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The current transition towards the circular bioeconomy requires a rational
development of biorefineries to sustainably fulfill the present demands. The use of
Komagataella phaffii (Pichia pastoris) canmeet this challenge, since it has the capability
to use crude glycerol as a carbon-source, a by-product from the biodiesel industry,
while producing high- and low-added value products. Recombinant protein
production (RPP) using K. phaffii has often been driven either by the methanol
induced AOX1 promoter (PAOX1) and/or the constitutive GAP promoter (PGAP). In
the last years, strong efforts have been focused on developing novel expression
systems that expand the toolbox variety of K. phaffii to efficiently produce diverse
proteins that requires different strategies. In this work, a study was conducted towards
the development of methanol-free expression system based on a heat-shock gene
promoter (PDH) using glycerol as sole carbon source. Using this promoter, the
recombinant expression is strongly induced in carbon-starving conditions. The
classical PGAP was used as a benchmark, taking for both strains the lipase B from
Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH
outperformed PGAP controlled expression in shake-flask cultivations when using a
slow-release continuous feeding technology, confirming that PDH is induced under
pseudo-starving conditions. This increasewas alsoconfirmed in fed-batchcultivations.
Several optimization rounds were carried out for PDH under different feeding and
osmolarity conditions. In all of them thePDHcontrolled process outperformed thePGAP
one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific
productivity than PGAP fed-batch at low μ. Compared to the optimum approach for
PGAP-based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer,
while the specific productivity was very similar. To summarize, PDH is an inducible
promoter that exhibited a non-coupled growth regulation showing high performance,
which provides a methanol-free additional solution to the usual growth-coupled
systems for RPP. Thus, this novel systememerges as a potential alternative for K. phaffii
RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a
circular economy.
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1 Introduction

Currently, the circular bioeconomy implementation is usually
considered one of the most promising solutions to address the twin
challenges of climate change and growing population (Ubando et al.,
2020). Ideally, the biorefinery concept enables sustainable economic
growth by facilitating the production of a broad spectrum of
products from different renewable feedstocks using physico-
chemical and biological procedures (Areniello et al., 2022). To
develop this circular network, the ability of microorganisms to
convert raw substrates into small molecules and proteins is
exploited via fermentation processes, using either wild-type or
engineered organisms (Cherubini, 2010). However, many
interesting feedstocks, such as lignocellulosic biomass, usually
require enzymatic pre-treatment to become bioaccessible for the
microorganism (Tamburino et al., 2022).

In the last decades,Komagataella phaffii, a yeast formerly known
as Pichia pastoris, has become widely used as a cell factory for
recombinant protein production (RPP) and metabolites (Juturu and
Wu, 2018). Interestingly, K. phaffii is an ideal platform to integrate
in a biorefinery, at both the feedstock pre-treatment stage and
production fermentation stage. In addition to the exceptional
ability to metabolize methanol, K. phaffii is used to produce
high-value added proteins using different cheap substrates,
including glycerol derived from biodiesel industry as the sole
carbon source (Potvin et al., 2012). Alternatively, K. phaffii is
also a suitable cell chassis for the synthesis of low-value
commodity enzymes, such as cellulases for the upstream
feedstock transformation of lignocellulosic biomass (Bernardi
et al., 2019; Yang et al., 2019). To facilitate this ubiquitous
presence of K. phaffii in biorefinery, a wide range of molecular
tools are needed to meet each target protein optimal expression
strategy. Among those tools investigated over the past years,
promoter selection, which has a major impact in both the
process development and final product obtained, has generated
relevant outcomes (Vogl and Glieder, 2013; Yang and Zhang,
2018; Vogl et al., 2020).

Due to its ability to grow on methanol as sole carbon source, K.
phaffii owns a set of strong and inducible promoters that regulates
tightly the methanol utilization (MUT) pathway. Among them, the
alcohol oxidase 1 promoter (PAOX1) has been widely used for driving
the expression of numerous recombinant proteins (Vogl and
Glieder, 2013). In terms of regulation, PAOX1 is tightly repressed
when K. phaffii is grown on glucose, glycerol or ethanol, and slightly
de-repressed upon its depletion. Full induction is only achieved after
methanol addition, which allows obtaining high product titers and
yields (Ahmad et al., 2014). This inducible regulation enables the
uncoupling of growth and protein production, by using glycerol as
the carbon source in the batch phase and then switching to
methanol, which induces the target protein expression (Looser
et al., 2015). This strategy avoids cell burden due to protein
overexpression during the biomass generation phase, being
especially suitable for the production of toxic proteins (Yang and
Zhang, 2018). Although PAOX1-based expression is widespread for
producing efficiently recombinant proteins; the use of methanol,
especially for biopharmaceuticals, is often avoided at industrial scale
due to storage and handling costs (Karbalaei et al., 2020).
Additionally, the higher heat production and O2 requirements

related to methanol metabolization usually cause an increase in
the operational costs (Çalik et al., 2015). Hence, in the last years the
focus has shifted towards studying new expression systems that
avoid the use of methanol, but still achieving high titers and
productivities (Juturu and Wu, 2018; Yang and Zhang, 2018).

An interesting approach for identifying novel methanol-free
expression systems is to move away from MUT related promoters,
for example by choosing promoters from other metabolic pathways.
This would be the case of the glyceraldehyde-3-phosphate promoter
(PGAP) and the phosphoglycerate kinase promoter (PPGK), which are
involved in the glycolysis and gluconeogenesis pathway,
respectively. Although both are constitutive, PPGK presents a
rather weak expression profile, while PGAP is considered a strong
promoter that can reach similar expression levels as PAOX1 (Vogl and
Glieder, 2013). The use of PGAP-based expression systems also
makes fed-batch cultivations easier, since no transition phase is
required to shift the carbon source, making it a commonly used
alternative to the PAOX1 bioprocess (Yang and Zhang, 2018).
However, strong and constitutive expression is not always
desired, especially when protein folding is the limiting step or
RPP can generate cell toxicity (Vogl and Glieder, 2013). Another
promising promoter identified from a metabolic pathway is the
promoter of the alcohol dehydrogenase 2 (PADH2), whose gene is
responsible for ethanol consumption (Karaoglan et al., 2016b).
Upon induction with ethanol, PADH2-based strain achieved
similar specific productivity than the PAOX1-based strain when
producing a xylanase under standard cultivation conditions
(Karaoglan et al., 2016a). Due to its potential to replace the
historical K. paffii promoters, several engineered variants have
been generated by modifying or replacing the regulatory regions
of PADH2, achieving up to 4-fold increases in the product to biomass
yield (Ergün et al., 2019; Erden-Karaoğlan et al., 2022). Although
ethanol is less hazardous than methanol, these processes present the
same disadvantage of having longer fed-batch cultivations, due to
the adaptation phase to the new carbon source and the slower
specific growth rates (Potvin et al., 2016; Erden-Karaoğlan et al.,
2022).

Another option that avoids the use of methanol and has gained
great attention is to develop methanol-free PAOX1-based systems.
This is achieved by triggering the methanol activating pathway or
inactivating the catabolite repression pathway (Yang and Zhang,
2018). Based on this pathway engineering approach, the
development of several methanol-independent processes has been
reported in the literature, where transcriptional repressors or genes
involved in PAOX1 regulation were knocked out and/or
transcriptional activators were overexpressed (Shen et al., 2016;
Wang et al., 2017; Vogl et al., 2018; Dalvie et al., 2022).
Interestingly, the producer system designed by Wang et al.
(2017) (MF1), which was repressors-deficient together with an
overexpression of an activator gene, reached 58.6% of the insulin
precursor amount produced with wild-type (WT) PAOX1 system, but
avoiding the use of methanol. This was the highest activation
achieved by a PAOX1-based system without methanol induction
(Vogl et al., 2018).

Alternatively, related methylotrophic yeast species are a rich
source for investigating novel promoters (Stadlmayr et al., 2010;
Vogl et al., 2020). PHpFMD, as an example, is an orthologous
promoter from Hansenula polymorpha, which shows derepressed
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regulation when growing on either glycerol or glucose, and
additionally is further inducible by methanol. According to the
literature, it is the strongest promoter so far reported in K. phaffii
when grown on methanol (Vogl et al., 2020), which served to
generate a commercial variant named PDF. Recently, the PDF-
based system surpassed the specific production rate (qp) of the
methanol-free benchmark PGAP-based system by the factor of nine,
when expressing Candida antarctica lipase B (CalB) in chemostat
cultivations (Fischer et al., 2019; Garrigós-Martínez et al., 2021).

All the expression systems mentioned above were engineered or
identified from known highly expressed genes, either from K. phaffii
or other related yeasts. Currently, the emerging systems biology
tools can also ease the identification of novel expression systems. In
particular, transcriptomics is a powerful method for identifying
upregulated genes under specific conditions (Vogl and Glieder,
2013). This way, the pursuit of novel methanol-free and
differently regulated expression systems can be rationally
developed. The first genome-wide promoter study used publicly
available data obtained from the heterologous microarray
hybridization of K. phaffii cDNA to a Saccharomyces cerevisiae
specific microarray, from fed-batch cultivations on glucose,
glycerol or methanol. Together with already reported promoters,
PTHI11, which regulates the expression of a protein involved in
thiamine precursor synthesis, was isolated. The activity of this
novel promoter was found to be uninfluenced by any carbon or
nitrogen source, but regulated by the thiamine availability
(Stadlmayr et al., 2010). The emergence of whole genome
sequencing opened the doors for K. phaffii specific transcriptome
tools. This included specific K. phaffii microarray chips (Graf et al.,
2008) and whole genome assemblies of multiple K. phaffii strains,
which build the basis for RNA-Seq based transcriptome studies (De
Schutter et al., 2009; Mattanovich et al., 2009; Küberl et al., 2011;
Liang et al., 2012).

Using RNA-Seq the genome annotation of K. phaffii was further
improved and gene expression in glycerol or methanol chemostat
cultivations was analyzed (Liang et al., 2012). From this data, a
methanol-free strong and constitutive promoter called PGCW14 was
identified, which natively regulates the expression of a potential
glycosyl phosphatidyl inositol (GPI)-anchored protein (Liang et al.,
2013). Due to the great performance that PGCW14 exhibited, a
commercial variant called PUPP was generated and characterized,
presenting up to 9-fold more qp than the PGAP-based strain
producing CalB in glycerol-based chemostat cultivations
(Garrigós-Martínez et al., 2021). In the work described by
Prielhofer et al. (2013), a rational approach was reported to
identify novel promoters inducible under glucose-limiting
conditions. In this case, the methodology was based on K. phaffii
specific microarray hybridization of mRNA samples from a glucose
chemostat cultivation. The promoter of a high affinity glucose
transporter (PGTH1) was successfully identified, which is repressed
on glycerol and highly induced in glucose-limiting conditions
(Prielhofer et al., 2013). Finally, in a genome-wide transcriptional
response study to different carbon sources, the promoter involved in
reactive oxygen species defense, named PCAT1, was identified for
being strongly induced by methanol and oleic acid, reaching similar
expression levels as PAOX1. Interestingly, this promoter also presents
a tight repression and de-repression on glucose obtaining high titers

and productivities. It can be also found as a commercial variant
named PDC (Vogl et al., 2016; Fischer et al., 2019).

Although the number of available promoters for RPP in K.
phaffii is becoming wider, there are still few options that meet the
current trend of developing methanol-independent bioprocess that
are not growth-coupled. In this study, the aim was to identify novel
methanol-free and tightly regulated promoters in K. phaffii,
specifically under strict carbon-limiting conditions and without
adding any inducer. Using RNA-Seq technology, several genes
were observed to be highly expressed when applying low glycerol
feeding, which allow cell maintenance but no biomass growth. From
the different candidates identified, the promoter region of heat shock
protein 12 gene (HSP12) was selected as promising to develop a
novel expression system. This family of proteins, which are
upregulated under general stress conditions, has been extensively
studied in fungi (Tiwari et al., 2015). Specifically in S. cerevisiae,
HSP12 is tightly repressed by glucose, being expressed in the
stationary phase but not when growing (de Groot et al., 2000;
Karreman and Lindsey, 2005). In this work, the promoter region
ofHSP12 in K. phaffii was identified and named as PDH. To study its
regulation and potential for RPP, the industrially relevant enzyme
CalB was used as a reporter protein. The performance of PDH-based
expression system in different cultivation set-ups was compared to
the commonly used PGAP and the strong and commercial PDF and
PUPP, all considered as methanol-free benchmarks.

This work will contribute to enlarge the Pichia toolbox by
providing more alternatives for the efficient production of
different kind of proteins. On balance, this can promote the
transition towards the circular bioeconomy, thus significantly
decreasing our carbon footprint.

2 Materials and methods

2.1 Glycerol release measurement from
FeedBeads

®

This work has required to run carbon-limited cultures in shake-
flask cultivations, which has been performed using the glycerol-
releasing FeedBeads® supplied by Kuhner (SMFB12001, Kuhner
Shaker, Basel, Switzerland). This slow-release substrate
technology is based on silicone matrix discs with the substrate
(glycerol or glucose) embedded. They ensure that this technology
reduces the negative influences of O2 limitation, by-products
production and pH-shifts, while also improving the product yields.

A kinetic characterization of the glycerol released by
3 FeedBeads® was performed under standard cultivation
conditions, being 25°C and 180 rpm in an orbital shaker (Infors,
Switzerland). The study was run per triplicate in 500 mL baffled
shake-flasks with 50 mL buffered minimal media without carbon
source (BM, 200 mM potassium phosphate, 1.34% YNB, pH 6 or
pH 3). First, the effect of pH was evaluated by incubating three
FeedBeads® in BM shake-flasks at pH 6 and pH 3 for 72 h. Then, the
kinetic characterization of 3 Feedbeads® was performed in BM
pH 6 by monitoring for 120 h the glycerol release under the
same incubating conditions. Several samples were taken over
time to determine glycerol concentration by HPLC.
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2.2 RNA sequencing and analysis

A commercially available WT K. phaffii strain BSYBG10 (bisy
GmbH, Hofstaetten/Raab, Austria) was cultivated in 25 mLminimal
media (BM, 200 mM potassium phosphate pH 6, 1.34% YNB, 4 ×
10−5% biotin) with 0.25% glycerol as carbon source in 250 mL
baffled shake flasks for 9 h (28°C, 130 rpm, 80% humidity) until
the initial glycerol was depleted. Afterwards, two glycerol
FeedBeads® (SMFB12001, Kuhner Shaker, Basel, Switzerland)
were added, followed by the addition of 25 mL fresh minimal
media supplemented with different inductors (xylitol, galactose,
xylose, sorbitol) in duplicates to an end concentration of 0.25%
in the media. In addition, one uninduced control culture was
included as reference, only adding BM without any carbon
source. After 3 hours, samples from the biological duplicates were
taken and centrifuged at 5000xg. The cell pellet was frozen at −80°C
and sent for RNA isolation and sequencing at BioGrammatics Inc.
(Carlbad, CA, United States). Total RNA extraction, as well as
quality control and library preparation were performed according
to BioGrammatics standards. Poly-A enriched total RNA was
sequenced as 50 bp single reads on an Illumina sequencer. Reads
were mapped to the K. phaffii CBS7435 reference genome
(Sturmberger et al., 2016) and read counts were generated using
the STAR aligner (Dobin et al., 2013). Read andmapping quality was
determined using fastqc (Andrews, 2010) and Qualimap (García-
Alcalde et al., 2012). To compare expression strength between genes
and samples, the transcripts per million (TPM) were calculated in
the R/Bioconductor statistical environment (Gentleman et al., 2004;
Robinson et al., 2010) using the edgeR package (Robinson et al.,
2010). Genes were subsequently ordered by their median, mean and
maximum TPM to identify highly expressed genes on all conditions.

2.3 Identification of the promoter sequence
based on eGFP expression

To identify the promoter region, 1,000 bp upstream of the HSP12
gene inK. phaffiiwere chosen to test for promoter activity and ordered as
synthetic DNAat IDT (Coralville, IA, United States). Subsequently, 50 bp
truncations were made down to 97 bp residual length to determine the
minimal length of the promoter region capable to drive protein
expression. Four versions were not clonable in first instance and were
therefore discarded (PDH2, 9, 10, 17). The 14 cloned constructs consisted
of the respective promoter, eGFP as reporter gene, the AOX1
transcription terminator and a 1,100 bp homologous region to the
3′UTR of the K. phaffii ARG4 gene, which was used to target the
genome integration. The plasmid map and the truncated sequences can
be found in the Supplementary File S1: Supplementary Figure S1;
Supplementary Table S2, as well as transformation, cloning and
cultivating protocol (Supplementary File S1). To facilitate integration
into the right locus, the K. phaffii strain BSY11dKU70 was used (aox1-/
Muts), which lacks the ability of non-homologous end-joining and
therefore ensures targeted integration with over 90% efficiency
(Näätsaari et al., 2012).

The screening cultures were performed in a semi-continuous
manner on 96-deep well plate (DWP) format for 6 days while taking
samples every 24 h for the first 4 days and a last sample after 132 h.
Here, the fluorescence measured and normalized to the cell density

as eGFP was expressed intracellularly. As a control the same
construct was used with a constitutive promoter (PGAP)
(Waterham et al., 1997) and a carbon source repressed promoter
PCAT1 (Vogl et al., 2016) expressing also the eGFP. Cultivations were
done in minimal media containing 1% glycerol or glucose as sole
carbon source (BMG or BMD, 200 mM potassium phosphate pH 6,
1.34% YNB, 4 × 10−5% biotin and 1% glycerol or glucose).

2.4 CalB strain construction, screening and
gene dosage determination

The parental strain BSYBG11 (aox1-/Muts), a single colony
streak out of K. phaffii strain BG11 (BioGrammatics Inc.)
deposited at bisy GmbH (Hofstaetten, Austria), was transformed
with an expression vector containing the CalB gene under control of
the PDH promoter region. The procedure followed the same
approach as Garrigós-Martínez et al. (2021). Briefly, the
recombinant vector was based on pPpT4_Alplha_S vector. To
avoid multi copy expression cassette integration, and thus also
avoiding the gene dosage effect on the comparison, low amounts
of linearized plasmid DNA (<1 µg of DNA) were used for
transformation.

Several candidate clones were screened using glycerol as carbon
source in DWP using BMG (200 mM potassium phosphate pH 6,
1.34% YNB, 4 × 10−5% biotin and 1% glycerol), as described by
Garrigós-Martínez et al. (2021). Seven clones displaying average
performance were selected and further rescreened in DWP in
biological replicates, in order to validate the previous results. From
these results, three clones were selected to check the gene copy number.

The gene copy/dosage number was determined using qPCR,
following the method described by Abad et al. (2010). The protocol
is described by Krainer et al. (2012) and based on the amplification of
the Zeocin™ resistance-mediating gene Zeocin®, located on the
integrated expression cassette, and the house-keeping gene Arg4.
Therefore, the copy number of CalB gene was indirectly determined
by the copy number verification of Zeocin®.

Accordingly, and including the producer clones previously
constructed in the research group and described by Garrigós-
Martínez et al. (2021), a set of 4 isogenic strains producing the CalB
enzyme were used in the present study: GAP-C, PDF-C, UPP-C, and
PDH-C. All the strains should only differ in the promoter used to
regulate the CalB expression.

2.5 Shake-flask cultivations for CalB
producer clones

The strains PDH-C, GAP-C, UPP-C and PDF-C were used for
shake-flask cultivations, using 500 mL baffled flasks with 50 mL of
buffered minimal glycerol media (BMG, 200 mM potassium
phosphate pH 6, 1.34% YNB, 4 × 10−5% biotin and 1% glycerol).
Shake-flasks were inoculated at an initial OD600 of 0.2 from an
overnight pre-culture (growing in YPG (1% yeast extract, 2%
peptone and 2% glycerol) at 25°C and 180 rpm). After 20 h of
incubation at 25°C and 180 rpm, total glycerol depletion was
confirmed by HPLC and three glycerol FeedBeads® (SMFB12001,
Kuhner Shaker, Basel, Switzerland) were added to start the feeding
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phase. The cultivations were run per triplicate and lasted for 72 h
and several samples were taken over time for enzyme analysis.

The shake-flask cultures to test osmotic shock effect were
carried out only with PDH-C strain at three different KCl
concentrations: 0 M, 0.3 M, and 0.6 M. The cultivation
protocol used was the same previously described in this
section, but an osmotic shock was induced after 24 h by
adding 10 mL of water, 2.4 M KCl or 3.6 M KCl to get 0 M,
0.3 M and 0.6 M KCl in the shake-flasks, respectively. Three
FeedBeads® were as well used for the feeding phase, running each
osmolar condition per triplicate.

2.6 Fed-batch cultivations

All fed-batch cultivations were conducted in a 5 L Biostat B
fermenter (Sartorius Stedim, Goettingen, Germany) starting with an
initial volume of 2 L. The media composition was the same as
described previosuly (Gasset et al., 2022), but with glycerol instead of
glucose in the fed-batch feeding solution. For all cultivations,
temperature was controlled at 25°C, pH permanently adjusted to
5 with NH4OH 15% v/v and the airflow was 2 L min-1. Dissolved
oxygen (DO) was kept above 35% by stirring speed cascade
(600–1,200 rpm) and by O2 enrichment if needed, always
maintaining 2 L min-1 of total gas inlet flow. The software Eve®
(INFORS HT, Bottmingen, Switzerland) was used to monitor and
control the cultivations.

2.6.1 Fed-batch characterization
PDH-C, GAP-C and PDF-C strains were cultivated under

carbon-limiting conditions at different specific growth rates (μ).
After depletion of all glycerol contained in the batch media, an
exponential pre-programmed feeding rate based on the biomass
mass balance was started to maintain a constant μ (being 0.025 h−1

for PDH-C, 0.025 h 1 or 0.15 h 1 for GAP-C and 0.05 h−1 for PDF-C).
All fermentations were stopped when the goal dry cell weight
(DCW) of 80 g L−1 was achieved. More details about the fed-
batch strategy are described in previous works of the group
(Garcia-Ortega et al., 2013).

2.6.2 Fed-batch optimization
Protein expression from the strain PDH-C was induced by

pseudo-starving conditions, following two strategies: single
pseudo-starving (PS) and three stages of pseudo-starving (3-
PS). After the batch phase of the PS approach, a fast biomass
growth fed-batch (constant μ of 0.15 h−1) was started to reach a
goal biomass concentration of 70 g L−1 of dry cell weight (DCW).
Then, a pseudo-starving phase was initiated by adding a
constant glycerol feeding rate to reach the same overall
specific glycerol uptake rate (qS) provided by three
FeedBeads® (0.005 g gX

−1 h−1), which is equivalent to an initial
µ of 0.003 h−1. In contrast, several cycles of growing—induction
phases were performed in the 3-PS approach. Every biomass
generating phase was conducted at a μ of 0.15 h−1, stopping at the
target biomass concentration of 40, 60, and 80 g L−1 of DCW,
which were followed by a 24 h period of the induction
conditions. These induction conditions were designed to
achieve a qS of 0.005 g gX

−1 h−1 with a constant feeding rate.

2.6.3 Osmotic shock in fed-batch
Two fed-batch cultivations with PDH-C were performed using

the PS approach and two different osmotic conditions: 0.3 and 0.6 M
KCl. After the biomass generation phase, being around 70 g L-1

DCW, the appropriate volume of a 4 M KCl solution was added
to achieve the target osmolarities of 0.3 and 0.6 M. Then, the
constant feeding rate was started to reproduce PS conditions.

2.7 Biomass determination

For shake-flask cultivations, cell growth was monitored by
measuring per triplicate the optical density at 600 nm (OD600) in
a DR 3900 HACH Spectrophotometer (Hach Company, Ames, IA,
United States). During fed-batch cultivations, biomass
concentration was measured in quadruplicates in terms of dry
cell weight (DCW), as described elsewhere (Cos et al., 2005). The
relative standard deviation (RSD) in all measurements was lower
than 5%.

2.8 Osmotic stress analyses

The actual osmolarity in the shake-flask and fed-batch
supernatants of the osmotic shock studies were determined
measuring the conductivity with a Cond 8 conductimeter (XS
Instruments, Carpi, Italy).

2.9 Quantification of carbon source and by-
products

HPLC (Dionex Ultimate 3,000, Dionex, Sunnyvale, CA,
United States) with an ionic exchange column (ICSep ICE-COR-
EGEL 87 H3, Transgenomic Inc., Omaha, NE, United States) was
used to quantify the concentration of glycerol and other metabolites
in the fed-batch cultures and the FeedBeads® kinetic characterization
samples. More details of the column and software used are described
elsewhere (Jordà et al., 2014). RSD was below 1%.

2.10 Off-gas analyses

A BlueInOne FERM gas analyser (BlueSens, Herten, Germany)
was used for monitoring CO2 and O2 molar fraction and absolute
humidity from all fed-batches exhaust gas. To get more accurate
measurements, the gas analyzer was re-calibrated in each fed-batch.
The data recorded were used to calculate key respirometric
parameters: oxygen uptake rate (OUR), carbon dioxide evolution
rate (CER), their corresponding specific rates (qO2 and qCO2) and
respiratory quotient (RQ). RSD was less than 5% in all cases.

2.11 Enzymatic analyses

Lipolytic activity of secreted CalB was determined using a
p-nitrophenyl butyrate (pNPB)-based assay (2635–84–9, Merck,
Darmstadt, Germany). The reaction buffer was as follows:
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300 mM Tris-HCl pH 7 containing 4.83 mM p-NPB and 0.93%
acetone. After pre-heating the buffer at 30°C, 900 μL of reaction
buffer were mixed with 100 μL of culture supernatant. P-nitrophenol
color development at 405 nm was monitored in a Specord 200 Plus
spectrophotometer (Analytik Jena GmbH, Jena, Germany) at 30°C
for 2 min. One activity unit was defined as the amount of enzyme
needed to release 1 μmol p-nitrophenol · min-1 under assay
conditions. RSD was below 4%.

Further protein analyses of fed-batch supernatant samples were
performed by SDS-PAGE. For sample preparation, 15 µL of supernatant
were mixed with 5 µL of loading buffer (Laemmli buffer 4x + β-
mercaptoethanol in 10:1 relation, Biorad, Hercules, CA, USA) and
incubated at 95°C for 5 min. After cooling down, 15 µL were loaded
into 4%–15% Mini-PROTEAN TGX Precast Protein Gels (Biorad,
Hercules, CA, United States) and run at 120 V for about 80 min.
The visualization and analyses of the gel was performed using Image
Lab (Biorad, Hercules, CA, United States).

2.12 Consistency test and data reconciliation

The biomass elemental composition of K. phaffii growing on
glycerol at different growth rates was previously determined by
Tomàs-Gamisans et al. (2018). For fed-batch characterization, yields
and rates were calculated using equation based on mass balances, that
can be found elsewhere (Garcia-Ortega et al., 2016; Ponte et al., 2016). In
all cases, carbon and electron data recovery was above 90%. To further
validate the results, measurement consistency was checked and
reconciliation procedures were applied, constraining by carbon and
electron balances (Ponte et al., 2016). The confidence level reached in
the statistical consistency test was 95% for all fed-batch characterization.

3 Results and discussion

3.1 FeedBeads
®
release kinetic

characterization

When developing and implementing new process strategies for
RPP, a significant operational gap still exists between early-stage
cultivations in shake-flask or DWP and fed-batch processes in
fermenters. However, working under process-relevant conditions
is crucial when performing small scale cultivations (Looser et al.,
2015). The so-called FeedBeads® developed by Kuhner-shaker
GmbH (Germany) would bridge this gap, since shake-flask
cultivations can be fed under fed-batch-like conditions. To study
the conditions this technology provides, a characterization of
glycerol release FeedBeads® was carried out in shake-flasks at
standard cultivation conditions.

Based on the product specifications, three FeedBeads® were used to
characterize the release kinetic. First, since K. phaffii acidifies the media
when growing, the glycerol release was tested at pH 6 (buffered minimal
media standard) and 3 (acidic pH) at 25 °C. No differences were detected
after 72 h of releasing (data not shown) between the two pH values,
suggesting that the kinetic is not pH-dependent.

In order to characterize glycerol release kinetic, a new
experiment was performed with BM at pH 6°C and 25 °C for
120 h. As can be seen in Figure 1, glycerol release followed a

non-linear kinetic typical profile drug release. Ritger and Peppas
(Ritger and Peppas, 1987) developed a simple relationship that
describes the solute release from discs, which was adapted to:

Mt � ktn

where Mt is the amount of solute released (mg), t is the release time
in hours, k is a constant and n is the diffusional exponent, which is
characteristic of the release mechanism. Using this formula, the
kinetic model obtained to explain the mg of glycerol released by
3 FeedBeads® over hours was:

Mt � 5.13t0.65

which fully describes the release kinetic with an r2 of 0.999 and a
standard error of 1.132 (Figure 1).

According to the diffusional exponent (0.65), the FeedBeads®

release mechanism is due to diffusion and erosion of the matrix
(Padmaa Paarakh et al., 2018). The glycerol release kinetic
determined for the glycerol FeedBeads® was in the same order as
previously found for the glucose FeedBeads®, being 1,34 t0,77 and
1,63 t0,74 mg of glucose per hour and one FeedBeads® (Prielhofer
et al., 2015; Halka et al., 2018).

Taking this glycerol release kinetic, the growth parameters of a
standardK. phaffii shake-flask cultivation can be predicted assuming
that all the glycerol released by the FeedBeads® is immediately
consumed. Therefore, when adding 3 FeedBeads® after a batch
phase conducted with 1% BMG, the specific growth rate (µ)
would be 0.003 h-1 and the specific substrate uptake rate (qs)
0.005 gS gX

−1 h−1. Accordingly to the usual µ used in fed-batch
cultures, which is in the range from 0.025 h-1 to 0.15 h-1, the use
of 3 FeedBeads® would allow severe carbon-limiting conditions.

3.2 Identification of a novel promoter based
on RNA sequencing

In order to identify a novel promoter by seeking highly
expressed genes under specific conditions, the use of RNA-seq

FIGURE 1
Characterization in shake-flask of three FeedBeads

®
releasing

glycerol at 25°C in BM. The dots indicate the released glycerol amount
measured by HPLC, while the line describes the release kinetic. The
error bars indicate the standard deviation between triplicates.
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was considered more suitable than microarrays since it offers a
higher dynamic range. Furthermore, RNA-seq is not restricted to
known genes and the resulting gene expression measures are highly
reproducible (Nagalakshmi et al., 2008). Therefore, with the aim of
finding a methanol-free and tightly regulated promoter under
glycerol restriction, RNA from a WT K. phaffii cultivation under
glycerol de-repressed conditions was isolated to perform RNAseq
analyses (The transcriptome data was made available under ENA
project PRJEB58889).

The gene that showed the highest mean, median as well as
maximum transcripts per million (TPM), was the
ACIB2EUKG772368, a homologue to the heat shock protein
9/12 from S. cerevisiae (Supplementary File S2: Supplementary
Table S4), hereafter called HSP12 in accordance with its
homologue in S. cerevisiae. As this gene was highly expressed
in all the tested conditions and was previously reported to be
highly expressed under stress conditions, its promoter was
considered an interesting candidate to develop an alternative
expression system based on it. To examine the promoter region,
1,000 bp upstream of the start codon were ordered as synthetic
DNA. Systematic truncations on the 5′ end were made by PCR,

while also adding appropriate overhangs to the eGFP expression
vector for Gibson Cloning (Gibson et al., 2009). An overview of
all truncations is shown in Figure 2A. As reporter gene, the
intracellularly expressed fluorescence protein eGFP was used.
The vector also contained 5′ and 3’ homologous regions to the
ARG4 locus in K. phaffii to minimize ectopic genomic
integration and make the results more comparable. The eGFP
expression levels obtained growing on glycerol (Figure 2B) and
glucose (Supplementary File S1: Supplementary Figure S4) were
rather similar. The shortest variant of the putative promoter
sequence still showing the same expression level as PDH1
(1,000 bp) was PDH13 (Figure 2B) with only 352 bp, whose
promoter sequence will be referred for now on as PDH.

3.3 Strain generation, screening, and gene
dosage determination

To study the performance of the novel isolated PDH promoter
controlling CalB expression and compare the results with other
new expression systems previously reported by Garrigós-
Martínez et al. (2021), the same cloning approach was
followed to generate an isogenic PDH-based CalB producer
clone. Due to the high clonal variability that K. phaffii
presents, one of the critical steps in bioprocess development is
selecting an appropriate producing clone (Looser et al., 2015).
Since the aim was to isolate a clone with a single expression
cassette integrated in the genome, a high-throughput screen of
32 clones was performed in DWP using glycerol as sole carbon
source, with the scope of selecting an averagely producing clone.
Seven putative single-copy integration transformants were
rescreened in biological triplicates and the previous results
were validated. The single cassette integration of three of these
candidate clones was determined by qPCR (Supplementary File
S1: Supplementary Tables S2, S3). Therefore, a confirmed single
copy clone with an average CalB production was selected for
characterizing its regulation and performance, being named
PDH-C.

3.4 Shake-flask cultivations, first insights
into PDH-C system

Since the regulation of HSP12 in S. cerevisiae is related to
stress damage, temperature and pH stressing conditions were
applied to preliminary deep-well plate cultivations with PDH-C
to induce CalB expression (Praekelt and Meacock, 1990).
However, no positive or inducing effect was observed
compared to standard cultivation conditions (unpublished
data). As reported in S. cerevisiae, HSP12 is repressed in the
exponential phase and activated when the cells enter stationary
phase (de Groot et al., 2000). Therefore, new culture strategies
were designed with the aim to validate the potential of PDH for
controlling the target recombinant expression in growth
decoupled conditions. To do so, PDH-C was cultivated in
shake-flask until total glycerol depletion was confirmed. Then,
three glycerol FeedBeads® were added to reach the desired
stationary state by applying severe carbon-limiting conditions.

FIGURE 2
(A) Schematic representation of 14 PDHpromoter truncations for
identification of the essential promoter region with the reporter
protein eGFP. (B) Expression levels of the different PDH promoter
truncations in raw fluorescence units normalized by cell density.
Cells were cultivated in biological 7-fold replicates which represent
the standard deviation, taking samples after 48, 60, and 132 h of
cultivating with glycerol as sole carbon source. As controls, the same
construct was used with PGAP and PDC instead of PDH.
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The benchmark strains GAP-C, UPP-C and PDF-C were
cultivated under the same conditions.

For all the strains compared, the biomass in terms OD600 was
rather constant after the addition of FeedBeads® (Figure 3A). The
average specific growth rate (µ) during the feeding phase was around
0.003 h-1 for all strains, while the average specific substrate uptake
rate (qs) was 0.005 gS gX

−1 h−1. Regarding CalB production by PDH-
C (Figure 3A), almost no lipolytic activity was detected in the
supernatant when cells were growing exponentially in carbon-
excess conditions (batch phase). In contrast, CalB production
rose sharply when adding the FeedBeads®, achieving 5.2-fold and
1.5-fold more lipolytic activity (normalized by OD600) than GAP-C
and UPP-C, respectively. PDF-C instead, showed 2.3-fold more
lipolytic activity than PDH-C.

The shake-flask results confirmed that three FeedBeads®
provided enough glycerol for cell maintenance and CalB
production, but not for growth, achieving the desired stationary
phase conditions from now on called pseudo-starving. In PDH-C,

these conditions allowed to induce CalB production, suggesting that
PDH is tightly repressed by glycerol, observing no induction in the
growing phase. These results are coherent with the previously
published studies in S. cerevisiae using glucose as carbon source
(de Groot et al., 2000). Moreover, after addition of the FeedBeads®

the cultivation entered the so-called pseudo-starving condition in
which the performance of PDH-C even surpassed the performance
of the constitutive promoter-based UPP-C and GAP-C. CalB
activity in UPP-C and GAP-C supernatants was virtually
constant after the addition of FeedBeads®, since both are growth-
related expression systems (Garrigós-Martínez et al., 2021). In
contrast, for PDF-C containing the strong and tunable promoter
PDF (Garrigós-Martínez et al., 2021), the lipolytic activity in the
supernatant increased markedly over time, outperforming PDH-C
in terms of CalB production (Figure 3A). Despite this, the PDH-
based expression system was considered valuable for further studies
in more scalable cultures, such as bioreactors, due to its non-growth-
coupled performance.

FIGURE 3
Shake-flask cultivations of CalB producing strains using three glycerol FeedBeads

®
(addition time is indicated by red dotted lines). Time-course

evolution of OD600 (dotted line) and lipolytic activity (solid line). (A) PDH-C performance is compared to the benchmarks GAP-C, UPP-C and PDF-C. (B)
Omotic shock cultivations of PDH-C at low,middle and high osmolarities. The red line also indicates the 10 mL addition of water or KCl solution. The error
bars indicate the standard deviation between biological triplicates.
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As recently published, HSP12 belongs to a protein family whose
role is to repair stress-related damage, being one of the mediators of
hyperosmotic stress adaptation in K. phaffii (Wang et al., 2020).
With the aim to further enhance the production performance, new
shake-flask cultivations with the PDH-C were carried out at
different osmolarities to induce osmotic stress.

The desired osmolarities were reached by adding the same volume
of different concentrations of KCl solution. This osmolyte was chosen
since it was already present in the bioreactor culture medium. Cell
growth was clearly affected when KCl was added at a concentration of
0.4 M, 0.6 M and 1.2 M at the beginning of the cultivation, with the
maximum growth rate (µmax) markedly reduced at the highest
osmolarity (data not shown). Therefore, it was decided to not
proceed experiments with a KCl concentration of 1.2 M and add a
pulse of water or KCl to each cultivation after the batch phase, to get a
final KCl concentration of 0 M, 0.3 M and 0.6 M. These concentrations
resulted in a cultivation osmolarity of 24.4, 59.2, and 88.4 mS/cm,

respectively, which will be named for now on low, middle and high
osmolarity (Dragosits et al., 2010).

After the pulses and FeedBeads® addition the OD600 was again
rather constant (Figure 3B). As expected, CalB production was
triggered just after starting the induction phase for all three
cultivations (Figure 3B). Compared with low osmolarity, a 35%
increase in lipolytic activity was achieved at middle osmolarity, while
a decrease of 25% was observed for high osmolarity. According to
Dragosits et al., 2010, high osmolarity upregulates the unfolded-
protein response (UPR) and the expression of general stress related
proteins in WT K. phaffii strains. Nevertheless, in the cited article
these changes were lower and even undetectable in the producing
strain (a recombinant antibody fragment under PGAP control), since
the stress responses were already induced due to protein over-
expression. When growing PDH-C under middle and high
osmolarity conditions, it could be hypothesized that PDH was
already close to being fully activated by pseudo-starving
conditions and protein over-expression, which might explain the
low CalB increase and decrease after osmotic shock. Nonetheless,
since it was considered interesting to study these cultivation
conditions in a more controlled environment such as a
bioreactor, further fed-batch cultures were also performed and
reported in the present work.

3.5 Fed-batch characterization in carbon-
limiting conditions

Currently, fed-batch cultivation is the most widely used
operational mode for RPP, since it allows to reach higher cell
densities and product titers in a controlled environment. More
specifically, a pseudo-stationary state is achieved when
implementing an exponential feeding profile that controls and
maintains a constant µ, working under carbon-limiting
conditions (García-Ortega et al., 2019). To characterize PDH-C

FIGURE 4
Biomass and CalB titer time-course of carbon-limiting fed-batch cultivations with PDH-C at low µ (0.025 h-1) and GAP-C at high (0.15 h-1) and low µ
(0.025 h-1). The errors bars represent the standard deviation of the measurements.

TABLE 1 Physiological and product-related parameters from carbon-limiting
fed-batch cultivations with PDH-C at low µ (0.025 h-1) and GAP-C at high
(0.15 h-1) and low µ (0.025 h-1). All parameters are calculated from the feeding
phase.

GAP-C
0.025

GAP-C
0.15

PDH-C
0.025

Real μ (h−1) 0.025 0.15 0.025

qs (gS gx
−1 h−1) 0.046 0.25 0.044

Yx/s (gx
−1 gS

−1) 0.54 0.61 0.58

RQ 0.72 0.68 0.70

Titer (kAU) 18.58 11.70 26.82

Yp/x (AU gx
−1) 100.45 61.28 185.22

qp (AU gx
−1 h-1) 2.45 9.44 4.59
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performance under these controlled conditions and according to the
shake-flask results, a fed-batch cultivation was carried out at a low
constant µ of 0.025 h−1. As a benchmark, two fed-batch cultivations
at high (0.15 h−1) and low (0.025 h−1) µ were performed with GAP-
C, considering the high µ cultivation as the optimal strategy for PGAP
in terms of productivity (Nieto-Taype et al., 2020).

As expected, biomass production increased exponentially
over time and in agreement with the set-point µ (Figure 4),
reaching a DCW of almost 80 g L−1 in all fed-batch cultivations.
As can be observed in Table 1, GAP-C at low μ and PDH-C
presented the same qS, while GAP-C at high μ had a greater one in
agreement with the target μ. Moreover, all key parameters that
are related to the physiological state of the cultivation were
consistent with the ones obtained in chemostat cultivations
performed with GAP-C and the other isogenic clones
producing CalB, such as PDF-C and UPP-C (Garrigós-
Martínez et al., 2021). These similarities suggested that CalB
production with the new promoter PDH did not alter the
physiological state of the cultivation.

In relation to recombinant protein production, CalB levels
increased exponentially over time from the very beginning of the
culture for both GAP-C cultivations, due to the growth-coupled
nature of the expression system (Türkanoğlu Özçelik et al., 2019). In
contrast, CalB titer in PDH-C was almost negligible after the batch
phase but rapidly increased in the feeding phase following a non-
exponential profile. At the end of the cultivations, PDH-C at low μ

surpassed GAP-C at low and high μ, presenting 1.4- and 2.3-fold
titer increases, respectively. Nevertheless, GAP-C cultivation at high
µ presented 2.1-fold higher specific production rate (qp) than PDH-
C at low µ due to the shorter cultivation time (Table 1). On the other
hand, in terms of operational requirements this higher-growth
GAP-C cultivation should be considered less advantageous in
comparison with PDH-C cultivation performed at low µ, since
the faster the growth rate the higher the cooling and oxygen
demands. For both mentioned cases, however, those operational
requirements would still be far from the demanding methanol-based
bioprocesses. On balance, although PDH-C results were promising
as starting point, the enhancement in CalB production in relation to

FIGURE 5
Optimization of PDH-C fed-batch cultivations through pseudo-starving conditions compared to the benchmark cultivation of GAP-C at low µ
(0.025 h-1). (A) Biomass and CalB titer evolution over time of PDH-C optimized cultivations (PS and 3-PS) and at low µ (0.025 h-1). (B) Product to substrate
yield (YP/S) of the PDH-C optimized cultivations compared to PDH-C and GAP-C at low µ (0.025 h-1). The errors bars represent the standard deviation of
the measurements.
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GAP-C was much lower than in shake-flasks cultivations, suggesting
that there was room for improvement in the operational strategy.

3.6 Fed-batch optimization by pseudo-
starving

When RPP bioprocess is optimized, the usual Key
Performance Indicators (KPI) to maximize are the product to
biomass yield (YP/S), the volumetric productivity (QP) and the
final product titer. Prioritizing one or another ultimately will
always depend on the product application. Most certainly,
biomass amount will greatly affect the production, but
considering that in the end it is usually a waste by-product,
the maximum amount reachable should be limited into range of
between 80–100 g L-1 DCW (García-Ortega et al., 2019).
Accordingly, a PDH-C fed-batch optimization process was
carried out by mimicking the pseudo-starving conditions
achieved in shake-flask cultivations, performing a single
induction phase (PS) or three at different biomass
concentrations (3-PS). For all the strategies, the mentioned
biomass concentration limit was never exceeded. The
induction through pseudo-starving was implemented by

setting a constant glycerol feeding rate to achieve a qs of
0.005 gS gX

−1 h−1, which means an initial μ of 0.003 h-1.
The PDH-C biomass and CalB production profiles

conducting PS and 3-PS approaches are compared to PDH-C
fed-batch at low µ (FB-0.025) in Figure 5A. In terms of cell
growth, PS and 3-PS kept the biomass constant around the
selected DCW in the induction phases, following the desired
profile observed in shake-flasks when adding the FeedBeads®. As
expected, in the PS approach CalB production slightly increased
as the biomass grew but boosted when the induction was applied,
verifying that pseudo-starving conditions were successfully
implemented in this approach. Interestingly, during the first
24 h of induction the production increased rather linearly over
time, reaching a similar titer as PDH-0.025 at the same DCW.
After that, the curve started to flatten similar to the behavior
observed in shake-flasks. K. phaffii has been demonstrated to
have a better adaptation to severe carbon starvation conditions
than S. cerevisiae, showing a high viability and low maintenance
requirements at near-zero specific growth rates (Rebnegger et al.,
2016). During all PS cultivation, high cell viability was observed
according to the physiological parameters and the lack of visible
cell lysis in SDS-PAGE (Supplementary File S1: Supplementary
Figure S2), indicating that the stop of CalB production at the end
of the cultivation was not caused by cell lysis. Additionally, the
absence of lower molecular weight bands on SDS-PAGE, which
would indicate CalB proteolysis, suggests that no active host
proteases were present. Moreover, this dynamic expression was
also observed in S. cerevisiae after applying different stressing
conditions to activate Phsp12, being followed by GFP fluorescence
(Karreman and Lindsey, 2005; Xiong et al., 2018) and HSP12
relative transcript levels (Chowdhary et al., 2017; Ren et al.,
2022). In accordance, PDH activation in K. phaffii also seemed to
decrease over time, although the stressing conditions were
maintained.

These observations inspired the 3-PS design, in which we
reduced the induction phases to 24 h and then reset the likely
non-producing state of the cultivation by starting a new biomass
production phase. As a result, the CalB titer successfully increased
almost linearly in the first two induction phases of the 3-PS
cultivation. However, during the third induction phase the
production ceased after 12 h. Although the PS-3 cultivation
achieved 1.3-fold more titer than the PS cultivation, the
investment of induction time was 2.5-fold higher, making the

TABLE 2 Comparison of key performance indicators of PDH-C standard and optimized fed-batch cultivations with the benchmarks GAP-C and PDF-C fed-batch
cultivations. All the parameters are calculated from the feeding phase.

GAP-C
0.025

GAP-C
0.15

PDH-C
0.025

PDH-C
PS

PDH-C
3-PS

PDF-C
0.05

PDH-C
PS-middle

PDH-C
PS-high

Real μ (h−1) 0.025 0.15 0.025 - - 0.052 - -

Specific productivity (AU gX
−1 h−1) 1.25 5.03 2.09 4.53 2.68 14.42 3.85 3.37

Volumetric productivity (AU L−1 h−1) 92.67 361.44 151.66 294.21 202.78 1,056.39 272.29 182.32

Yp/s (AU gS
−1) 49.54 35.55 84.03 105.11 119.54 298.81 94.13 72.36

Titer (kAU) 18.58 11.46 26.82 26.48 41.82 90.67 25.52 19.65

Lipolytic activity (AU mL−1) 6.69 4.35 9.82 9.97 15.04 33.36 9.17 6.19

FIGURE 6
Optimization of PDH-C fed-batch cultivations through osmotic
shock compared to the benchmark cultivation of PDH-C PS. Biomass
and CalB titer evolution over time are represented of PDH-C
cultivations at high, middle and low (PS) osmolarity. The errors
bars represent the standard deviation of the measurements.
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bioprocess more complex and time-demanding. Therefore, PS was
the strategy chosen for further experiments.

3.7 Fed-batch optimization by osmotic
shock

With the goal to further boost the RPP using the PDH-based
expression system, also osmotic shock was applied to the PS approach
to increase PDH activation. Again, shake-flask conditionswere reproduced
in the bioreactor, performing a pulse of KCl solution at the beginning of
the induction phase to get amiddle and high osmolarity of 0.3 and 0.6M,
respectively. The conductivitiesmeasured during the induction phase was
45.5 and 82.4 mS/cm, respectively, whichwere in line withmeasurements
of shake-flask cultivations. The results of PS fed-batch cultivation at
middle (PS-middle) and high (PS-high) osmolarity were compared to the
standard PS cultivation (16.5 mS/cm), in terms of total biomass and CalB
produced.

Practically, no differences were observed in total biomass and CalB
titer during the biomass production phase of all three fed-batch
cultivations (Figure 6), exhibiting the high reproducibility of the
platform used. Unfortunately, no remarkable differences in CalB titer
were observed between PS and PS-middle cultivations, while the
performance of PS-high cultivation suggested that the high
osmolarity caused a detrimental effect. In fact, when the pulse of
KCL solution was added to PS-high cultivation, a slight decrease in
total biomass was observed (10%) and a markedly lower final CalB
production was achieved. However, no evident cell lyses in PS-high
cultivation was detected by SDS-PAGE (Supplementary File S1:
Supplementary Figure S3) although the foaming observed right after
the KCl solution pulse. Moreover, the lower lipolytic activity of PS-high
cultivation was consistent with protein band intensity in the SDS-PAGE.

The improvement in CalB production observed in shake-flask
scale when cultivating PDH-C at middle osmolarity could not be
reproduced in a bench-top bioreactor, since none of the osmolarity
strategies tested could further boost the target RPP. Therefore,
applying two stresses at the same time, pseudo-starving and
osmotic shock, apparently did not have a synergetic effect for the
PDH activation.

3.8 PDH-C, a promising platform for
growth-decoupled protein expression
approaches

Considering the scalability of the fed-batch process and from an
operational point of view, one of the most important features to
minimize are heat production and O2 consumption. While the KPI
to maximize are usually the productivities and/or the final titer,
depending on the market of the target protein. For PDH-C, the best
optimization approach for high productivities was PS cultivation,
since it allowed to achieve the highest specific (Qp) and volumetric
(Qv) productivity (Table 2) while keeping the process relatively
simple. On the other hand, 3-PS cultivation achieved the highest
final titer comparing to all GAP-C and PDH-C cultivations, which
meant 2.3 times more than the best GAP-C production
performance. This parameter is critical for high value-added
products since high titers allow to reduce the downstream

processing costs (García-Ortega et al., 2019). Comparing the
achieved Qp with the benchmarks, PS cultivation showed a 3.6-
fold increase and a 3.2-fold decrease in relation to GAP-C 0.025 and
PDF-C 0.05, respectively. Regarding GAP-C 0.15, the final titer was
2.3-fold higher in PS cultivation while Qp was quite similar.
Furthermore, regarding the osmotic shock approaches, PS-high
and PS-middle cultivations showed lower Qp in reference to PS,
as expected. All these Qp differences are also applicable to Qv,
although the final biomass was slightly different in each process.

In general, using glycerol as a carbon source is economically
more attractive than glucose or methanol. Moreover, crude glycerol
from biodiesel industry can be used for K. phaffii fermentations with
no extra refinements needed, promoting the circular bioeconomy
(Potvin et al., 2012; Robert et al., 2017). Beside using a cheaper
carbon-source, reducing the amounts needed for the process can
have a great impact on the production costs. Therefore, the product
to substrate yield (YP/S) is usually also a crucial parameter to
maximize, especially for low added-value products. In PDH-C PS
cultivation strategy, the overall YP/S was 2.1-fold higher and 2.8-fold
lower than GAP-C 0.025 and PDF-C 0.05, respectively (Table 2).
Interestingly, the growth-coupled regulation of GAP-C was clearly
observed in Figure 5B, where the evolution of the accumulated YP/S

over time was kept constant. In contrast, the linear trend in PDH-C
showed different slopes depending on the feeding strategy applied
(Figure 5B). When starting the fed-batch phase at a constant µ of
0.025 h−1 (PDH-C 0.025), a marked increase in YP/S was observed in
the first 16 h, which then decreased linearly over time. In PDH-C PS,
the stress by pseudo-starving was initiated once the biomass was
grown to 70 g L−1, which resulted in a YP/S linear increase for 30 h
before starting to saturate. Since this saturation was already observed
in CalB titer, the pseudo-starving application in PDH-C 3-PS was
performed for 24 h at 40, 60, and 80 g L−1 of DCW. As in CalB titer,
the YP/S increased linearly over time in each induction phase except
for the third one, which stopped after 12 h of induction.

The slopes achieved in the different induction phases of PS and
3-PS suggested that the lower the biomass is, the higher CalB is
produced. This statement would agree with the high activation
observed in PDH-C 0.025 when the biomass was 22 g L−1,
activation that did not stand over time since the cultivation was
actually growing. However, the shift from growing at µmax to
0.025 h−1 was most likely enough to activate PDH at the
beginning. Therefore, this process parameter not only shows the
growth-decoupled regulation of PDH and its transient activation, but
also the impact that the initial biomass can have. Although biomass
can be used as single-cell protein (SCP) for food industry (Jach et al.,
2022), working at low cell densities but achieving high titers makes
PDH-based expression systemmore advantageous for industrial scale
bioprocess, since problems related to mixing time could be
minimized (Junker, 2004).

Based on the results of all PDH-C cultivations, one could theorize
that this expression system is highly repressed in the presence of glycerol.
In S. cerevisiae though, there has been evidence that glucose-6-phosphate
formation is essential for HSP12 repression, however the signal
transmission pathway is still unknown (de Groot et al., 2000). When
growing K. phaffii in chemostat cultivations with glycerol as a carbon
source, an increase in the metabolic flux distribution through
gluconeogenesis, and therefore glucose-6-phosphate formation, was
detected as the μ increased (Tomàs-Gamisans et al., 2019). Although
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really low μwere not studied, it is quite plausible that PDH regulation also
depends on glucose-6-phosphate formation, which might be inexistent
at pseudo-starving conditions. Consequently, this regulation provides
not only a growth-decoupled expression system, but also a slightly
tunable one depending on the μ selected.

Despite the promising results described, the heterologous PDF is still
the strongest promoter reported in K. phaffii so far, presenting a
growth-dependent regulation with its maximum at medium µ (Vogl
et al., 2020; Garrigós-Martínez et al., 2021). Nevertheless, both
expression systems showed a similar protein quality with no CalB
degradation (Supplementary File S1: Supplementary Figure S2). Non-
etheless, PDH can tightly repress the recombinant expression during
biomass growth. This regulation represents an advantage over PDF, since
protein foldingmight be facilitated due to the lowmetabolic burden that
protein overexpression and cell maintenance can cause to the cell
machinery (Wu et al., 2012). Besides, having detached growth and
production phases represents a better choice to produce toxic proteins
that have detrimental effects on growth. This is the case of the widely
studied Rizhopus oryzae lipase, which cannot be constitutively
expressed but has been efficiently produced in methanol-induced
expressions systems (López-Fernández et al., 2021).

As an example of this growth-production detachment, while
GAP-C and PDF-C presented respectively the 15.4% and 7.7% of the
total final CalB activity at the end of the batch phase, PDH-C
produced only the 4.8%. Moreover, some high-value added products
require a moderate expression to produce functional proteins that
meet the pharmaceutical grade (Juturu and Wu, 2018). Therefore,
although PDH is not as strong as PDF, its growth-decoupled
regulation might enable a more efficient production of certain
recombinant proteins, while still implementing a methanol-
independent approach. In fact, this turn-on/off regulation
controlled by simply minimizing the glycerol feeding rate must
be especially highlighted, since it represents an operational
advantage over carbon-controlled inducible promoters that
require a transition phase. Consequently, PDH expands the Pichia
toolbox to efficiently produce recombinant proteins, an alternative
option especially for the low added-value products that are essential
to promote the transition towards a circular bioeconomy.

4 Conclusion

The more popular K. phaffii becomes as a cell factory for RPP the
more expression systems with a diverse regulation are required by the
industry, which is currently critical for establishing a circular
bioeconomy. Accordingly, in this study a methanol-free and growth-
decoupled expression system based on the new promoter PDH has been
identified and studied under process-relevant conditions, from shake-
flask to benchtop fed-batch cultivations. PDH was identified as the main
regulatory sequence of the endogenousHSP12 gene, which presumably
codes for heat-shock protein 12. From the results of this study, it can be
stated that PDH is highly and transiently induced upon carbon source
limitation, the so-called pseudo-starving conditions, which corresponds
well to the native function of HSP12 in S. cerevisiae (de Groot et al.,
2000). Considering that under almost total carbon-source starvation,
the CalB expression is transiently boosted, we hypothesize that glucose-
6-phosphate formation, a metabolite whose flux is reduced at lower
growth rates, is essential to tightly repress PDH.

In shake-flask cultivations, pseudo-starving conditions were
achieved by employing the feeding technology FeedBeads®, which
slowly release a defined amount of glycerol over time. Using this
strategy, PDH-C surpassed the benchmark producing clones
GAP-C and UPP-C, but not PDF-C. To further investigate the
potential of PDH-C with the aim to optimize the process, a set of
fed-batch cultivations were successfully conducted under
standard carbon-limiting conditions and with different feeding
approaches. In terms of physiological parameters, no obvious
differences could be observed between the set of CalB producer
strains based on different promoters, although the titers achieved
were notably different, suggesting that CalB production does not
affect the cell fitness.

Due to the natural growth-decoupled regulation of PDH, switching
between high and low feeding rates was a successful and relatively
simple strategy to boost the CalB production. As a result, a single cycle
of biomass growth and expression induction through pseudo-starving
allowed achieving the highest productivities for PDH-C clone. In
particular, this approach obtained 3.6-fold higher Qp than the GAP-
C fed-batch cultivation at low µ, while it was really close to the optimal
GAP-C fed-batch cultivation. On the other hand, three biomass-
induction cycles with PDH-C provided the highest titer compared
with all GAP-C cultivations, being in the range of 2.3- to 3.6-fold times
higher.

When applying pseudo-starving conditions together with
osmotic shock to PDH-C, neither in shake-flask nor in fed-
batch cultivations a remarkable increase in protein production
was achieved, despite PDH being natively related to stress-damage
repair. Therefore, it was conjectured that the majority of stress
mechanisms were already activated by the protein over-
expression and carbon source deprivation.

Exploiting the derepressed regulation of PDH, growth-
decoupled fed-batch cultivation strategies were successfully
implemented, achieving a higher production of CalB than
GAP-C. Although PDF-C still showed better results in terms
of final titer and overall productivities, the novel promoter PDH

presents an innovative and promising alternative to methanol-
based bioprocesses, especially for toxic, low- and high-value
added products. In addition, PDH is operationally more
advantageous than other methanol-free promoters since it can
be tightly controlled only by adjusting the feeding rate. To sum
up, this expression system increases further the versatility of K.
phaffii and expands its toolbox for RPP, being a step forward to
achieve the circular bioeconomy transition.
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