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Background: Cell culture media containing undefined animal-derived
components and prolonged in vitro culture periods in the absence of native
extracellular matrix result in phenotypic drift of human bone marrow stromal cells
(hBMSCs).

Methods: Herein, we assessed whether animal component-free (ACF) or xeno-
free (XF) media formulations maintain hBMSC phenotypic characteristics more
effectively than foetal bovine serum (FBS)-based media. In addition, we assessed
whether tissue-specific extracellular matrix, induced via macromolecular
crowding (MMC) during expansion and/or differentiation, can more tightly
control hBMSC fate.

Results: Cells expanded in animal component-free media showed overall the
highest phenotypemaintenance, as judged by cluster of differentiation expression
analysis. Contrary to FBS media, ACF and XF media increased cellularity over time
in culture, as measured by total DNA concentration. While MMC with Ficoll™
increased collagen deposition of cells in FBS media, FBS media induced
significantly lower collagen synthesis and/or deposition than the ACF and XF
media. Cells expanded in FBS media showed higher adipogenic differentiation
than ACF and XF media, which was augmented by MMC with Ficoll™ during
expansion. Similarly, Ficoll™ crowding also increased chondrogenic
differentiation. Of note, donor-to-donor variability was observed for collagen
type I deposition and trilineage differentiation capacity of hBMSCs.

Conclusion: Collectively, our data indicate that appropriate screening of donors,
media and supplements, in this case MMC agent, should be conducted for the
development of clinically relevant hBMSC medicines.
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1 Introduction

Mesenchymal stromal cells (MSCs) hold great potential for
therapeutic and reparative use in tissue engineering and
regenerative medicine due to their self-renewal, multipotency and
immunomodulatory properties (Deans and Moseley, 2000; Di
Nicola et al., 2002; Jorgensen et al., 2003). Regarding clinical
translation of MSC medicines, animal-derived cell culture media
components (i.e., animal sera) raise safety concerns related to
xenogeneic contaminations and disease transfer through
pathogens (e.g., mycoplasma, viruses and prions) (Selvaggi et al.,
1997; Tekkatte et al., 2011; Hawkes, 2015; van der Valk, 2022). Also,
antibodies against bovine antigens (when foetal bovine serum, FBS,
is used, which is the most widely used serum in cell culture) may be
elicited by repeated administration of cells, which will in turn
directly affect the safety and efficacy of cell-based treatments to
patients (Horwitz et al., 2002; Sundin et al., 2007). Moreover, the
undefined composition of FBS results in inconsistent batch-to-batch
performance, low reproducibility of experiments and ultimately
jeopardises the therapeutic potential of MSC therapies (Honn
et al., 1975; Heiskanen et al., 2007). As a tight control of cell
behaviour in vitro is imperative for intended clinical use, recent
efforts have been directed towards the development of more defined
xeno-free (XF) and/or animal component-free (ACF) media
formulations for translational research, development and
regulatory compliant MSC medicines (Chase et al., 2012; Jung
et al., 2012; Kinzebach and Bieback, 2013). Per definition, both
XF and ACF media cannot contain animal-derived proteins or
serum. While ACF media is entirely free of animal- and human-
derived components and all elements are therefore chemically
defined, XF media can contain human-derived supplements (de
Soure et al., 2016; Karnieli et al., 2017).

Another limiting factor in the clinical translation of MSC
therapies, especially in the case of autologous therapies, is the
prolonged in vitro expansion required to reach the high cell
numbers needed for therapeutic effects, which is associated with
phenotype, immunomodulatory capability and therapeutic losses
(Bara et al., 2014; Elgaz et al., 2019; L’Heureux et al., 2006; Siddappa
et al., 2007;Whitfield et al., 2013; Yao et al., 2006; Zhang et al., 2015).
In artificial in vitro cell culture systems, cells are grown in liquid
media in planar 2D cultures, which poorly resemble the native in
vivo scenario where cells reside in a dense 3D microenvironment, in
direct contact with the extracellular matrix (ECM). In vivo, the
dynamic reciprocity between cells and their surrounding ECM
determines their fate and function (Roskelley and Bissell, 1995;
Thorne et al., 2015; van Helvert et al., 2018). Similarly, the presence
of tissue-specific ECM has been shown to facilitate cell phenotype
maintenance in vitro (Pei et al., 2011; Cheng et al., 2014; Gattazzo
et al., 2014; Yang et al., 2018a). In eukaryotic cell culture systems,
macromolecular crowding (MMC), following the principles of
excluded volume effect, enhances and accelerates tissue-specific
ECM deposition (Raghunath and Zeugolis, 2021; Tsiapalis and
Zeugolis, 2021; Zeugolis, 2021), a phenomenon that has been
well documented in both differentiated (Lareu et al., 2007;
Satyam et al., 2014; Kumar et al., 2015a; Kumar et al., 2015b;
Satyam et al., 2016; Kumar et al., 2018; Gaspar et al., 2019;
Shendi et al., 2019; Tsiapalis et al., 2021) and progenitor cell
cultures (Zeiger et al., 2012; Prewitz et al., 2015; Cigognini et al.,

2016; Lee et al., 2016; Patrikoski et al., 2017; Graceffa and Zeugolis,
2019; De Pieri et al., 2020). However, to-date, only one study has
assessed the influence of MMC in xeno-free and/or serum-free
media formulations using human adipose-derived mesenchymal
stromal cells (Patrikoski et al., 2017).

Considering the above, herein we ventured to investigate the
influence of MMC in FBS, XF and ACF media on human bone
marrow mesenchymal stromal cell (hBMSC) expansion and
differentiation. Cells from two donors were isolated in ACF
media and expanded from passage 0 (p0) to passage 4 (p4) in
FBS, XF and ACF media, in the absence and presence of MMC. At
p4, phenotype, viability, metabolic activity, proliferation, collagen
deposition and trilineage differentiation analyses were assessed
(Figure 1 graphically illustrates the study design).

2 Materials and methods

2.1 Materials

Ficoll™ (Fc) 70 kDa and 400 kDa were purchased from Sigma
Aldrich (Ireland). Polysucrose 1,000 kDa (Fc 1,000 kDa) was
purchased from TdB Consultancy AB (Sweden). MesenCult™
ACF Plus Media and supplements were purchased from
STEMCELL Technologies (United Kingdom). MSC NutriStem®
XF Medium (Biological Industries) was purchased from Geneflow
Ltd. (United Kingdom). Tissue culture consumables were purchased
from Sarstedt (Ireland) and NUNC (Denmark). All other chemicals,
cell culture media and reagents were purchased from Sigma Aldrich
(Ireland), unless otherwise stated.

2.2 Isolation and expansion of hBMSCs

Fresh human whole bone marrow from the iliac crest of two
different donors (donor 1: female, 22 years old; donor 2: male,
25 years old) was purchased from AllCells® (United States) and
hBMSCs were isolated using the MesenCult™-ACF Plus medium,
according to the manufacturer’s protocol. In order to provide a
complete ACF culture system, the MesenCult™-ACF Plus medium
was used in conjunction with ACF Cell Attachment Substrate
(STEMCELL Technologies, United Kingdom) and ACF Cell
Dissociation Kit (STEMCELL Technologies, United Kingdom).
hBMSCs were isolated using density gradient medium separation
(Lymphoprep™, STEMCELL Technologies, United Kingdom).
Briefly, phosphate buffered saline (PBS) containing 2 mM
ethylenediaminetetraacetic acid (EDTA) and Lymphoprep™ were
added to the bone marrow sample. After centrifugation at 300 g for
30 min, the mononuclear cell layer was collected at the plasma/
Lymphoprep™ interface and washed with cold PBS containing
2 mM EDTA. After another centrifugation step at 300 x g for
10 min, the supernatant was discarded, and the cell pellet
resuspended in complete MesenCult™-ACF Plus medium.
Nucleated cells were counted using 3% acetic acid with
methylene blue (STEMCELL Technologies, United Kingdom) and
seeded into pre-coated (ACF cell attachment substrate) culture
flasks with complete MesenCult™-ACF Plus medium at a density
of 50,000 freshly isolated cells/cm2. Flasks were incubated at 37°C

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Korntner et al. 10.3389/fbioe.2023.1136827

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1136827


until cells reached a confluency of approximately 80%. A half-
medium change was performed on day 7. Cells up to this stage
were considered to be at p0.

From p1 onwards, hBMSCs were subjected to MMC
treatment. For MMC conditions, a Fc cocktail, composed of
10 mg/mL Fc 70 kDa, 25 mg/mL Fc 400 kDa and 2.25 mg/mL
Fc 1,000 kDa [Fc cocktail was previously optimised for maximum
excluded volume effect (Gaspar et al., 2019)] was used, dissolved
in the respective media. Cells were expanded in MesenCult™-
ACF Plus Medium, STEMCELL Technologies, United Kingdom
(referred to from now on as ACF) or MSC NutriStem® XF
Medium, Biological Industries, United Kingdom (referred to
from now on as XF) without and with MMC, according to the
manufacturer’s protocols. 1% penicillin/streptomycin (P/S) was
added to both ACF and XF media formulations. For a serum-
containing control, cells were expanded in alpha-Minimum
Essential Medium (α-MEM) with GlutaMAX (Gibco Life
Technologies, Ireland) supplemented with 10% FBS, Life
Technologies, Ireland (referred to from now on as FBS), 1%
(P/S), 1 ng/mL of basic fibroblast growth factor/fibroblast growth
factor 2 and without and with MMC. FBS, XF and ACF media
were supplemented with 100 μM L-ascorbic acid 2-phosphate
sesquimagnesium salt hydrate, to induce collagen synthesis. Cells
in each media (Supplementary Table S1) were expanded at 37°C
in a humidified atmosphere of 5% CO2 until p4. hBMSCs
expanded with the ACF medium, XF medium and FBS
medium were detached using the ACF Cell Dissociation Kit
(STEMCELL Technologies, United Kingdom), the TrypLE
Select (Life Technologies) and trypsin-EDTA (Life
Technologies), respectively.

2.3 Flow cytometry analysis

Flow cytometry (BD FACSCanto™ II, BD Biosciences, Belgium
and BD Stemflow™, United Kingdom) was used to determine the
immunophenotype of hBMSCs at p0 and to assess the effect of
different expansion media and MMC on immunophenotype of
BMSCs at p4 after 10 days of culture. The monoclonal antibodies
against cluster of differentiation (CD) CD105, CD73, CD90, CD44,
CD45, CD31 and CD146 and their respective isotype controls are
provided in Supplementary Table S2. Briefly, cells were detached
using respective detachment solutions, centrifuged and resuspended
in 2% FBS in PBS. After straining using a 40 μm cell strainer, cells
were counted and diluted to a concentration of 1,000,000 cells/mL in
2% FBS in PBS. Subsequently, ~100,000 cells were placed in each
tube and stained with the appropriate volume of fluorochrome-
labelled antibodies for 30 min at 4°C. Cells were washed with PBS
and resuspended in 2% FBS in PBS. Analysis was performed on
100,000 cells per sample and unstained cell samples were used to
correct for background autofluorescence. SYTOX™ Blue Dead Cell
Stain (Invitrogen, United Kingdom) was used to label and exclude
dead cells. Single stained samples were used to determine the level of
spectral overlap between different fluorophores and for
compensation. Fluorescence minus one (FMO) controls were
used to determine gating boundaries. Isotype control antibodies
were used to assess the level of background staining and non-specific
binding. Cells were analysed using a BD FACSCanto™ II cytometer
(BD Biosciences, United Kingdom) and Median Fluorescence
Intensity of hBMSCs was calculated using FlowJo® software v10
(TreeStar Inc., United States). The gating strategy was as follows: a
primary gate was placed on the area vs height signal of the forward

FIGURE 1
Study design. Created with BioRender.com.
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scatter (FSC-A/FSC-H) dot plot to discriminate for doublets and cell
aggregates. The single cell population was identified by defining the
gated population on a side scatter area signal vs a forward scatter
area (SSC-A/FSC-A) signal dot plot. Single parameter histograms
were generated, overlayed with respective isotype controls, and
range gates were used to determine the percentage of cells
expressing the individual surface markers.

2.4 Phase contrast microscopy analysis

To assess morphological changes of hBMSCs during cell
expansion and during trilineage differentiation, cells were
observed using an inverted brightfield microscope (Leica
Microsystem, Germany). Phase contrast images were captured at
different passages and during trilineage differentiation and were
processed using ImageJ software (NIH, United States).

2.5 Cell viability analysis

At p4 cells were seeded at a density 25,000 cells/cm2, and a Live/
Dead assay, with calcein AM (ThermoFisher Scientific,
United Kingdom) and ethidium homodimer I (ThermoFisher
Scientific, United Kingdom) stainings, was performed at day
4 and day 10 of culture, as per manufacturer’s protocol. In live
cells, non-fluorescent calcein-AM is converted to green fluorescent
calcein after acetoxymethyl ester hydrolysis by intracellular
esterases. Ethidium homodimer I can penetrate the disrupted cell
membranes of dead or dying cells and binds to DNA, producing a
red fluorescence. Briefly, at each time point, cells were washed with
Hank’s Balanced Salt Solution (HBSS) and a solution of calcein AM
(4 μM) and ethidium homodimer I (2 μM) was added. After 30 min
incubation at 37°C in a humidified atmosphere of 5% CO2,
fluorescence images were obtained with an Olympus IX-81
inverted fluorescence microscope (Olympus Corporation, Japan).
For each condition dimethyl sulfoxide treated cells were used as
negative control.

2.6 DNA concentration analysis

At p4, cells were seeded at a density of 25,000 cells/cm2, and a
Quant-iT™ PicoGreen® dsDNA (ThermoFisher Scientific,
United Kingdom) assay was performed to quantify the amount
of dsDNA present in the respective samples at day 4 and day 10 of
culture, as per manufacturer’s protocol. Briefly, 250 μl of nucleic
acid-free water was added to each well (24-well plate), the well plate
was frozen at −80°C and three freeze-thaw cycles were performed to
lyse the cells and extract the DNA. 100 μl of each DNA sample were
transferred into a 96-well plate. A standard curve was generated with
0, 200, 375, 500, 1,000 and 2,000 ng/mL DNA concentrations. 100 μl
of PicoGreen® reagent at 1:200 dilution in 1X Tris-EDTA buffer was
added to all standards and samples. Fluorescence values (excitation:
480 nm, emission: 520 nm) were obtained with a Varioskan Flash
Spectral scanning multimode reader (ThermoFisher Scientific,
United Kingdom). The DNA concentration was defined as a
function of the standard curve and compared at day 4 and day 10.

2.7 Cell metabolic activity analysis

At p4, cells were seeded at a density of 25,000 cells/cm2 and the
alamarBlue® (Invitrogen, United Kingdom) assay was carried out at
day 4 and day 10 of culture, according to the manufacturer’s
protocol. Briefly, samples were washed with HBSS and left to
incubate in HBSS containing 10% alamarBlue® for 3 h at 37°C in
a humidified atmosphere of 5% CO2. After incubation, 100 μl of the
alamarBlue® solution were transferred into a 96-well plate.
Absorbance readings were measured at 550 nm excitation and
595 nm emission with a Varioskan Flash Spectral scanning
multimode reader (ThermoFisher Scientific, United Kingdom).
Metabolic activity was expressed in terms of % of reduced
alamarBlue™ dye normalised to the DNA quantity (ng/mL)
obtained from the Quant-iT™ PicoGreen® dsDNA assay. Each
value was normalised to the value of α-MEM -MMC group.

2.8 Electrophoresis analysis

To assess collagen type I deposition sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) was performed at
p4, at a seeding density of 25,000 cells/cm2, at day 4 and at day 10 of
culture, as has been described previously (Capella-Monsonis et al.,
2018). Briefly, at each time point media were aspired and cell layers
were washed with HBSS. Subsequently, cell layers were digested with
porcine gastric mucosa pepsin at a final concentration of 0.1 mg/mL
in 0.05 M acetic acid (Fischer Scientific, Ireland) and incubated for
2 h at 37°C with gentle shaking. After digestion, cell layers were
scraped and neutralised with 0.1 N sodium hydroxide. For
electrophoresis, sample buffer (SDS, 1.25 M Tris HCl, glycerol,
bromophenol blue) was added to the samples. Cell layers were
analysed by SDS-PAGE under non-reducing conditions with a
Mini-Protean® three electrophoresis system (Bio-Rad
Laboratories, United Kingdom). Bovine collagen type I (125 μg/
mL, Symatese Biomateriaux, France) was used as control on every
gel. Protein bands were stained with the SilverQuest™ kit
(Invitrogen) according to the manufacturer’s protocol. The gels
were imaged with a HP PrecisionScan Pro scanner (HP,
United Kingdom). Densitometric analysis of the α1 and α2 bands
was performed with ImageJ software (NIH).

2.9 Immunocytochemistry analysis

At p4, cells were seeded in 48-well plates (Sarstedt, Ireland) at a
density of 25,000 cells/cm2. At each time point cells were washed
with PBS and fixed in 4% paraformaldehyde for 15 min at room
temperature. Cells were washed with PBS and then non-specific sites
were blocked with 3% bovine serum albumin for 30 min.
Afterwards, cells were incubated overnight at 4°C with primary
antibodies against collagen type I (Supplementary Table S2). Cells
washed 3 times with PBS and incubated for 45 min at room
temperature with the secondary antibody (Supplementary Table
S2). Nuclei were counterstained with Hoechst 33342 Fluorescent
Stain (ThermoFisher Scientific, United Kingdom). Images were
acquired using an Olympus IX-81 inverted fluorescence
microscope (Olympus Corporation, Japan) and relative
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fluorescence intensity was analysed with ImageJ software (NIH,
United States).

2.10 Trilineage differentiation analysis

For all differentiation experiments (Supplementary Table S3
provides the groups), cells at p4 were subjected to MesenCult™
Adipogenic Differentiation Kit (STEMCELL Technologies,
United Kingdom), MesenCult™ Osteogenic Differentiation Kit
(STEMCELL Technologies, United Kingdom) and MesenCult™-
ACF Chondrogenic Differentiation Kit (STEMCELL Technologies,
United Kingdom), according to the manufacturer’s protocols. For
adipogenic and osteogenic differentiation cells were seeded in 48-
well plates at an initial density of 25,000 cells/cm2, differentiation
was commenced when cells were approximately 90%–98%
confluent, and media was changed every 3 days. For
chondrogenic differentiation a 3D pellet culture system was used
with 500,000 cells/pellet. For MMC conditions, the same as during
stem cell expansion Fc cocktail was used.

2.10.1 Adipogenic differentiation, oil red O staining
and quantification of uptake

After 14 days of adipogenic differentiation, phase contrast
images were captured using an inverted brightfield microscope
(Leica Microsystem, Germany). Cells were then fixed for 20 min
with 4% paraformaldehyde, stained for 15 min with oil red O
solution (oil red O 0.5% in isopropanol, diluted 3:2 in deionised
water) at room temperature and images were acquired using an
inverted microscope (Leica Microsystems, Germany). For semi-
quantitative analysis of oil red O staining, the dye was extracted
with 100% isopropanol, the solution was centrifuged at 500 g for
2 min, and absorbance was measured at 520 nm using a Varioskan
Flash plate reader (ThermoFisher Scientific).

2.10.2 Osteogenic differentiation, alizarin red
staining and quantification of uptake

After 14 days of osteogenic differentiation, phase contrast
images were captured using an inverted brightfield microscope
(Leica Microsystem, Germany). Cells were then fixed with ice-
cold methanol for 20 min, stained with 2% alizarin red solution
in deionised water for 15 min and washed three times with deionised
water. Brightfield images were acquired using an inverted
microscope (Leica Microsystems, Germany). Semi-quantitative
analysis of alizarin red staining was performed by dissolving the
bound stain with 10% acetic acid. Samples were collected using a cell
scraper and heated to 85°C for 10 min. Subsequently, 10% solution
of ammonium hydroxide was used to adjust the pH to 4.5, and
absorbance at 405 nm was read using a micro-plate reader
(Varioskan Flash, ThermoFisher Scientific, Ireland).

2.10.3 Chondrogenic differentiation and Alcian
Blue staining

For pellet culture, cells were directly resuspended in
chondrogenic differentiation medium, 0.5 mL of the cell
suspension was added to each 15 mL polypropylene tube and
centrifuged at 300 g for 10 min. Cells were incubated at 37°C in a
humidified atmosphere of 5% CO₂. On day 3, 0.5 mL chondrogenic

media was added to reach a final volume of 1 mL and subsequently
media was changed every 3 days. After 21 days of differentiation,
pellets were fixed with 4% paraformaldehyde, cryoprotected with
15% and 30% solutions of sucrose in one x PBS (w/vol), cryo-
embedded and cryo-sectioned (5 μm) with a Leica Cryostat (Leica
Biosystems, Germany). To assess the presence of proteoglycans
sections were stained with Alcian Blue 8GX solution (Sigma-
Aldrich 66011) for 30 min at room temperature and
counterstained with Nuclear fast red (Nuclear fast
red–aluminium sulphate solution 0.1%, Merck Millipore,
1001210500) for 1 min at room temperature. Slides were
dehydrated in 100% ethanol, xylene and mounted. Brightfield
images were acquired using an inverted microscope (Leica
Microsystems, Germany).

2.11 Statistical analysis

For both donors (N = 2 biological replicates), all experiments
were conducted in three technical replicates (n = 3). Due to
limitations in cell numbers, flow cytometry assays were
performed one time (n = 1 technical replicate) for each donor
(N = 2). Data were processed using MINITAB® version 17 (Minitab
Inc., United States) and reported as mean ± standard deviation.
One-way analysis of variance (ANOVA) was used for multiple
comparisons and Tukey’s post hoc test was used for pairwise
comparisons when the group distributions were normal
(Anderson-Darling normality test) and the variances of
populations were equal (Bonett’s test and Levene’s test). When
either or both assumptions were violated, non-parametric
analysis was conducted using Kruskal–Wallis test for multiple
comparisons and Mann-Whitney test for pairwise comparisons.
Results were considered statistically significant for p < 0.05.

3 Results

3.1 Cell immunophenotype

Flow cytometry analysis at p0 (Supplementary Figures S1-S2;
Supplementary Tables S4-S5) revealed that hBMSCs of both donors
that were isolated in ACF, were positive for CD90, CD73, CD44,
CD105 and CD146 and negative for the haematopoietic markers
CD31 and CD45. However, cells of donor two exhibited an elevated
population of CD45+ cells at p0.

Flow cytometry analysis at p4 (Supplementary Figures S3-S4;
Supplementary Tables S4-S5) revealed that hBMSCs of both donors
continued to express CD90, CD44, CD73 and CD105 at high levels
in most culture conditions. Reduced levels of CD105 were detected
for donor one in FBS -MMC, XF -MMC and ACF + MMC, and for
donor two in FBS -MMC, FBS + MMC, ACF -MMC and ACF +
MMC. The addition of MMC retained high CD105 values in both
FBS and XF groups. In contrast, ACF + MMC showed lower
CD105 values compared to ACF-MMC. While cells of both
donors showed relatively high CD146 expression in p0 (> 70%
for donor 1, >50% for donor 2), CD146 dramatically decreased in
donor one cells in FBS -MMC (>10%), and in donor two cells in
FBS–MMC, FBS + MMC (>15%). With respect to negative markers
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at p4, only donor one cells in XF + MMC and ACF -MMC, and
donor two cells in XF -MMC and XF + MMC increased
CD31 expression over 40%. While donor one cells did not
upregulate CD45 at p4 (> 5%), donor two cells increased
CD45 expression in most culture conditions over 40% (except
ACF -MMC).

3.2 Cell morphology analysis

For both donors, qualitative cell morphology analysis
(Supplementary Figure S5A-B) revealed that cell morphology was
not affected as a function of ACF and XF media formulations and
MMC supplementation, whilst cells expanded with serum-
containing media adopted a slightly rounder, cuboidal shape at p4.

3.3 Cell viability analysis

For cells isolated from both donors, no significant differences
were observed in cell viability (Supplementary Figure S6A-D) as a
function of media formulation and MMC supplementation.
Percentages of live cells were ≥90% for all experimental
conditions and for cells of both donors.

3.4 DNA concentration analysis

DNA concentration analysis revealed that cells from the two
donors exhibited different proliferation behaviours in the various
media (Supplementary Figure S7A-B). For donor 1 (Supplementary
Figure S7A), no statistically significant differences were evident
between groups after 4 days of culture. At day 10, serum-
containing conditions showed significantly lower (p < 0.05) DNA
concentration when compared to all XF- and ACF conditions,
regardless of MMC.

DNA concentration analysis for donor 2 (Supplementary Figure
S7B) revealed that the FBS + MMC induced significantly (p < 0.05)
highest DNA concentration among all groups at day 4At day 10,
DNA concentration in XF -MMC, XF +MMC, and ACF -MMCwas
significantly (p < 0.05) higher than DNA concentration in all other
conditions. Overall, serum-containing conditions showed lower
proliferation rates than XF and ACF conditions.

3.5 Cell metabolic activity analysis

Cell metabolic activity analysis revealed that cells from the two
donors exhibited different metabolic activity in the various media
(Supplementary Figure S7C-D). For donor 1 (Supplementary Figure
S7C), cell metabolic activity analysis at day 4 revealed that the FBS +
MMC and XF + MMC induced significantly (p < 0.05) higher
metabolic activity than the XF -MMC, ACF -MMC and ACF +
MMC. At day 10, cell metabolic activity in FBS was significantly (p <
0.001) higher than cell metabolic activity in ACF and XF.

For donor 2 (Supplementary Figure S7D), cell metabolic activity
in FBS -MMC, was significantly (p < 0.05) higher than cell metabolic
activity in all other conditions at day 4. At day 10, cell metabolic

activity in FBS -MMC was significantly higher than cell metabolic
activity in all other conditions (p < 0.05). Overall, a decrease in
metabolic activity from day 4 to day 10 was observed for cells from
both donors in all culture conditions.

3.6 Electrophoresis analysis

SDS-PAGE and corresponding densitometric analysis (Figures
2A–D) revealed similar collagen deposition profiles for cells from
both donors.

For both donors at day 4, no significant (p > 0.05) differences in
collagen deposition was observed among all conditions. For both
donors at day 10, FBS -MMC showed significantly lower (p < 0.05)
collagen deposition compared to all other groups, regardless of
MMC. In all ACF and XF conditions, the presence of MMC did
not significantly (p > 0.05) affect collagen deposition. No protein
bands were detected in silver-stained SDS-PAGE when attachment
solutions only were analysed (Supplementary Figure S11A). In
summary, MMC increased collagen type I deposition in FBS
(both donors) and in XF (donor 2) media at day 10, and XF and
ACF conditions induced overall higher collagen deposition in donor
two cells compared to donor one cells on day 10.

3.7 Immunocytochemistry analysis

Immunocytochemistry (ICC) for collagen type I
(Supplementary Figure S8A–C) and complementary relative
fluorescence intensity analysis (Supplementary Figure S8B–D)
show similar collagen type I deposition profiles for cells of both
donors. While MMC did not significantly (p > 0.05) increase
collagen type I deposition in all ACF and XF conditions for
donor 1 (Supplementary Figure S8A-B), MMC significantly (p <
0.05) increased collagen type I deposition in FBS at day 4 and day 10.
Overall, collagen type I deposition did not significantly (p > 0.05)
increase between day 4 and day 10 in none of the groups.

For donor 2 (Supplementary Figure S8C-D), the ACF with
MMC at day 4 resulted in the highest (p < 0.05) collagen type I
deposition across all groups and time points. At day 10, collagen type
I deposition was significantly (p < 0.05) lowest in FBS -MMC. ICC
for collagen type I and fibronectin of attachment solutions only did
not show any positive staining (Supplementary Figure S11B). In
summary, XF and ACF conditions induced overall higher collagen
type I deposition in donor two cells compared to donor one cells on
day 10.

3.8 Trilineage differentiation analysis

Phase contrast images (Supplementary Figure S9A-B) and Oil
Red O staining and corresponding absorbance analysis (Figures
3A–D) of hBMSCs expanded without (−) or with (+) MMC in the
respective expansion media and differentiated with adipogenic
induction media without (−) or with (+) MMC at p4 revealed
differences with respect to donor, media, and MMC. For donor 1
(Figure 3A), FBS condition showed higher lipid droplet
accumulation compared to ACF and XF conditions when
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FIGURE 2
SDS-PAGE and corresponding densitometric analysis of hBMSCs of donor 1 (A, B) and 2 (C, D) at p4 after 4 and 10 days of culture, expanded with or
without MMC in ACF, XF and FBS containing media. Experiments for cells of each donor were performed in three technical replicates. # indicates the
lowest statistically significant value (p < 0.05) at a given time point.

FIGURE 3
Oil Red O staining and corresponding semi-quantitative absorbance analysis of hBMSCs of donor 1 (A, B) and 2 (C, D), expanded with or without
MMC in ACF, XF and FBS containingmedia, and differentiated with adipogenic inductionmedia with or without MMC supplementation at p4. Experiments
were performed in three technical replicates. # indicates the lowest statistically significant value (p < 0.05) at a given time point. * indicates the highest
statistically significant value (p < 0.05) at a given time point. Scale bars: 100 μm.
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analysed qualitatively, regardless of whether MMC was used during
expansion or differentiation. However, these differences were not
statistically significant (p > 0.05) (Figure 3B). No lipid droplet
accumulation was detected in XF +/+ conditions. For donor 2
(Figures 3C,D), FBS conditions induced significantly (p < 0.05)
higher lipid droplet accumulation compared to ACF and XF
conditions, regardless of whether MMC was used during
expansion or differentiation. Qualitatively (Figure 3C), FBS +/+
induced higher lipid deposition than FBS expanded without MMC,
regardless of the presence of MMC in the differentiation media
(FBS −/−, FBS −/+). Overall, cells of both donors expanded in FBS
conditions showed higher adipogenic differentiation potential than
all ACF and XF groups.

Phase contrast images (Supplementary Figure S10A-B) and
alizarin red staining and corresponding absorbance analysis
(Figures 4A–D) of hBMSCs expanded without (−) or with (+)
MMC in the respective expansion media and differentiated with
osteogenic induction media without (−) or with (+) MMC in
p4 revealed differences with respect to donor, media, and MMC.
For both donors (Figures 4A–D), no calcium deposition was
detected in FBS groups, regardless of whether MMC was used
during expansion or differentiation. For donor 1 (Figures 4A,B),
no calcium deposition was detected in XF groups, regardless of
whether MMC was used during expansion or differentiation.
Calcium deposition was detected in all ACF groups; the ACF −/+
group induced significantly (p < 0.05) higher calcium deposition
than the ACF +/+ and ACF −/− groups. For donor 2 (Figures 4C,D),
no calcium deposition was detected when hBMSCs were expanded
in XF without MMC, independently on whether MMC was used
during differentiation. When hBMSCs were expanded in XF with
MMC, the XF +/+ induced significantly (p < 0.05) higher calcium
deposition than the XF +/−. ACF groups showed calcium deposition

only when hBMSCs were expanded without MMC and the ACF −/−
induced significantly (p < 0.05) higher calcium deposition than
ACF −/+ and all other ACF, XF and FBS conditions. Overall, cells of
both donors showed high osteogenic potential when expanded in
ACF -MMC conditions.

Qualitative analysis of Alcian blue staining (Figures 5A,B) of
hBMSCs expanded without (−) or with (+) MMC in the respective
expansion media and differentiated with chondrogenic induction
media without (−) or with (+) MMC in p4 for donor one revealed a
proteoglycan-rich ECM in all FBS conditions, regardless of whether
MMCwas used during expansion or differentiation (Figure 5A). For
ACF and XF conditions, only the XF ± and XF +/+ groups resulted
in proteoglycan-rich ECM. For the ACF groups, proteoglycan-rich
ECM was detected for ACF −/− and little to no chondrogenic
differentiation was detected for ACF −/+. When hBMSCs were
expanded in ACF with MMC, a proteoglycan-rich ECM was
detected independently on whether MMC was used during
differentiation.

For donor 2, qualitative analysis of Alcian blue staining
(Figure 5B) revealed a proteoglycan-rich ECM for all conditions,
except for FBS −/+, FBS +/+ and XF −/+. Overall, donor two
chondrogenic pellets showed a relatively lower proteoglycan
content when compared to donor one groups. Overall, donor one
cells expanded with MMC showed a higher proteoglycan deposition
and chondrocyte-like cells with lacunae-formation across all groups
compared to donor two cells.

4 Discussion

Animal-derived cell culture media and absence of native ECM
are associated with hBMSC phenotypic drift and loss of their

FIGURE 4
Alizarin red staining and corresponding semi-quantitative absorbance analysis of hBMSCs of donor 1 (A, B) and 2 (C, D), expanded with or without
MMC in ACF, XF and FBS containingmedia, and differentiated with osteogenic inductionmedia with or without MMC supplementation at p4. Experiments
were performed in three technical replicates. # indicates the lowest statistically significant value (p < 0.05) at a given time point. * indicates the highest
statistically significant value (p < 0.05) at a given time point. Scale bars: 100 μm.
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therapeutic potential. To alleviate these issues in the developmental
cycle of stem cell-based medicines, the use of either ACF or XF
media formulations and MMC have been proposed. Interestingly,
their combined effect has only been assessed once in human
adipose-derived mesenchymal stromal cell cultures (Patrikoski
et al., 2017). Herein, we ventured to assess whether ACF or XF
media formulations supplemented with MMC (either/or during
expansion and either/or during differentiation) can more
effectively control hBMSCs fate than FBS-based media
formulations supplemented with MMC (either/or during
expansion and either/or during differentiation). To induce
artificial polydispersity for maximum excluded volume effect, and
consequently increased ECM deposition by cells, we used a
previously optimised (Gaspar et al., 2019) MMC cocktail with
different molecular weights of the same crowder (Ficoll®).

4.1 Surface marker analysis

While hBMSCs of both donors exhibited a surface marker
profile according to the International Society for Cellular
Therapy criteria (Dominici et al., 2006) at p0, donor two cells
showed elevated levels of the haematopoietic marker CD45. It
was previously reported that freshly isolated hBMSCs expressed
CD45, while in cultured MSCs and cells at later passages CD45 was
downregulated. These cells were capable to differentiate into
osteochondroblastic cells, adipocytes and stromacytes. These
results are in agreement with our results for donor two hBMSCs
expanded with ACF -MMC. Even though cells mildly expressed
CD45 at p0, the hematopoietic marker was almost absent at p4 when
kept in ACF media without MMC during expansion (Deschaseaux
et al., 2003). At p4, a decrease in CD105 and CD146 and an increase
in CD31 and CD45 levels was observed at p4 in some conditions. It is
worth noting that one study has shown the expression of CD146 in
hBMSCs to decrease with increasing passage number (from 95.1% in
p3 to 49.7% in p8) (Yang et al., 2018b), whilst other studies have
shown the expression of CD105 to increase in hADSCs in higher
[e.g., p3 (Yoshimura et al., 2006), p4 (Varma et al., 2007)] passages.
The different expression patterns for CD105 and CD146 could
therefore be influenced by donor, culture media and MMC.
However, it needs to be noted that hADSCs have a different

surface marker profile than hBMSCs. CD31 increased to highest
values in donor two cells expanded in XF media, regardless of the
presence of MMC. While CD45 remained low in all donor one
conditions, for donor 2, it remained low only for ACF -MMC and
increased to highest values in both XF media conditions. These
results clearly suggest donor variability and effects of culture media
on stem cell phenotype. It is also worth noting that a study has
shown high expression of CD45 in freshly isolated and commercially
available hBMSCs from different donors throughout the expansion
period (Okolicsanyi et al., 2015). Furthermore, increased expression
levels of CD31 and CD45 in later passage adipose-derived
mesenchymal stromal cells were associated with presence of
endothelial and haematopoietic cells (Wan Safwani et al., 2011).
All these data indicate that attention should be paid when surface
markers are used to characterise MSCs, as variations in their
expression is well documented in the literature (Mafi et al.,
2011). Among both donors and all conditions assessed herein,
cells expanded in ACF media showed overall high surface
expression of positive MSC markers and relatively low expression
of CD31 and CD45, indicative of phenotype maintenance, despite a
relatively low CD105 expression in donor two cells. Across all media,
donor one cells better maintained their stromal phenotype
compared to donor two cells. This is in accordance with previous
publications with hBMSCs (Russell et al., 2010; Siegel et al., 2013)
and can be attributed to donor variability. To be consistent with
other experiments at p4, immunophenotyping at p4 was performed
after 10 days of culture when cells have had grown to confluency,
which may have affected their surface marker profile.

4.2 Basic cellular function analysis

Cell viability of both donors was not negatively affected by
media conditions. With respect to DNA concentration, the only
clear trend observed among both donors was that in the absence of
MMC, the ACF and XF media formulations induced significantly
higher DNA concentration than their FBS counterparts. This
increased DNA concentration in ACF and XF media
formulations can be attributed to the various additives used to
replace animal sera. For example, a previous study showed that
adipose-derived mesenchymal stromal cells cultured in serum-free

FIGURE 5
Alcian blue staining for sulphated proteoglycans of hBMSCs of donor 1 (A) and 2 (B), expanded with or without MMC in ACF, XF and FBS containing
media, and differentiated in pellet culture with chondrogenic differentiation media with or without MMC supplementation at p4. Experiments were
performed in three technical replicates.
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media had a higher population doubling time compared to adipose-
derived mesenchymal stromal cells cultured with FBS (Lee et al.,
2022). Another study showed that hBMSCs cultured in serum-free
media had higher proliferation rates compared to cells cultured in
serum-containing media (Chase et al., 2010). With respect to
metabolic activity, among both donors, the FBS without MMC
almost across the board induced the highest metabolic activity.
This is in agreement with a previous publication, in which adipose-
derived mesenchymal stromal cells cultured with FBS had
significantly higher metabolic activity compared to cells cultured
in human serum or xeno-free conditions (Patrikoski et al., 2017).
Further, alamarBlue® assay is based on the reduction of resazurin to
resorufin by mitochondrial enzymes, like NADPH dehydrogenase
(O’Brien et al., 2000). It has been demonstrated that culture
expansion with serum leads to a progressive decline of
intracellular NAD + levels and increase in NADH levels, which
together change the redox cycle balance in high passages of hMSCs,
connecting mitochondrial fitness with replicative senescence in
hMSCs (Patrikoski et al., 2017; Yuan et al., 2020). Thus, the
relatively higher metabolic activity of hBMSCs cultured with FBS
could indicate senescence or phenotype loss. No clear trend with
respect to MMC was observed for DNA concentration and
metabolic activity. One should note that Ficoll™ is used
extensively in stem cell purification (Jaatinen and Laine, 2007;
Kawasaki-Oyama et al., 2008; Al Battah et al., 2011; Najar et al.,
2014; Kakabadze et al., 2019) and as MMC agent (Zeiger et al., 2012;
Rashid et al., 2014; Gaspar et al., 2019), and to-date, no negative data
have been reported. Overall, differences in DNA concentration and
metabolic activity between donors could also be a result of the
differences observed in surface marker expression of positive and
negative MSC markers. In addition, contact inhibition may have
affected proliferation rates in confluent cultures on day 10.

4.3 Collagen deposition analysis

SDS-PAGE analysis revealed that MMC increased collagen type
I deposition in FBS (both donors) and in XF (donor 2) media
formulations at day 10, but not at day 4. Ficoll™ cocktails have been
shown repeatedly to enhance and accelerate ECM deposition in both
permanently differentiated (Kumar et al., 2015b) and stem cell
(Cigognini et al., 2016) cultures. Further, Ficoll™ cocktails are
known to require longer periods of time to enhance ECM
deposition than natural [such as carrageenan (Satyam et al.,
2014; Gaspar et al., 2019)] or synthetic [such as dextran sulphate
and polyvinylpyrrolidone (Chen et al., 2009; Rashid et al., 2014)]
macromolecules. It is worth noting that FBS containing media
induced significantly lower collagen synthesis and/or deposition
(as assessed via SDS-PAGE) than the XF and ACF media
formulations. We attribute these observations to the presence of
matrix metalloproteinases that degrade collagen in FBS (Satyam
et al., 2014; Kumar et al., 2015a) and the presence of growth factors
that allow for cell attachment and growth in XF and ACF media
formulations (Chase et al., 2010). Interestingly, the XF with MMC
induced the highest collagen deposition, as judged by SDS-PAGE.
We attribute this to the synergistic effect of the contained growth
factors with MMC. Indeed, MMC combined with growth factor
supplementation resulted in amplified (over cells with growth

factors alone and cells with MMC alone) collagen deposition, as
the growth factors enhanced collagen synthesis and MMC enhanced
collagen deposition (Tsiapalis et al., 2021). Following the same
reasoning, one would have expected the ACF with MMC to
induce higher collagen deposition than the ACF alone, which
was not the case, as judged by SDS-PAGE. For this, we believe
that the concentration of the Ficoll™ cocktail used was not sufficient
to effectively exclude volume and an optimisation study should be
conducted.

The immunofluorescence analysis only for donor one at day
10 validated the SDS-PAGE results with respect to higher ECM
deposition when ACF and XF, as opposed to FBS, were used and
higher ECM deposition whenMMCwas used in FBS cultures. MMC
also effectively increased ECM deposition in ACF at both time
points with donor two cells. The MMC data are in clear
contradiction to previous studies (Gaspar et al., 2019), where
increased ECM deposition has been comprehensively
demonstrated in the presence of Ficoll™. The only logical
explanation is the sensitivity of the assay, as opposed to the
sensitivity of silver-stained gels than can reach 0.05–0.2 ng (Jin
et al., 2004).

4.4 Adipogenic differentiation analysis

Overall, hBMSCs isolated from both donors showed sufficient
potential to differentiate into the adipogenic lineage. Even though
CD31 and CD45 expression was relatively high in donor two cells at
p4, previous studies reported that CD45-positive adipose-derived
mesenchymal stromal cells possessed adipogenic potential in vitro
(Yu et al., 2010). Qualitatively, hBMSCs expanded in serum-
containing media showed higher adipogenic differentiation
compared to ACF/XF conditions, which was further enhanced by
MMC during expansion. An overall low lipid droplet formation in
donor one cells resulted in no statistically significant differences in
Oil red O uptake. Relatively high values in negative controls (no
differentiation media) are due to higher cell proliferation and
entrapment of Oil Red O in the deposited ECM. These results
are in agreement with previous studies, where high serum
concentrations (10%, 20% FBS) enhanced adipogenic
differentiation of MSCs by activation of the MEK/ERK signalling
pathway, ultimately promoting PPARγ expression and
phosphorylation, compared to low serum culture (2% FBS) (Wu
et al., 2010). Further, MMC (Ficoll™) was reported to increase
adipogenic differentiation of hBMSCs by promoting a pro-
adipogenic microenvironment (Levengood and Zhang, 2014); to
facilitate brown adipocyte differentiation through MMC-enhanced
collagen type IV formation in adult hBMSCs (Lee et al., 2016) and to
promote the differentiation of adipocytes (Chen et al., 2023).

4.5 Osteogenic differentiation analysis

As no calcium deposition was detected in FBS conditions for
both donors, independent of MMC, cells possibly committed
towards the adipogenic lineage during expansion, as evidenced by
high adipogenic differentiation capacity. In XF media, only donor
two cells deposited abundant calcium nodules when expanded with
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+MMC. Interestingly, these groups showed the highest expression of
CD31 and CD45. Previous studies reported that CD45-positive
adipose-derived mesenchymal stromal cells possessed osteogenic
potential in vitro (Yu et al., 2010). For donor two cells expanded with
MMC, MMC during differentiation significantly increased calcium
nodule formation. Studies showed carrageenan (Cigognini et al.,
2016; Graceffa and Zeugolis, 2019) and dextran sulphate 500 kDa
(Assunção et al., 2020) enhanced osteogenic differentiation of
BMSCs, in serum-containing culture. Other studies showed
osteogenic potential of a Ficoll™ 70 kDa and Ficoll™ 400 kDa
cocktail (Patrikoski et al., 2017) and sulphated seaweed
polysaccharides (De Pieri et al., 2020) in serum-containing
human adipose-derived mesenchymal stromal cell cultures.
CD146 is considered one of the most appropriate stemness
markers, as it is universally detected in MSCs isolated from
various tissues and associated with higher multipotency (Crisan
et al., 2008; Lv et al., 2014). CD146 was reported to be heterogeneous
on a subset of BMSCs (Bühring et al., 2009). Osteoprogenitor cells
have been reported to be highly positive for CD146 (Sacchetti et al.,
2007) and thus a reduction in CD146 over passages may
compromise their osteogenic potential (Yang et al., 2018b).
Interestingly, cells of both donors expanded with ACF medium
showed sufficient osteogenic potential, except for donor two cells
when MMC was present during differentiation. Cells of both donors
expanded with ACF/XF media showed higher expression of CD146,
compared to FBS, indicating that ACF/XF media supported
multipotency, and therefore possibly higher osteogenic potential.
Differences in osteogenic potential observed in our study can further
be attributed to donor variability and differences in media
formulations. A previous study reported variability in osteogenic
potential of MSCs from 19 different donors, irrespective of age,
gender, and source of isolation, which was attributed to cellular
heterogeneity among donors (Siddappa et al., 2007).

4.6 Chondrogenic differentiation analysis

A lower chondrogenic and osteogenic potential of donor two
cells corroborates with relatively high expression of CD31 and
CD45, indicating phenotype loss. Even though donor one cells
show decreased CD105 expression at p4, previous studies showed
that chondrogenic differentiation potential of BMSCs was not
linked to CD105 levels (Cleary et al., 2016). Across both donors,
MMC during expansion increased proteoglycan-deposition in
hBMSCs. MMC has previously been shown to increase
chondrogenic differentiation in hBMSCs (Cigognini et al.,
2016), and human adipose-derived mesenchymal stromal cells
(De Pieri et al., 2020). CD146+ MSCs have been associated with
enhanced chondrogenesis and greater therapeutic potential for
collagen-induced arthritis (Hagmann et al., 2014; Wu et al., 2016;
Li et al., 2019). Here, higher CD146 expression in donor one
compared to donor two cells is reflected in its chondrogenic
potential. Interestingly, high deposition of sulphated
proteoglycans in MMC groups coincides with higher
expression of CD146 in p4. Both supportive and inhibitory
effects of MMC on human adipose-derived mesenchymal
stromal cell culture have been shown to be culture condition
dependent (Mittal et al., 2015; Patrikoski et al., 2017).

4.7 Limitations and future perspectives

Due to unknown composition of ACF/XF media, some results
could not be fully explained. Possible inhibitory interactions of
Ficoll™ with certain media components cannot be ruled out.
Changing media formulations between cell isolation and
expansion may have affected cell phenotype and differentiation
capacity. To limit the introduction of unknown variables to this
study cells of different experimental groups were isolated using the
same isolation media and protocol and differentiated with the same
differentiation media and protocols. Therefore, the experimental
groups only differed in media and protocols for expansion. Future
studies could use compatible media and protocols for isolation,
expansion, and differentiation derived from the same company, for
each experimental group. An additional positive control group per
donor should be added, in which hBMSCs are isolated and expanded
with FBS-containing media, and trilineage experiments for this
group are performed with established in-house protocols. In
addition, future studies should use a higher number of donors to
account for donor variability, and calculate cumulative population
doubling (cPD) levels instead of passage number to appropriately
track cellular aging across different conditions.

5 Conclusion

Contemporary tissue engineered therapies require development of
clinically relevant cell culture media that enhance and accelerate ECM
deposition to reduce manufacturing costs, whilst maintaining cellular
phenotype and function. In this context, herein we studied the influence
of culture media (FBS, ACF, XF) without/with MMC in hBMSC (from
two different donors) fate. Our data indicate that cell behaviour depends
on donor and media formulation. Investigators should carefully select
culture conditions for cell expansion and differentiation and consider
potential cross-reactions between media supplements (e.g.,
macromolecular crowding molecules) and base media (e.g.,
chemically defined media).
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