and 11x molar payload excess.
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3.2 CFD simulations for large-scale vessels

3.2.1 Large-scale vessel characterization using
steady-state and mixing time simulations

Simulations for both glass vessels GST-1 and GST-2 result in
comparable P/V values of 3.81 and 2.44W/m³, respectively. A
tenfold higher P/V value of 23.71W/m³ is reached in the SUM due
to its higher stirrer speed. Figure 3 shows the resulting plots for the
velocity magnitude and projected velocity vectors of the steady-state
solution for the three studied vessels. The vectors are colored by the
magnitude of the axial velocity normalized to the average velocity
magnitude in each vessel, in order to examine regions which contribute
to the axial transport in the vessel. The comparison of the contour plots
demonstrates that in the GST-1 overall a larger part of the bulk has
higher relative velocities than the other two reactors. In the GST-2, high
velocities were found near the stirrer and medium velocities in the
remaining bulk. For both vessels, velocities close to the shaft are lower.
In the SUM, high velocities occur near the impeller blades. In contrast to
the glass vessels, the majority of the bulk appears to have lower velocity
magnitudes compared to the impeller tip speed which is indicated by a
larger amount of (light) blue areas in the contour plots. This is due to the
impeller discharge towards the bottom of the vessel and the smaller
impeller diameter in relation to the vessel diameter. Notably, the average

velocity magnitudes of all three reactors are in a similar range. When
comparing the vector plots it becomes obvious that the flow direction in
the vessels differ strongly. For the two glass reactors, the flowwas found
to be mainly rotational, but in the GST-1 a larger region appears to
contribute more to the axial transport, which is indicates by more
vectors having higher axial velocities. For the GST-2, only flow close to
the stirrer region contributes to axial transport, whereas the volume
above the impeller is mainly rotational with very low axial velocities.
This is due to the lack of baffles and the relatively low stirrer speed in
comparison to the reactor volume. In contrast, the vectors for the SUM
indicate much higher axial (and also radial) velocities, especially in the
area close to the sides of the vessel where flow is directed upwards.
Moreover, the average axial velocity is approx. Twofold higher than in
the other two vessels. The directions of the vectors emphasize that the
eccentric position of the impeller also produces a more chaotic and
asymmetric flow field with higher gradients in axial/radial direction
compared to the glass reactors potentially leading to improved mixing.

The mixing performance of the three reactors was compared
based on the CFD mixing time studies. The fastest homogenization
is achieved in the GST-1 with a predicted (global) mixing time of
9.4 s due to small volume being relatively well mixed which agrees
with the high velocities with axial transport in the bulk. In contrast,
the mixing time in the GST-2 is much slower with 32.2 s. Especially,

FIGURE 3
Contour plots of the velocity magnitude vs projected velocity vector plots colored according to the axial velocity magnitude (normalized to the
respective average velocity magnitude in each reactor) on vertical cut planes for (A) GST-1 (60 rpm), (B) GST-2 (60 rpm) and (C–D) SUM (400 rpm). Due
to the symmetrical design of GST-1 and -2, half of the plots are shown side-by-side. Please note that the vector length corresponds to the velocity
magnitude in each reactor but was scaled individually for each plot and, therefore, is not comparable among the reactors.
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the final homogenization close to 95% in this vessel is observed to
be relatively slow. This is caused by the strong rotational flow and
relatively low axial and radial transport which coincides with the
findings from the vector plots. The mixing in the SUM is
remarkably faster with a mixing time of 17.6 s, although the
liquid volume is similar to GST-2. This is caused by the higher
stirrer speed and an intensified mixing efficiency due to the
eccentric impeller design leading to higher axial/radial
transport. The simulated mixing curves are depicted in the
Supplementary Figure S6. It is worth mentioning, that using the
relation between the reaction times (ranging between 300—900 s)
and the large-scale mixing times (ca. 10–30 s), one can expect only
minor mixing dependency on the reaction at this point.

3.2.2 CFD model validation
On the one hand, the developed CFD models were validated by

comparing local mixing times. The experimental and simulated
mixing times are 9.1 and 8.1 s for GST-1, and 49.0 and 45.2 s for the
SUM. This results in an error of 10.0% and 7.8% for the GST-1 and
SUM, respectively, which indicates a potential mismatch between
experiments and CFD simulation. This can originate from multiple
root causes, such as model simplification through the isotropic flow
assumption by the applied RANS model, the MRF technique, frozen
flow field or inequality between real and simulated measurement
position. Similar errors in the range of 10% were reported in
literature (Scully et al., 2020), (Martinetz et al., 2021) which led
to the assumption that the observed deviation are in an acceptable
range for the purpose of this study. On the other hand, the validity of
the kinetic models to predict large-scale were investigated with a
conjugation run in the GST-1, as described in chapter 2.2.6. Figure 4
presents the predicted kinetics for the three ADC species of both
models compared to the reference data from the RP-UPHLC. Both
models show a very similar course for all species which is also shown
in similar R2 values of 0.979 and 0.985 for the 0D- and the 3D-model,
respectively. Compared to the reference data both models have an
offset between 200—500 s while converging simultaneously to equal
species concentrations. These results emphasize the agreement of
both model types at this particular scale.

3.2.3 3D kinetic modeling of large-scale vessels
In the following, the 3D conjugation kinetics of the three vessels

(see chapter 2.2.7) are compared. For the examination of the
deviation between 3D- and 0D-model, the ΔDAR(t) is shown for
the three vessels in Figure 5. According to this graph, two zones can
be distinguished: In the first zone, which is in the beginning of the
reaction, the ΔDAR curves increase exponentially and reach a
maximum value depending on the vessel. Hereby, GST-1 has the
smallest deviation (0.0035) and GST-2 the largest deviation (0.08).
In the second zone, the three curves converge to ΔDAR(t) � 0 after
around 80—130 s. The initial increase in the ΔDAR is due to the
local availability of added payload in the feed region. The resulting
mass transfer limitation leads to actual lower kinetic rates in the
remaining bulk which cannot be captured by the 0D-model. The
magnitude of this increase (GST-2 > SUM > GST-1) was found to
qualitatively agree with the order of the simulated mixing times.

Additional insights were gained by studying the reaction time-scales
at different process times. Local reaction time-scales were exemplarily
computed for the first conjugation step at 10 and 60.5 s (immediately
after addition is finished at 60 s) according to Eq. (9). The resulting
contour plots of the reaction times are shown exemplarily for GST-2 in
Figure 6. It is noticed that at 10 s the reaction times are lower in the upper
part of the vessel. This is equivalent to fast reaction rates, which is due to
the freshly added payload in this region. In contrast, the low mass
transfer to the region underneath the impeller are found to reduce the
reaction rate in this region which is indicated by higher reaction times
(green to red areas). This agrees with the observation of the low axial
transport downwards to the lower part of the vessel (see Figure 3B). In
contrast, reaction times are more homogenously distributed after
payload feeding is finished (60.5 s) due to a higher degree of
homogenization. In summary, this analysis reveals that in the initial
phase, reaction times are slightly lower but in a similar magnitude
compared to the mixing times which is 32.2 s. Thus, it can be concluded
that the speed of homogenization of freshly added payload is responsible
for a slight reduction of the conjugation rate in the beginning of the
process. However, the calculatedmaximum ΔDAR values are in a rather
irrelevant industrial range, especially, since actual process times are
greater than 100 s. The same estimation can be made when calculating

FIGURE 4
Comparison of 0D- and 3D-model predictions of the ADC
conjugation kinetic in GST-1 with the experimentally determined
kinetic for the first 600 s.

FIGURE 5
Comparison of the ΔDAR within the first 200 s for all three
studied vessels. Payload addition was simulated over the course
of 60 s.
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the average reaction time by using the mean concentrations of mAb and
payload which highlights the benefit of time-scale analysis. Moreover, it
should be mentioned that, since the applied conjugation reaction is a
consecutive reaction, the deviations in the kinetic of all species are only
temporally affected by the vessel mixing and have no large influence on
the final DAR value. In literature, the similarity between a CFD (3D) and
an ideal-mixingmodel (0D) have also been shownby Spann et al. (Spann
et al., 2019) for a fermentation biokinetic model. In this study, the
authors presume that the observed local pH changes may not affect the
biokinetic and those small differences actually originate from numerical
errors in the CFD simulation. In another publication (Nadal-Rey et al.,
2021), the authors emphasize the advantage of conducting a time-scale
analysis in order to determine possible effects of mixing gradients on
reactions. It is also contrasted that this analysis does not provide

information about the possible effects on relevant CQAs, hence not
replacing experimental or in silico studies.

3.2.4 Modeling the influence of process
parameters

Additionally, the influence of varying process parameter on the
kinetic was studied exemplarily for GST-2. The resulting curves of
the ΔDAR are shown in Figure 7. A stepwise increase of the stirrer
speed from 60 to 120 rpm leads to a decrease of the model deviation
which can be attributed to enhanced mixing performance caused by
greater velocity gradients and turbulence. However, increasing the
stirrer speeds appears to have a rather small effect on improving the
mixing performance and, thus, reducing the ΔDAR value. A larger
influence is observed for the investigated feeding modes (see

FIGURE 6
Contour plots of reaction time-scales (1. Conjugation step) at vertical cut planes compared for (A) 10 s and (B) 60.5 s exemplary calculated for GST-
2. Feeding position is colored in black.

FIGURE 7
Influence of varying process parameters on the ΔDAR of 3D- and 0D-model exemplarily for GST-2: variation of (A) stirrer speed, (B) feeding mode,
(C) mAb concentration. The black curve is the reference condition (60 rpm, 60s feeding time, 5 mg/mL + 5x payload excess).
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Table 2): The batch addition causes the ΔDAR to increase rapidly to
around 0.2 compared to semibatch mode. This behavior can be
related to a higher amount payload locally available at the same time
producing more inhomogeneities which cannot be captured in the
0D-model. Semibatch feeding led to lower maximum ΔDAR. For
300 s feeding the models deviate only marginally which shows that
an increase in feeding time is likely to minimize mixing effects or
other phenomena due to locally high payload concentrations.
Doubling the mAb concentration also resulted in a short increase
of the ΔDAR. Here, the mixing effect is more pronounced due to
faster initial reaction rates. As illustrated by the studied parameters,
any changes of the process parameters would only influence the time
of completion of the reaction but would reach the same endpoint.

In conclusion, the 3D-model indicated deviations from the ideal
conjugation kinetic, especially when all payload is added at once
(batch mode) or for higher reactant concentrations. For the studied
vessel (GST-2), the stirrer speed had only little influence on the
course of the kinetic. Other parameters, like feeding position, were
also studied but showed even smaller deviations and are therefore
not presented here. Overall, the influence of geometry and process
parameters were generally small in the case of the studied
consecutive two-step conjugation reaction. This is due to the
naturally selective conjugation to the targeted sites which has
been reported to simplify process development and scale-up
(Hutchinson et al., 2018). Furthermore, mixing in the studied
vessels is adequate due to relatively the slow (bio-chemical)
kinetic reaction in contrast to other typical faster chemical
reactions. A complete validation of the predicted species time-
course would also be necessary. In our case, the results of the
CFD kinetic study gave a comprehensive overview of possible
parameter influence on the course of the ADC conjugation
kinetic. For stochastic conjugation chemistries, the parameter
effects may be relevant and the CFD model might be more
advantageous. Moreover, the CFD model could be used to
predict other effects like shear rate-depended mAb fragmentation
or aggregation which was not observed in this study and would
require a additional model to be incorporated.

4 Conclusion

This work considered different aspects for a better understanding
how scale-up and process parameters affect the ADC conjugation
reaction for two model ADCs. First, experimental kinetic studies in
reaction tubes dealt with the optimization of mixing by using different
mixing types.We could show that reaction tubes that are internallymixed
using a magnetic stir bar produce consistent conjugation kinetics which
are comparable to kinetics in glass reactors. Secondly, different types of
CFD simulations were performed for three commonly used vessels in
ADC manufacturing. Using steady-state simulations and mixing time
studies we could characterize the vessels’ mixing performance and were
able to describe local mixing effects. We further implemented a DAR
2 conjugation kinetic model in the CFD models leading to a full 3D-
model. By using the classical ideal-mixing model (0D) as benchmark we
showed that the relation of achieved mixing times and chemical reaction
rates governs the implications obtained during scaling. Current ADC
conjugation reactions are, however, in a rangewheremixing performance
in commercially available vessels is adequate for the fast conjugation

kinetic. This indicated that the ratio ofmixing time and chemical reaction
kinetic is a reliable indicator to be considered during scaling for this
reaction type. The often-applied P/V value did not show to correspond
well with the observed deviations. Furthermore, we studied variations in
process parameters (stirrer speed, feeding mode and concentration
variation). We found that the parameters affected the conjugation
kinetic only little within the first 100 s of the reaction and final DAR
values remained constant. This can be attributed to the highly selective
conjugation chemistry and the consecutive nature of the reaction. A time-
scale analysis demonstrated that conjugation rate inhomogeneities occur
in the feed region and only during the addition phase. In the case of the
DAR 2 conjugation reaction, the additional insight from the 3D-model
were rather not industrially relevant. Therefore, the 0D-reactor models
can be applied for predicting large-scale conjugation kinetics and to be
used in a digital twin framework. As this study was successfully
conducted for a DAR 2 conjugation reaction it has the potential to be
adopted to other (conjugation) reactions.
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