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Organoids are advancing the development of accurate prediction of drug efficacy
and toxicity in vitro. These advancements are attributed to the ability of organoids
to recapitulate key structural and functional features of organs and parent tumor.
Specifically, organoids are self-organized assembly with a multi-scale structure of
30–800 μm, which exacerbates the difficulty of non-destructive three-
dimensional (3D) imaging, tracking and classification analysis for organoid
clusters by traditional microscopy techniques. Here, we devise a 3D imaging,
segmentation and analysis method based on Optical coherence tomography
(OCT) technology and deep convolutional neural networks (CNNs) for printed
organoid clusters (Organoid Printing and optical coherence tomography-based
analysis, OPO). The results demonstrate that the organoid scale influences the
segmentation effect of the neural network. The multi-scale information-guided
optimized EGO-Net we designed achieves the best results, especially showing
better recognition workout for the biologically significant organoid with
diameter ≥50 μm than other neural networks. Moreover, OPO achieves to
reconstruct the multiscale structure of organoid clusters within printed
microbeads and calibrate the printing errors by segmenting the printed
microbeads edges. Overall, the classification, tracking and quantitative analysis
based on image reveal that the growth process of organoid undergoes
morphological changes such as volume growth, cavity creation and fusion, and
quantitative calculation of the volume demonstrates that the growth rate of
organoid is associated with the initial scale. The new method we proposed
enable the study of growth, structural evolution and heterogeneity for the
organoid cluster, which is valuable for drug screening and tumor drug
sensitivity detection based on organoids.
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1 Introduction

Organoids are 3D self-organized assemblies of stem cell or
neoplastic cell derived from patient tumor (Shahbazi et al., 2019)
with more similarities to the source organs with respect to their
morphological and functional characteristics (Tuveson & Clevers,
2019), providing a new platform for precise drug screening and
tumor drug sensitivity detection in vitro (Takebe & Wells, 2019). In
recent years, an increasing variety of cancer organoid have been
successfully established, including but not limited to liver and bile
duct (Broutier et al., 2017), bladder (Lee et al., 2018; Mullenders et al.,
2019), esophagus (Li et al., 2018), lung (Sachs et al., 2019), intestine
(Boehnke et al., 2016), and stomach (Seidlitz et al., 2019). The organoid
undergoes the process of self-organogenesis when dispersed in the
culture matrix and has a multi-scale histomorphology of 30–800 μm
(closely related to functional and tumor heterogeneity). Hence, the
traditional techniques such as fluorescence microscopy and Laser
Scanning Confocal Microscopy usually lack the ability of achieving
long-term, non-destructive, 3D imaging and classification analysis of
organoid clusters. In addition, traditional biochemical detection
techniques such as detection of adenosine triphosphate (ATP) are
subjected to the diffusion of culture media and substances, making
it difficult to distinguish the function states among different scales of
organoids. For instance, cancer organoids with diameter ≥50 μm are
reported to more accurately predict the effects of antitumor drugs
(Nuciforo et al., 2018; Chung et al., 2022; de Medeiros et al., 2022; Kang
et al., 2022). Therefore, there is an urgent need to establish a label-free
and non-invasive imaging and analysis method that can perform 3D
imaging, classification, tracking and functional analysis of organoid
clusters.

Optical coherence tomography (OCT) is an emerging biomedical
imaging modality that enables high-resolution, label-free, non-
destructive and real-time 3D imaging of biological tissues and has
been widely used in ophthalmology (Ngo et al., 2020) and dermatology
(Pfister et al., 2019). With the millimeter-level penetration depth and
micrometer-level resolution, OCT can characterize the internal
structures of organoids with high resolution. In addition, the label-
free advantage of OCT allows for longitudinal monitoring of organoids
for the number and morphology changes. For instance, Deloria et al.
(2021) used ultra-high resolution 3D OCT to observe the internal
structure of human placenta-derived trophoblast organoids. Gil et al.
(2021) used OCT to track the volumetric growth of patient-derived
intestinal cancer organoids, which employed k-means clustering to
segment the organoids in OCT images and achieved quantitative
tracking of individual organoid volumes with diameter larger than
100 μm. However, the current study (Oldenburg et al., 2015; Gil et al.,
2021) both analyzed the heterogeneity of drug responses in mature
organoids through traditional image processing combined with OCT,
without considering themorphology changes in organoid development.
The in-time reveal of tissue morphology during organoid growth and
the evaluation of appropriate developmental time scales would be
beneficial to guide organoid culturing (Yavitt et al., 2021). Assessing
morphological changes during organoid growth requires improved
accuracy of organoid quantification, especially for organoids with
diameters around 50 μm (Gjorevski et al., 2016; Arora et al., 2017).
However, poor contrast, unclear boundaries, the presence of noise, and
the small size of the organoid target in OCT images poses a challenge in
accurate organoids identification for current methods.

Recently, convolutional neural networks (CNNs) have emerged
as a powerful tool in image classification (Cai et al., 2020), object
detection (Xiao et al., 2020) and image segmentation (Hesamian
et al., 2019). These networks exploit an encoder-decoder
architecture. In detail, the encoder enables it to obtain low-
resolution feature maps, then the decoder is utilized to project
the low-resolution feature maps to high-resolution feature maps
to achieve pixel-based classification. In organoid image analysis,
CNNs have achieved automatic segmentation of organoids in 2D
microscope images and confocal images, and the corresponding
segmentation results outperform traditional image processing and
machine learning methods (Kassis et al., 2019; MacDonald et al.,
2020; Bian et al., 2021; Abdul et al., 2022). Also, CNNs has similarly
shown good results in many OCT image processing tasks. For
example, CNNs have been employed for segmentation of
choroidal vessel (Liu et al., 2019), capillary (Mekonnen et al.,
2021), retinal layer boundaries (Shah et al., 2018) and skin (Kepp
et al., 2019). Despite CNNs show considerable promise in OCT
image analysis, their application in OCT images is still in the early
stages (Pekala et al., 2019; Badar et al., 2020).

To better detect and tracking morphological changes of printed
patient-derived tumor organoid clusters, we propose a 3D imaging,
segmentation and analysis method based on OCT technology with
CNNs (Organoid printing and OCT-based analysis, OPO). Specifically,
we exploit a designed inverted OCT system to perform automated,
high-throughput imaging of organoids arising from patient-derived
cancerous tissues such as liver, colon, and stomach. Moreover, two
neural network joint organoid segmentation and classification
algorithms are correspondingly designed to identify multi-scale
organoids in OCT images with high accuracy. Based on the method
of organoid mass alignment to achieve the tracking of individual
organoids and the tracking analysis of multi-scale structures of
organoid clusters within microbeads, we analyze the morphological
and number changes of different individual organoids of the same
species and different species of organoid clusters, providing a new
method to study the growth, structural evolution and heterogeneity of
organoid clusters.

2 Methods

2.1 Patient-derived cancer organoids
preparation and culture

Multiple patient-derived cancer organoids (PCOs) were
prepared by our proposed dot extrusion bioprinting (Wei et al.,
2022), and a total of 52 samples of microbead organoid clusters of
different patient sources were obtained, including three types of
cancer organoids: liver, stomach, and intestine. Cells from patient-
derived cancerous tissues were first digested with 0.25% trypsin,
then suspended in base medium (DMEM/F12 with 10% FBS and 1%
penicillin-streptomycin), and mixed with Matrigel in a 1:2 ratio to
prepare the bioink for printing. Briefly, dot extrusion printing is a
method of bioprinting using an extrusion printhead operating in
intermittent mode to generate microbeads onto the target substrate
surface by transient contact. The droplet-shaped microbeads will be
deposited on the substrate due to the surface tension between the
hydrogel and the substrate. The bioink was loaded into the extrusion
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printhead and kept at 37°C. Subsequently, the cell-laden bioink was
printed in 96 multi-well plates using a micro-extrusion nozzle under
pre-designed G-code commands with pneumatic pressure set to
100 kPa and dispensing time set to 1,000 ms. The multi-well plates
were incubated at 37°C for 2–3 min to solidify the mixture and then
invert to ensure free growth of PCOs suspended in the 3D
environment of the Matrigel. The mixture was left to solidify for
at least 20 min, then base medium supplemented with Wnt3a
medium (1:1 ratio) was added to each well and the medium was
renewed every 2 days during long-term incubation.

2.2 Image acquisition and preprocessing

We applied the SS-OCT system developed by Regenovo
(Figure 1, Bio-Architect@ Tomography, Regenovo, China) to
acquire 3D images of the organoid. The system has a central

wavelength of 1,310 nm, an axial resolution of 7.6 μm and a
lateral resolution of 15 μm. The OCT images were resized in
the axial direction to yield isometric voxel spacing. It was
noteworthy that the data used in this paper were observed
using inverted imaging and tilted by 5–10° with the aim of
reducing noise. For organoid clusters within printed
microbeads, OCT data acquisition and data storage took no
more than 30 s in total, and each OCT imaging monitoring
did not exceed 1 h to reduce the impact of imaging monitoring
on organoid growth. We started OCT imaging monitoring which
last for 7 days when we observed most of the organoids sprouting
under 4x microscope, and the time interval of each data
acquisition was 24 h. Thus, a total of 364 sets of 3D OCT data
were obtained for 52 samples of printed organoid clusters. The
volume size of each group of 3D OCT images was 715(z) ×
800(x) × 800(y) voxel, and the total field of view was 3.58 mm(z) ×
4 mm(x) × 4 mm (y).

FIGURE 1
Schematic diagram of the SS-OCT system and the data processing flowchart for organoid imaging and segmentation. (A) Schematic diagram of the
SS-OCT system for organoid imaging, (B) The data processing flowchart for organoid segmentation.
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We selected 3-4 well-developed organoid samples for each of the
three tumor types and chose different time points to cover the entire
culture cycle. The final dataset contains 10 samples with a total of
24 OCT data, which is about 1/5 of all samples. Due to the high
workload of supervised machine learning algorithms that require
real annotated data for training and testing, it is not feasible to
segment the entire OCT data manually. Therefore, each 3D body
data in the 24 OCT data was annotated every four frames, and
3729 B-Scan images were finally obtained. We adjusted the contrast
of the images and denoised the images by filtering so that the
organoid could be more easily identified. The ground truth images
are manually annotated by experts under the guidance of bright-field
images, and the data were divided into two parts and annotated from
the orthogonal direction. We first compared the bright-field images

for determining the position of the organoid in the OCT images.
Then the ground truth baseline is established by morphological
characteristics of the organoid, signal intensity, and continuity of the
organoid (adjacent B-scan images). Considering that the organoids
below 32 μm are not biologically significant and their labeling errors
are easy to occur, we set the lower bound of organoid size to 32 μm
(Gil et al., 2021). In this work, the software tool ITK Snap was used.

2.3 Designing convolutional neural network
models to segment organoids

During 3D printing, the deviations in microbead positions
and manual manipulation caused by different collectors may lead

FIGURE 2
The network structure or method used in the entire segmentation process. (A) Determine the VGG-Unet structure for the region of interest
microbeads. (B) Architecture of the proposed EGO-Net. (The left side shows the encoder and decoder combination with U-shaped structure. The
encoder receives the image as input and generates multi-level and multi-resolution feature representations, while fusing the features after Conv2-2 to
obtain multi-scale features. The decoder then receives the feature representation from the encoder to generate the corresponding predicted
output, and uses the output corresponding to Conv2-2 to generate edge features. The segmentation results are obtained on the right side by fusing the
multi-scale features, predicted outputs and edge features and decoding them accordingly.) (C) The final 3D segmented image obtained by averaging
results of two orthogonal direction.
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to the organoid appearance at different locations in the OCT
images. In this paper, a simple neural network, VGG-Unet
(Simonyan & Zisserman, 2014; Ronneberger et al., 2015), was
first used to extract the printed microbead matrix region of
interest (Figure 2A). Then the printing errors (volume and
position deviations) were calibrated and the interference
signals were removed, to accurately reconstruct the
multiscale structure of the organoid clusters within the printed
microbeads.

After obtaining OCT images [240 (z) *800 (x) pixels]
containing only Matrigel and organoid clusters, we performed
preprocessing such as cropping and grayscale transformation to
resolve the grayscale and non-uniform contrast of OCT images in
different organoids. Then dividing a B-scan image containing
organoid clusters into three 240(z)*400(x) pixel image blocks
would achieved preserving the organoid integrity while reducing
the size of the input image, which enabled it improve the
segmentation efficiency and accuracy of the neural network.
Then, we exploited four method, U-Net, U2-Net (Qin et al.,
2020), EG-Net (Zhao et al., 2019) and nnU-net (Isensee et al.,
2018) based CNNs, for multi-scale organoid segmentation of the
pre-processed OCT images. In detail, the first three CNNs are 2D
neural networks, and nnU-net was the 3D neural network
with the best segmentation performance so far (Antonelli
et al., 2021).

The morphological sprouting of the organoid generally
occurs when the diameter reaches 50 μm. In order to better
evaluate the morphological changes during the growth of the
organoid, we designed EGO-Net to improve the segmentation
accuracy of the morphological sprouting state organoid, as shown
in Figure 2B. Since the lower level has a small receptive field, only
local information can be obtained. In order to accurately segment
organoids, high-level semantic or positional information is also
required. When the information returns from the high level to the
low level, the high level information is gradually diluted, so we
fuse the feature maps obtained from each convolutional block of
the down sampled part of the introduced baseline EG-Net to
obtain the multi-scale features. The multi-scale features are then
fused with the features of the side path outputs so that both high-
level and low-level information is obtained for each side path
output. Channel Attention (CA) and Spatial Attention (SA) were
utilized after fusing the edge features to make the network more
focused on the organoids to be segmented and to suppress
irrelevant information (Woo et al., 2018). Since this network
(Figure 2B) was still a 2D neural network, the correlation
information of different directions of 3D OCT imaging was
easily lost, which led to problems such as deformation and
discontinuity in the 3D reconstruction of the segmented
organoid. To this end, a method combining unidirectional
continuous 3-frame OCT image input (Li et al., 2017) and
averaging two predictions in the orthogonal direction (Prasoon
et al., 2013; Pfister et al., 2019) was proposed (Figure 2C). This
method took into account the information correlation of different
directions of 3D OCT imaging and used orthogonal continuous
input to form information complementarity, which enabled
effectively improve the problem of unidirectional 2D neural
network segmentation while avoiding the segmentation
efficiency problem that exists in 3D neural networks.

We trained the network using a hybrid loss function defined as
L � Lbce + Liou. Lbce � −∑n

i�1ŷilogyi + (1 − ŷi)log(1 − yi) andLiou �
1 − ∑n

i�1yiŷi

∑n

i�1(ŷi+yi−yiŷi) denote the BCE loss function (de Boer et al., 2005)

and the IoU loss function (Mattyus et al., 2017), respectively, where
ŷi∈ [0, 1] is the ground truth label of the pixel and yi ∈ [0, 1] is the
predicted probability of being organoid.We set six-fold cross-validation
with 60 epochs of training per cross-validation and used data
augmentation such as rotation and horizontal flipping during the
training process. An adaptive moment estimation solver was used to
optimize the network with a learning rate of 5 × 10

−5

andmomentum of
0.90. This process was implemented with Python3.7 based on a Pytorch
backend using a single NVIDIA Quadro RTX 4000.

2.4 Organoid tracking and quantitative
analysis

The individual tracking of organoid within microbeads,
individual organoid volume, overall number and volume, and
clustering analysis of volume can be achieved based on the
segmentation results of the CNN model proposed in this paper.
The organoid volume is calculated only for the solid part and not for
the whole contained in the outer contour. A three-point localization
method was used for OCT imaging of the organoid clusters in the
culture well plate to ensure the consistent position of each data
acquisition as much as possible. Moreover, this paper proposed a
combined ICP alignment and center-of-mass pairing approach to
achieve time-dependent tracking of individual organoid within a
cluster. Specifically, we first identified and labeled the organoids
within the microbeads based on the segmentation results of the
CNN model, then used a simplified point cloud based iterative
closest point (ICP) algorithm to align the organoid segmentation
datasets at different time points. Next, we extracted the mass center
of each organoid from the aligned datasets, and created a pairing
table by matching the mass center of the closest organoid in the
aligned datasets at two adjacent time points. In turn, we created a
pairing table for multiple time points for organoid tracking, which
enabled the tracking of a single organoid. The results of individual
organoid tracking were used to demonstrate the change of organoid
number and morphology over time.

2.5 Evaluation metrics

Four different metrics were used to evaluate the accuracy of the
segmentation. Dice and Jaccard were used to measuring the
similarity between the predicted and ground truth, which are
denoted as:

Dice � 2TP
2TP + FN + FP

, (1)

Jaccard � TP

TP + FN + FP
, (2)

where true positives (TP) are the number of pixels for which the
model correctly predicts the positive class, false positives (FP) are the
number of pixels for which the model incorrectly predicts the
positive class, and false negatives (FN) are the number of pixels
for which the model incorrectly predicts the negative class.
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Dice and Jaccard are more concerned with the overlap region
between predicted and ground truth, and the size of the segmented
region also has an impact on the results. Therefore, we selected the
precision and sensitivity for indicating the classification of positive
samples. The precision indicates the probability of correct prediction
in the samples predicted as organoid, and a higher precision
indicates fewer cases of predicting the background as organoid. It
is defined as:

Precision � TP

TP + FP
. (3)

Sensitivity indicates the probability of correct prediction in
samples that are actually organoid, and higher sensitivity
indicates fewer cases of predicting organoid as background. It is
denoted as:

Sensitivity � TP

TP + FN
. (4)

3 Results

3.1 Quantitative analysis of segmentation
performance

Previous studies reveal that morphogenesis in the organoid
would occur at the diameter of 50 μm (Gjorevski et al., 2016;
Arora et al., 2017), which was also observed in our study.
Therefore, we compared our proposed method with other single
neural networks according to different classifications of the
equivalent diameter of the organoid, and the metrics of all
models for test set segmentation are shown in Table 1. It should
be pointed out that other neural networks do not use a series of
optimized processing methods, for example, VGG-Unet to extract
the printed microbead matrix region, and orthogonal continuous
input prediction to solve the problems such as deformation and

dislocation in the 3D reconstruction of the organoid after
segmentation. From the table, it can be seen that the
segmentation performance of our proposed method is better than
other neural networks, and obtained the highest scores in Dice,
Jaccard, Precision and Sensitivity. When the diameter of the
organoid is between 32 and 50 μm, our method can achieve
more than 80% segmentation accuracy. When the organoid
diameter was between 50 and 90 μm, the segmentation
performance of each model improved, with our method
improving between 3% and 6% compared to nnUnet, U2net, and
EG-Net, and 9.6% compared to U-net. When the organoid diameter
is larger than 90 μm, our method improves 4.8% compared to EG-
Net, the best performing of other single neural network, and 8.4%
compared to U-net. Our method has the best segmentation
performance for different organoid diameters, indicating that our
method can accurately identify the organoid and effectively improve
the segmentation accuracy.

As can be seen from Figure 3, our model provides satisfactory
segmentation for the problems that exist in OCT imaging in the
normal culture environment of the organoid clusters such as the
difference in growth density, morphological differences (Figure 3E),
preparation process limitations (Figure 3F), and the strong reflection
noise, autocorrelation noise (Figures 3A, B), and low contrast
(Figures 3C, D). While it is prone to generate errors only in
cases where expert recognition is also difficult, such as organoid
with diameter less than 50 μm (Figure 3A), strong signal of Matrigel
compared to surrounding signal (as shown in Figure 3C), or close
signal intensity of organoid and Matrigel (as shown by arrow in
Figure 3D).

We used the orthogonal continuous input prediction method to
improve the error-prone problem of unidirectional prediction of 2D
neural network, and compared the effect of unidirectional prediction
and orthogonal continuous input prediction, as shown in Figure 4.
Due to the lack of information in the third dimension, the 2D neural
network unidirectional prediction leads to problems such as
deformation, missing edges (Figure 4C3) and discontinuity

TABLE 1 Comparison between the proposed segmentation method and other single neural network.

Diameter U-net nnUnet U2Net EG-net Our method

Dice 50 > d ≥ 32 μm 0.680 0.710 0.753 0.758 0.801

90 > d ≥ 50 μm 0.743 0.785 0.786 0.809 0.839

d ≥ 90 μm 0.820 0.828 0.850 0.856 0.904

Jaccard 50 > d ≥ 32 μm 0.546 0.552 0.635 0.635 0.683

90 > d ≥ 50 μm 0.619 0.624 0.683 0.701 0.737

d ≥ 90 μm 0.707 0.718 0.763 0.767 0.832

Precision 50 > d ≥ 32 μm 0.722 0.681 0.777 0.781 0.824

90 > d ≥ 50 μm 0.808 0.759 0.821 0.843 0.854

d ≥ 90 μm 0.892 0.861 0.899 0.901 0.902

Sensitivity 50 > d ≥ 32 μm 0.700 0.715 0.779 0.780 0.802

90 > d ≥ 50 μm 0.733 0.657 0.791 0.809 0.844

d ≥ 90 μm 0.765 0.853 0.837 0.829 0.921
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(Figure 4E3) in some of the organoids, which cannot accurately
demonstrate the morphological changes in the organoids, and thus
the quantitative analysis of multi-scale organoid clusters would also
produce errors. The orthogonal continuous input prediction
method effectively improves the impact due to the missing
information in the third dimension. As can be seen from
Figure 4D3, the orthogonal continuous input prediction method
used in this paper segmented the shape of the organoid more
rounded and complete; as can be seen from Figure 4F3, the
method in this paper could reconnect the defective organoid
predicted unidirectionally by the 2D neural network into a
whole, which improves the accuracy of organoid identification.

3.2 Analysis of organoid growth based on
segmentation results

Figure 5A shows the growth changes of the colon cancer
organoids during the monitoring period, where the different sizes
of the organoids are presented in different colors. Three individual
organoids were selected for display (Figures 5B–D) and volume

analysis (Figure 5E). Different organoids showed different
morphologies in the same well of the same patient. The organoid
growth around 150 μm for initial diameter may exhibit almost
consistent morphology in appearance but experience significant
differences in internal structure, such as the gradual
disappearance of the cavity of organoid 1 (Figure 5B) and the
disappearance and the regrowth of the cavity of organoid 2
(Figure 5C). The morphological sprouting started when the
initial diameter of the organoid was around 50 μm (Figure 5D).
From the results of volumemonitoring of the three organoids grown
for 7 days (Figure 5E), the initial appearance diameter of the
organoids over 90 μm showed that their solid volume grew
rapidly over time, as in organoids 1 and 2, while organoid 3,
which had an initial appearance diameter near 50 μm, grew more
slowly, increasing in volume only for the first 4 days, then remaining
essentially unchanged.

Based on the accurate identification of the internal cavities of the
organoids, we achieved a more accurate quantitative analysis of the
organoids and monitored the changes in the number and volume of
all organoids in the well plate over time. In order to visualize the
growth and development of the organoids, we first filled the inside of

FIGURE 3
The prediction results of our model for some challenging cases of B-Scan. (A) autocorrelation noise; (B) strong reflection noise; (C,D) low contrast
and blurred boundaries; (E) different density andmorphology of organoid. (F)Well plates. (a1)–(f1) areOCT images, (a2)–(f2) are ground truth, (a3)–(f3) are
neural network prediction results, and (a4)–(f4) are fusion results (green) of ground truth (red) and prediction results (blue). The yellow arrows indicate
possible problems in the OCT images. The white arrow in row 3 points out that Matrigel was misclassified as an organoid. The blue arrow in row
4 points out that the organoid was not successfully segmented.
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the organoids and then calculated the equivalent diameter based on
the volume of the organoids and assigned different colors to the
organoids according to the diameter size. Figure 6 shows the scatter
plots of growth status and volume changes of three groups of
different types of organoid clusters at different culture time
points. It should be pointed out that the organoids with diameter
less than 32 μm did not visualized in Figure 6A to better display
organoid clusters. According to the Figures 6A, B, it can be seen that
on day 1 of culture, the percentage of liver and gastric cancer
organoid clusters with diameters less than 50 μm exceeded 50%,
while the percentage of intestinal cancer organoid clusters with
diameters less than 50 μm exceeded 80%. During the subsequent
growth process, the scale and volume of liver carcinoids showed
significant growth, while the number did not change significantly,
and the statistics showed that the percentage of organoids less than
50 μm in diameter continued to decrease; the diameter and number
of gastric cancer organoids continued to increase, while the statistics
showed that the percentage of organoids less than 50 μm in diameter
increased slowly in the first 5 days and then decreased slightly; the
diameter of intestinal cancer organoids grew slowly and the
percentage of organoids with diameters less than 50 μm
decreased significantly in the first 5 days and then increased
slightly. In addition, the statistics of the last day showed that the
percentage of the three types of organoids with diameters less than

50 μm was the smallest at 37.4%, indicating that a significant
proportion of these organoids had no significant growth.

4 Discussion

Patient-derived cancer organoids (PCOs) are 3D in vitro
miniaturized models that display spatial architecture strongly
resembling the corresponding tumor tissues and recapitulate
physiological functions of parent tissue, offering unprecedented
opportunities for disease mechanism research, drug screening
and personalized medicine. However, current detection methods
for PCOs are usually destructive or provide only planar information,
making it difficult to achieve long-term, non-destructive 3D
monitoring and analysis of the PCOs cluster. In this study, we
propose a OPO method for 3D imaging, segmentation and analysis
of printed organoid clusters based on OCT imaging with deep
CNNs, which can reconstruct the multiscale structure of
organoid clusters within printed microbeads and visualize
information about organoids, cavities and volumes.

The advantages of OCT, such as three-dimensional, non-
invasive, and high-resolution imaging, allow it to monitor the
growth and drug response of organoid clusters and capture the
heterogeneity of PCOs. However, the sensitivity fall-off effect of

FIGURE 4
Comparison of the 3D segmentation results of unidirectional prediction and orthogonal continuous input prediction. (A,B) are two sets of 3D OCT
examples; (C,E) are 3D segmentations with unidirectional prediction. (D,F) are 3D segmentations with orthogonal continuous input prediction. (c1–f1) are
top views of 3D reconstructions of organoids segmentation; (c2–f2) are enlarged 3D reconstructions of the yellow boxes in (c1–f1); (c3–f3) are top views
corresponding of (c2–f2).
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OCT may generate signal variances in different depths of the
organoid, and the low contrast and unavoidable speckle noise
present in OCT images, which hamper the organoids
identification. Previous studies (Nuciforo et al., 2018; Ngo et al.,
2020) used conventional image processing to analyze organoid OCT
images shows difficulties in segmenting organoids with scales
smaller than 90 μm. However, the CNN model designed in this
paper can extract the printed microbead matrix region of interest by
a simple VGG-Unet (Figure 2A). On the other hand, the accuracy of
organoid segmentation with diameters around 50 μm could be
improved by the designed EGO-Net (Table 1). Moreover, the
introduction of 3D information and ensured the continuity of
segmentation (Figure 4) by unidirectional continuous 3-frame
image input combined with two neural network predictions in
the mean orthogonal direction information would be beneficial to
reduce the deformation (Figure 4D3) and recognition deficit
(Figure 4F3) of 3D organoid reconstruction. The CNN model
designed in this paper exhibits good robustness and adaptability,
providing satisfactory segmentation results for multi-scale organoid
in OCT images with low contrast and much noise (Figure 3),
showing excellent segmentation accuracy for small-scale organoid
(d < 90 μm) and good prediction and identification readouts of
organoid of different types of patient origin for liver, gastric and
colon cancers with large morphological and density differences
(Figure 6A).

Also, the CNN model we proposed in this paper is able to
identify the edges of printed microbead matrix, which can be further
used to calibrate the printing position. Moreover, the volume error
of microbead printing would also be calibrated by quantifying the
volume of the region, which is paramount for the automation of
organoid preparation. The proposed organoid tracking analysis
method in this paper enables the visualization of morphology
and internal structure evolution of individual organoid at
different time points (Figures 5B–D), and the 3D volume
mapping helps to understand the underlying cellular dynamics,
such as fusion, luminal dynamics, migration, and rotation, in
more detail from different perspectives. The quantitative tracking
analysis of individual organoid morphological parameters
(Figure 5E) helps to explore the heterogeneity of PCOs for
precise tumor drug use (Boehnke et al., 2016). Although the
current organoid tracking analysis method has achieved the
expected results, there are still limitations. The error of tracking
is closely related to the segmentation accuracy, and the error of
segmentation leads to the error of tracking. Large-sized organoids
(d > 90 μm) are tracked accurately because they are easy to segment
and errors are mainly concentrated at the edges. The segmentation
accuracy of the model for the organoids with diameters between
50 and 90 μm is 83.9%. Although there is a small amount of
organoid identification error, it can also be tracked accurately
basically. For the organoids with diameter less than 50 μm, the

FIGURE 5
Shape and size changes of colon cancer organoids during the monitoring period. (A) Colon cancer organoids at different time points. From left to
right are 3D OCT images, 3D segmentation results and the top views. Different diameters of organoids are marked with different colors (yellow:50 μm >
d ≥ 32μm, green: 90 μm > d ≥ 50μm, red: d ≥ 90 μm). (B–D) Enlarged views of the three organoids marked as 1, 2, and 3 by the yellow boxes in (A). (E) The
volume growth analysis of three organoids in (B–D) over 7 days.
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identification accuracy of our segmentation algorithm is not high
enough, and there is a situation that some organoid below 32 μm
grows to about 50 μm, so the identification error of small-sized
organoids with diameter less than 50 μm can easily lead to the error
of tracking results. In this paper, we further demonstrated the
changes of different types of patient-derived cancer organoid
clusters over time (Figure 6A), and achieved quantification and
analyze of the number and volume changes of organoid clusters
(Figure 6B). It demonstrated that the growth rate of organoid was
influenced by the initial scale which associates closely with the
viability of organoid. In fact, the diameter and morphological
characteristics of the organoid are key indicators of organoid
maturation. Thus, the accurate assessment of the diameter and
morphological characteristics would be beneficial to guide
organoid culture. In addition, the accurate quantification and
tracking of multiple scales of organoids helps to observe the
growth and structural evolution of organoid clusters as well as to
assess the appropriate developmental time scale (Yavitt et al., 2021),
enhancing the understanding of early organoid formation
mechanisms, and helping guide large-scale culture of the
organoid. For example, in this paper, we found that an overall
shrinking of the organoid (Figure 6A), known as size oscillations,
occurs when the diameter of intestinal and gastric organoids grows

to near 200 μm (Hof et al., 2021). In the next step, we consider
combining classification algorithms to distinguish different
morphological organoids and introducing OCT attenuation
coefficients, dynamic OCT (Scholler et al., 2020; Yang et al.,
2020; Ming et al., 2022) to further characterize the viability and
motility of organoids and provide powerful tools for organoid
growth, and drug screening based on structure-function imaging.

5 Conclusion

In this study, we propose a three-dimensional imaging,
segmentation and analysis method of printed organoid clusters
based on OCT with CNNs (OPO), which reconstruct the multi-
scale structure of organoid clusters within printed microbeads
and achieve tracking and quantitative analysis of organoids. By
tracking individual organoid and quantifying morphological
parameters such as number and volume of organoid by CNN
prediction results, the growth, structural evolution and
heterogeneity analysis of organoid clusters can be realized. The
proposed method is valuable for the study of organoid growth,
drug screening and tumor drug sensitivity detection based on
organoids.

FIGURE 6
Examples of the changes of three different types of organoids over time and scatter plots of organoid volumes. (A) Three-dimensional
reconstruction results of organoid volume changes over time for three types of liver, gastric, and colon cancers. (B) Scatter plots corresponding to the
volume of the organoids in (A).
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