
Integration of hydrogels in
microfabrication processes for
bioelectronic medicine: Progress
and outlook

Saloua Saghir, Kristin Imenes and Giuseppe Schiavone*

Department of Microsystems, Faculty of Technology, Natural Sciences and Maritime Sciences, University
of South-Eastern Norway, Horten, Norway

Recent research aiming at the development of electroceuticals for the treatment
of medical conditions such as degenerative diseases, cardiac arrhythmia and
chronic pain, has given rise to microfabricated implanted bioelectronic devices
capable of interacting with host biological tissues in synergistic modalities. Owing
to their multimodal affinity to biological tissues, hydrogels have emerged as
promising interface materials for bioelectronic devices. Here, we review the
state-of-the-art and forefront in the techniques used by research groups for
the integration of hydrogels into the microfabrication processes of bioelectronic
devices, and present the manufacturability challenges to unlock their further
clinical deployment.
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1 Introduction

Since inception of the first-in-human implanted device in the form of an artificial
pacemaker in 1932 (Aquilina, 2006), integrated electronics interfacing directly with
biological tissue have widely grown in interest. Conditions such as bladder dysfunction
(Clausen et al., 2018), chronic pain (Finch et al., 2019), spinal cord injury (Wagner et al.,
2018), neurodegenerative diseases (Khedr et al., 2019) and heart failure (Nguyen et al., 2016;
Jorbendaze et al., 2022) are increasingly treated with medical devices establishing electrical
interactions with the targeted organs or the nervous structures governing their functions.
Bioelectronic medical devices are implanted into the biological host to provide diagnostic
and/or therapeutic capabilities, most commonly in the form of signal recording and electrical
stimulation. Recent research bridging the fields of medicine and micro- and nanotechnology
aims to unlock the fabrication of bioelectronic devices that leverage microfabrication
techniques and their inherent advantages of miniaturization and design flexibility for
personalization (Vomero and Schiavone, 2021). Historically, the first micrometre-sized
bioelectronic devices, embodied as recording neural electrode arrays, spurred from the
advances in semiconductor manufacturing of the 1970s (Scholten and Meng, 2015). Despite
the maturity and reliability of silicon technology, however, the rigidity of the associated
substrate, conductor and insulating materials, quantified by Young’s moduli E in the
100 GPa range, together with planar form factors, introduces a mechanical mismatch to
soft biological tissues (E in the kPa range), hindering seamless device biointegration (Lacour
et al., 2016).
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2 Biointerface matching: Mechanical,
chemical and electrical

Mechanical mismatch results from a combination of material
properties and device geometry. In the case of surface-deployed
devices (membrane-like), their stiffness can be estimated by the
flexural rigidity, which is proportional to the materials’ Young’s
moduli and the cubic power of the thickness. A possible solution
to lower the mechanical mismatch is therefore to reduce the
substrate thickness. This strategy has materialized in ultra-thin
(<10 µm) bioelectronic interfaces using GPa-range polymers
such as SU-8, Polyimide and Parylene-C as substrate material
(Cho et al., 2008; Luan et al., 2017; Vomero et al., 2022). While
effectively lowering the flexural rigidity, ultra-thin form factors
introduce significant challenges in device handling, requiring
complex ad hoc tools to enable surgical manipulation (Luan et al.,
2017; Vomero et al., 2020), and possible limitations to area
coverage (less than few cm2). An alternative strategy to lower
the mechanical mismatch is to use softer materials (E < 1 MPa)
for the structural elements of the devices. For a given flexural
rigidity value, using low modulus materials enables larger
thicknesses and therefore easier handling (Fallegger et al.,
2021). While initial steps in this direction have been explored
in recent years with elastomer-based bioelectronic interfaces (Lee
K. Y. et al., 2020; Renz et al., 2020; Schiavone et al., 2020a),
further advances may be achieved by using even softer materials.
Hydrogels (E < 100 kPa) for instance, can be engineered to
present mechanical, chemical and electrical properties
enabling a more comprehensive matching at the device-tissue
interface.

Hydrogels are defined as cross-linked polymeric networks
capable of absorbing large quantity of water (up to 90% in
weight) without dissolving (Li et al., 2015). Hydrophilic
functional groups (e.g., COOH, NH2, OH) bonded to the
polymer introduce affinity with water. The cross-linking between
the polymer macromolecules provides the resistance to dissolution
and the ability tomaintain a 3D structure in the swollen state (Bashir
et al., 2020). In addition to the mechanical advantages, the nature of
such materials provides affinity towards the chemical properties of
biological tissues (Yuk et al., 2020), characterized by high water-to-
weight ratios of approximately 70% for muscles and skin, 75% for
the heart, 80% for the lungs and 85% for the brain (Yuk et al., 2022).
The immune system recognizes and targets hydrophobic regions of

biomolecules as a universal molecular pattern associated with
damage (Seong and Matzinger, 2004; Roh and Sohn, 2018).
Although non-cytotoxic, the hydrophobic nature of most
bioelectronic implants is thought to trigger proinflammatory
protein responses (Scholten and Meng, 2015; Mariani et al.,
2019), which in turn activate the immune cells responsible for
the scar formation around the implanted device (Franz et al.,
2011). Over long implantation periods, this phenomenon can
lead to the formation of a fibrotic tissue encapsulation around
the device (Prodanov and Delbeke, 2016), compromising its
functionality (Williams, 2008) and potentially damaging both
tissue (Biran et al., 2005) and device (Song et al., 2022). With
their ability to absorb water, hydrogels are intrinsically
hydrophilic. Used at the biological interface, they limit the
adsorption of proinflammatory proteins by inhibiting their
hydrophobic domain to attach to the surface of the device
(Wellman and Kozai, 2017). At the current preclinical state of
research, implants using hydrogels as interface have been shown
to benefit from decreased foreign body reaction (Zhang et al., 2013;
Yan et al., 2019; Gori et al., 2022).

For a bioelectronic interface to electrically interact and relay
information to and from biological tissue, several components
are required, as shown in Figure 1. Biological tissue generates
biopotentials through ionic interactions in the vicinity of a
working electrode, which can use different charge transduction
mechanisms to convert them into a measurable signal (Schiavone
et al., 2021). Electrodes transmit such signals through embedded
conductors to the electronic circuitry (e.g., solid state amplifiers,
logic, power supply) that processes and relays them to the user
instrumentation via cables, connectors and/or telemetry
modules. Similarly for electrical stimulation, pulses of current
are relayed through electronic circuitry to the implanted working
electrode, which injects the charge to the ionic carriers in the
tissue. The performance of bioelectrodes is typically measured by
their electrochemical impedance and charge transduction
properties, that reflect how efficiently the interface mediates
the transmission of signals of different waveform, frequency
and amplitude between the electronic circuitry and the ionic
medium (Schiavone et al., 2020b). Although metals offer high
electrical conductivity, this property per se does not necessarily
guarantee efficient charge transduction (Seyedkhani et al., 2022),
and extensive research has focused on developing optimal
interface materials mediating electronic-ionic signal

FIGURE 1
(A) Top view and (B) Cross section of an implanted bioelectronic device.
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transmission. For instance, it has been demonstrated that metal
electrodes coated with organic conductors can outperform
uncoated controls (Khodagholy et al., 2011; Venkatraman
et al., 2011). Materials offering mixed electronic and ionic
electrical conduction exhibit in particular high charge
transduction properties (Cogan, 2008). Adding to the
mechanical and chemical matching advantages described in
the previous paragraphs, hydrogels can be engineered to
embed mixed-conduction polymers (typified by PEDOT:PSS),
and therefore offer efficient ionic-electronic signal transduction
at the interface with biological tissue (Ido et al., 2012; Kleber
et al., 2017).

3 Classification, engineering and
functionalization of hydrogels

Numerous classifications have been proposed for hydrogels
according to different categories of material properties. Table 1
provides a comprehensive list of the possible classification criteria
found in the literature, accompanied by corresponding examples of
published research.

One of the most desirable features of hydrogels is the ability to
modify and fine-tune their properties to render them adapted to a
broad range of applications. They can be customized to achieve
better affinity with the cellular environment, tailored to mimic the
water content of biological tissue, and synthesized with precise
mechanical properties such as higher elasticity and
conformability. In the following section, we present techniques
that have been used to engineer hydrogel materials to optimize
their function in bioelectronic devices.

3.1 Mechanical properties and porosity

The elastic modulus of hydrogels is proportional to the density of
crosslinks between the polymer chains, the crosslink length and the
molecular weight of the precursor (Li et al., 2018). One of the
properties that limits hydrogel use, particularly in medical
applications, is their brittle nature. Several strategies have been
proposed to overcome this challenge, such as using IPN matrix gels
(Dragan, 2014), loading the hydrogel with nanoparticles (Chen et al.,
2021) or nanofibers such as silk fibroin (Cui et al., 2021), as well as
chitin (Ge et al., 2018; Suo et al., 2018). Plasticizers such as lauric acid,
glycerol, sorbitol and PEG constitute an alternative option to increase
flexibility and tensile strength especially in natural hydrogels without
compromising cell viability (Reis et al., 2006; Snejdrova and Dittrich,
2012; Sun et al., 2018; Tarique et al., 2021).

In biointerfaces, the pore size and distribution within the 3D
hydrogel matrix play an important role in cell growth (Přádný et al.,
2014), with large pores (20–80 µm) enabling cell proliferation and
smaller pores (1 µm) allowing for nutrient and oxygen supply
(Janoušková et al., 2019). For electrochemical electrode interfaces,
porosity increases the electroactive surface area of a working
electrode (Zhu and Zhao, 2017) allowing for more efficient
charge injection or higher quality signal recording (Cogan, 2008).
Porosity can be engineered by lyophilization, a process in which the
hydrogel is quickly frozen to induce a phase separation between the

polymeric network and the solvent. The latter is then removed by
sublimation, leaving cavities in the parts it previously occupied.
Another method is gas foaming, where a foaming agent chemically
reacts with the precursor hydrogel solution to create bubbles (e.g.,
CO2 formed in acidic environment). Electrospinning can also be
used to fabricate fibrous and porous hydrogel scaffolds. The fibres
are created by applying an external voltage to the precursor
polymeric solution, which is then ejected through a spinneret.
Part of the solvent volatilizes and the filaments are collected on a
collector plate (Annabi et al., 2010).

3.2 Electrical conductivity

Electrical conductivity can be mediated either ionically or
electronically. Owing to their ability to absorb biological fluids
where ionic interactions are predominant, hydrogels can
indirectly act as ionic conductors. In this case, the electrical
conductivity of ionic hydrogels (0.1–10 S/m) (Yang and Suo,
2018) remains comparable to that of biological tissue (0.03–1.6 S/
m) (Martinsen et al., 2008). It is possible to further increase ionic
conductivity by doping the hydrogel with salts such as NaCl, LiCl,
FeCl3, KCl or CaCl2, but only to a certain extent, since excessive
concentrations can cause tissue damage (Peng et al., 2020). Another
option is to use conductive polymers such as PPy, PEDOT, PANi.
The aromatic groups in the polymeric chains contain π-conjugations
(alternating single and double covalent bonds) with free electrons,
conferring electronic conductivity (10–3–105 S/cm) (Nezakati et al.,
2018; Gao et al., 2022).

More recently, doping of hydrogels with conductive
nanomaterials has gained interest as a method to achieve higher
conductivity ranges. As notable examples, hydrogels doped with
silver particles have displayed conductivities in the range of
1.36–374 S/cm (Devaki et al., 2014; Ohm et al., 2021), while
doping with graphene or carbon nanotubes has enabled
conductivities of 4 × 10−5–4.2 × 10−3 S/cm (Zhou et al., 2018;
Park et al., 2019) and 0.01–10 S/cm (Cho and Borgens, 2010; Liu
et al., 2014), respectively.

When discussing conductivity in biointerfaces, it is worth
noting that bioelectronic devices require spatially confined
electrically conductive regions in contact with tissue
(i.e., electrode contacts), while the remaining device surface
must be electrically insulated. This ensures that electrical
interfacing is established at precisely defined locations only. As
hydrogels absorb the surrounding ionically conductive fluids, they
cannot be used as insulation for electrodes and conductors, and
careful device design integrating suitable barrier layers is required
to ensure correct functionality.

3.3 Adhesion

When hydrogels are used as interface material between a
bioelectronic device and biological tissue, controlling the
adhesion to both parts is crucial. The abundant functional groups
present on biological tissues such as hydroxyl, carboxylic acid, thiol
and amino groups can be leveraged to anchor the hydrogel via
chemical or physical bonds (Yang et al., 2022). Physical binding
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TABLE 1 Classification of hydrogels according to different categories of material properties.

Classification criteria Subgroup Description Example

Origin of the polymer Natural • Inherent biocompatibility (Kaczmarek et al., 2020) • Protein: Collagen, Gelatin, Silk

• Cell growth promotion, attachment and differentiation • Polysaccharide: Alginate, HA, Chitosan

• Overall better affinity with biological tissues

Synthetic • Stable mechanical properties • Vinyl: PAA, PVA, PHEMA

• Ease to process • Polyester: PCL, PGA

• Wide range of customization • PEG

• Lower affinity for the cellular environment

Hybrid Combination of natural and synthetic polymers to merge cellular affinity with
enhanced mechanical properties

• PVA-Alginate

• PEG-Silk Fibroin

• PHEMA-HA

Composition of the hydrogel
matrix

Homopolymer The hydrogel network is composed of a single monomer species (building block
repeating itself to form the polymeric macromolecule)

• PHEMA

• PVA

• Chitosan

Copolymer Combination of two or more monomeric species where at least one is hydrophilic • PACP-PVA (Tao et al., 2021)

• PBMA-PMAA-PBMA (Zhang et al., 2019)

Multipolymer
or IPN

Entanglement of two distinct polymeric networks. One of the polymer is synthesized
in the immediate presence of the other (Sperling, 2012) (Raina et al., 2020)

• PAA-PEDOT (4) (Fu et al., 2021)

• GelMA-PEDOT (Bansal et al., 2022)

Cross-linking process Chemical Permanent covalent bonds between the polymer chains • Collagen

Physical • Hydrogen bonds • PVA-Chitosan

• Hydrophobic interactions • PVA-Gelatin

• Ionic interactions

• Physical entanglement

Responsiveness to stimuli Chemical • pH • AG-GMA (Reis et al., 2006)

• Glucose • PEG (Zhang et al., 2017)

• Oxidation • Cellulose (Liu et al., 2017)

Biochemical • Antigens • PAA-anti-HBc (Lim et al., 2020)

• Enzymes • PEG-LOx (Tirella et al., 2020)

• Ligands • PEG-PDCA (Ahmadi et al., 2022)

Physical • Temperature • PNH (Zhao et al., 2009)

• Pressure • Agar-PAAN (Wang et al., 2020)

• Light • Dextran- trans azobenzene and
cyclodextrin (Peng et al., 2010)

• Magnetic fields • Gelatin-CNC- Fe2+/Fe3+ (Araújo-Custódio
et al., 2019)

• Electric fields • Alginate- Fe3+ (Ambrožič and Plazl, 2021)

Resorbability Biodegradable Hydrogels that are decomposed by living organisms • Natural hydrogels

• PCL, PEG

Non-
biodegradable

Hydrogels that cannot be decomposed by living organisms • PAA-Cellulose (Loh)

• PVA (Bichara et al., 2010)

Dissolution Chemical process in which the hydrogel solute is dissolved in a solvent • PMEP-DMA (Tee et al., 2020)

• SVA-PEG-SVA (Konieczynska and
Grinstaff, 2017)

Hydrolysis Chemical reaction in which water molecules react with functional groups in the
polymer chain resulting in the dissolution of the hydrogel

• PEG-VS (Zustiak and Leach, 2010)

• PEG-PAMAM (Buwalda et al., 2019)

Charge carrier Ionic • Anionic • HA, pectin, dextran

• Cationic • Chitosan

Zwitterionic Anionic and cationic groups in each repeating structural block • PEG, polysulfobetaine,
polycarboxybetaine, polyectoine

Ampholytic Contains both acidic and basic functional groups to carry on the electrical charges • Collagen, gelatin, chitin, fibrin
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results mainly from electrostatic, Van der Walls and hydrogen
bonds, and is by nature weaker than covalent bonding. To
promote adhesion, hydrogels can be functionalized with chemical
moieties capable of binding to the functional groups naturally
present in tissues. Common chemical reactions to form covalent
bonds to tissue are Michaelson’s addition and Schiff’s base reaction
(Cong and Fu, 2022). Additionally, several nature-inspired
approaches have also been demonstrated. Mimicking mussels’
ability to adhere to surfaces in sea water, polydopamine has been
introduced as a plaster to promote adhesion to wet surfaces
(Chalmers et al., 2020). The catechol, imine and amine groups
present in polydopamine allows adhesion on different surfaces (e.g.,
PDMS, paper, PI, glass, metals) through π-π stacking, hydrogen and
covalent bonding (Ryu et al., 2018). A third option is mechanical
intermeshing, achievable by surface roughness or microstructured
patterns (Fan and Gong, 2021). Notable examples are reversible
adhesion by octopus-inspired microstructures (Lee et al., 2016) and
hexagonal mesh grids of clingfish (Rao et al., 2018).

3.4 Self-healing

In analogy to the resilience of biological tissues, self-healing
hydrogels have been introduced with the ability of restoring their
electrical and mechanical properties after rupture (Lei et al., 2017;
Deng et al., 2018; Robby et al., 2019; Talebian et al., 2019; Ge et al.,
2020; Su et al., 2021). This recovery property originates from
reversible bonds present within the material architecture (Taylor
and in het Panhuis, 2016), and more specifically owing to the
intrinsic ability of chemical molecules to recreate a bond after
rupture. Healing mechanisms have been reported involving both
covalent and non-covalent, ionic or hydrogen, bonds. For example,
hydrogen or ionic bonds can be broken and re-established between,
respectively, two hydroxyl groups (OH-OH), or carboxyl groups
(COOH) and Fe3+ (Devi V. K. et al., 2021). Reversible covalent bond
break and formation has equally been reported between disulfide
(S-S) and imine bonds (C=N) (Talebian et al., 2019).

3.5 Loading with pharmacological agents

In pharmacological applications, hydrogels have been
extensively employed to facilitate the release of concentrated
drugs or chemical molecules over a prolonged period of time
through diffusion, swelling or environmental stimuli. The
problems of systemic toxicity and repeated administration that
conventional drug carriers might cause can be avoided by
hydrogel-mediated release (Narayanaswamy and Torchilin, 2019).
Specifically for implanted bioelectronic devices, hydrogel loading
with drugs to inhibit inflammatory response in the surrounding
tissue has been proposed (Nguyen et al., 2022). Growth factors are
another type of bioactive molecules that can be incorporated into
hydrogel matrices. They are crucial factors in tissue repair and
regeneration, however biostability and yield challenges related to
their rapid degradation before reaching the target are yet to be fully
solved (Tayalia and Mooney, 2009). The use of electrical stimulation
to facilitate the release of growth factor molecules (e.g.,
neurotrophins, myostatin, thrombopoietin) embedded in

conductive hydrogel carriers in a controlled manner has shown
great potential for cell adhesion, proliferation and differentiation
(Liu et al., 2021; Cheah et al., 2023). The porous structure of
conductive hydrogels offers an additional advantage compared to
the polymer counterparts, as larger amounts of bioactive molecules
can be stored within the matrix and released for a prolonged period
of time (Caballero Aguilar et al., 2019).

3.6 Degradability

Degradability is an essential parameter for implantable
devices. Depending on the therapeutic timeframes, strategies
towards long- or short-term degradation can be employed.
Degradability can be tailored by using intrinsically
biodegradable material (e.g., HA, collagen) or by integrating
molecules or degradable polymeric segments into the hydrogel
matrix. Functional groups such as esters, anhydrides and thioesters
are subject to hydrolysis. Incorporated to the polymeric chains,
they can react with water and/or enzymes, leading to the
dissolution of the hydrogel (Ozcelik, 2016). Copolymeric
hydrogels containing alternatively synthetic polymeric
sequences and peptide or protein units are commonly used to
fabricate biodegradable composites (Kopeček and Yang, 2007;
Patterson et al., 2010). The use of low crosslinking degree and
low molecular weight crosslinkers is another way to promote
degradation (Kong et al., 2004). In cases where degradation is
unwanted, non-toxic synthetic hydrogels such as PEG and
PHEMA are viable options. However, it has been demonstrated
that PEG can trigger foreign body response and although non-
biodegradable it can be damaged by acids, reactive oxygen
intermediates, enzymes, etc., discharged by macrophages and
foreign body giant cells (Browning et al., 2014). Zwitterionic
hydrogels have recently been introduced as an excellent
antifouling and non-degradable material. Owing to their
superhydrophilicity, their stability in vivo has for instance been
proven for up to 1 year in mice (Dong et al., 2021).

3.7 Other uses

Finally, beyond microfabricated bioelectronic interfaces per se,
hydrogels have found employment as structural materials in related
applications. Saeki et al. (2020) have reported on the use of alginate
as sacrificial matrix to fabricate protein-based microfibers (Li S.
et al., 2020). Another scope of particular interest is the fabrication of
scaffolds for artificial organs, enabling biomimetic replicas of
biological structures for in vitro testing prior to implantation,
contributing to a reduction in the use of animals for
experimentation (Tringides et al., 2021).

In sum, extensive research has been published to date on the
synthesis, functionalization and characterization of hydrogels. However,
the integration of this class of materials into manufacturing processes
for complete microfabricated devices remains today at a seminal stage.
The following section introduces the methods that have been used by
researchers to integrate hydrogels into the process flow for
microfabricated bioelectronic devices, and presents an understanding
of the status of the technology as well as future challenges.
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4 Integration of hydrogels in
microfabricated bioelectronic devices

We classify microfabricated bioelectronic devices with
integrated hydrogel layers into two different categories: devices
using hydrogels as encapsulation only, to form the chemo-
mechanical interface with biological tissue; and devices using
hydrogels as elements performing engineered functions
(electrical, drug release, etc.). This classification based on device
architecture is matched by a corresponding classification of the
associated manufacturing methods. Typically, encapsulating devices
with a hydrogel layer or shell is achieved using non-selective coating
processes such as dip coating, drop casting or spin coating. When,
however, devices integrate functional hydrogel elements, further
micropatterning processes are required in addition to the previous
coating processes, introducing a higher level of manufacturing
complexity. To this end, conventional silicon and MEMS foundry
techniques are not suited for soft and wet materials, and
manufacturing processes must therefore be adapted or developed
anew by avoiding, for instance, high temperatures and incompatible
chemicals. Ad-hoc microfabrication methods for the patterning of
hydrogel structures include both subtractive techniques, such as
photo- and soft lithography and laser patterning, and additive
techniques such as inkjet, direct ink, and screen printing. These
are illustrated in Figure 2 and discussed in the following sections.

4.1 Coating techniques

Bioelectronic devices that use hydrogels as substrate and/or
encapsulation can be fabricated using drop casting and spin-
coating methods to deposit the gel on a flat surface such as a
glass or silicon carrier (Macron et al., 2019; Zhou et al., 2020), or
dip coating of arbitrarily-shaped surfaces (Yin et al., 2018). An
alternative technique to coat hydrogels on organic or inorganic
surfaces is initiated chemical vapor deposition (iCVD), where
monomer, initiator and crosslinker are introduced in vapour
phase in a vacuum chamber. A heated filament activates the
initiator and hydrogel synthesis occurs on the substrate surface
kept at room temperature. High precision thickness and topography
can be achieved without subjecting the substrate to high
temperatures or solvents (Yagüe and Gleason, 2012).

4.2 Photolithography

Photolithography is one of the most common patterning
techniques, where a hydrogel precursor solution (prehydrogel)
previously coated on a carrier surface is illuminated through a
photomask. The light patterns generated by the mask lead to
selective crosslinking or polymerization of the illuminated areas,
while leaving the rest of the material soluble to a developing agent.
This well-established technique offers several advantages such as
repeatability, infrastructure availability, the ability to form high
resolution patterns (down to 100 nm, and 50 nm using deep UV)
(Xu and Siedlecki, 2017), arbitrarily complex in-plane shapes, and
multilayer structures by sequential lithographic steps (Tenje et al.,
2020). However, the use of photolithography is limited to

photosensitive crosslinkers or initiators that are usually cytotoxic
due to the radical molecules needed to induce the chemical reactions
(Fedorovich et al., 2009; Mironi-Harpaz et al., 2012). In some
specific cases of prehydrogels loaded with cells or proteins, UV
exposure is of concern for cell viability (Masuma et al., 2013). Lastly,
it has been reported that the opacity of photolithographically
synthesized hydrogel can cause uneven light exposure, leading to
crosslinking gradients within the matrix (Tenje et al., 2020).

4.3 Soft lithography

Soft lithography refers to the fabrication or replication of
patterns using elastomeric stamps or moulds, commonly PDMS,
enabling resolutions down to 100 nm. Patterned stamps are placed
in contact with the precursor solution, and capillary forces, heat,
physical gelation, chemical or UV crosslinking/polymerization form
hydrogel patterns matching the stamp. Contrary to
photolithography, the resolution is not limited by optical
diffraction, but wettability, Van Der Walls and capillary forces
(Nur and Willander, 2020). The main benefits of soft lithography
are high resolution and low cost for mass production, suitability to
biological samples, compatibility with a wide variety of materials,
regardless of their photosensitivity. However, moulds and stamps
are manufactured using photo- or e-beam lithography (for
nanostructures), which may reduce the cost benefits. For
precursor hydrogel solutions requiring UV light to induce
polymerization, photocrosslinkers can be detrimental to cells and
proteins. Multilayer devices have not yet been demonstrated with
soft lithography due to alignment challenges (Nur and Willander,
2020).

4.4 Laser patterning

Laser patterning refers to additive and subtractive methods of
shaping hydrogels. Direct laser patterning exploits a highly focused
light beam to induce localized polymerization or crosslinking to
create complex 3D structures. Stereolithography and two-photon
photopolymerization are the most reported techniques using lasers.
In stereolithography, the precursor hydrogel solution is placed in a
tank where the hydrogel is shaped layer by layer through light
exposure according to a predefined pattern. The thickness of each
layer of the final hydrogel is determined by the motion of a vertical
stage. Two-photon polymerization uses femtosecond pulsed lasers
to locally crosslink the precursor solution placed in a reservoir in a
spatially controlled manner. Similarly, to photolithography, these
methods are limited to photosensitive hydrogels precursors.
However, it is worth mentioning that hydrogels loaded with cells
or proteins would benefit from two-photon polymerization process,
as this technique uses near IR which is less harmful for living
organisms than UV light (Tenje et al., 2020).

Laser cutting is the subtractive alternative to laser
polymerization, where the laser is used to locally break bonds
and shape hydrogel structures. It is noteworthy that the opacity
of the hydrogel limits the penetration depth of light. Both techniques
can achieve µm resolution, but are time consuming (serial process)
and require ad hoc tools (Verhulsel et al., 2014).
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4.5 Inkjet and direct ink writing

Inkjet printing is technique in which hydrogel drops are
dispensed at precise locations to form predefined patterns. A
heater or piezoelectric actuator is used to eject droplets with
resolution of 50–500 μm, at speeds up to 5000 drops/s. For
hydrogels, the process requires rapid crosslinking and is

constrained by the viscosity of the ink (1–15 mPa s in the case of
thermal actuators and up to 100 mPa s for piezoelectric actuators),
so as to avoid nozzle clogging (Yanagawa et al., 2016; Makrygianni
et al., 2018).

Building on inkjet printing, direct ink writing is an additive
method enabling the fabrication of complex three-dimensional
structures. A viscous hydrogel precursor solution is extruded

FIGURE 2
Diagram of the possible microfabrication techniques to deposit and pattern hydrogels.
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through a nozzle using pneumatic or screw actuation, and 3D
structures are built layer-by-layer on a stage by temperature
solidification, physical or chemical gelation. Viscosity, gelation
kinetics, sheer-thinning and thixotropic properties are crucial
parameters for process development (Liu S. et al., 2020). Direct
ink writing has been demonstrated with collagen (Kim et al., 2016),
gelatin (Billiet et al., 2014), chitosan (Wu et al., 2018) and alginate
(Li et al., 2017). Resolutions down to 30 µm can be achieved (Yuk
et al., 2020).

For both techniques, it is possible to integrate biological elements
to the ink (e.g., proteins), notably to replicate extracellular matrix and
favour cellular growth and differentiation (Nam and Park, 2018). In
this case, this method is referred to as bioprinting.

4.6 Transfer printing

Transfer printing enables electrical circuits fabricated on a
separate donor substrate using conventional methods to be
transferred onto a hydrogel acceptor substrate. The electrical
conductors are first patterned on the donor substrate. Next, a
hydrogel layer is deposited on top of the patterned conductors
and then lifted off. This method eliminates the need for the hydrogel
to be suitable as substrate for subsequent conductor deposition and
patterning. However, the technique relies on the careful interplay of
adhesion forces between donor, transfer patterns, and the hydrogel
substrate (Zhou et al., 2019).

4.7 Screen printing

Screen printing enables the formation of patterns on a surface by
applying a viscous material through a screen and a stencil mask,
which is machined to match the desired patterns and aligned to the
underlying substrate. This technique offers the advantages of low
cost and ease of manufacturing, a resolution down to 300 µm (He
et al., 2019; Pandala et al., 2020) and sterilized stencils can be used to
fabricate cell culture hydrogel scaffolds (Pandala et al., 2021).

Despite the wide range of possible techniques made available
from the microelectronic manufacturing industry, their application
to hydrogel materials as part of complete bioelectronic devices has
not yet benefitted from collective efforts in standardization and
adoption. The technological processes used today to fabricate the
devices presented in the scientific literature are inherited from
silicon or MEMS foundry, and adapted case-by-case to specific
materials and designs. Wide applicability of these techniques has
therefore not yet been achieved.

5 Applications in bioelectronic
medicine and technology readiness
levels

Due to their versatility in functionalisation, shape and stimuli-
responsiveness, hydrogels have been extensively explored for
medical applications: from contact lenses, dentistry (Han et al.,
2017), surgical adhesives (Zhang et al., 2020), cartilage treatment

(Chuang et al., 2018; Wei et al., 2021), bone regeneration (Kuroda
et al., 2019; Lee C.-S. et al., 2020), to drug delivery (Raina et al.,
2022). Several hydrogel materials developed for tissue engineering
are currently being tested in clinical trials or have been granted
authorization for commercialization (Mandal et al., 2020). However,
microfabricated bioelectronic devices using hydrogels either as
functional electrical elements or as passive interface layers are
still in their infancy, with research still at an early stage, as
shown by the range of publication dates. While many proofs of
concept in the literature provide elements of feasibility and
relevance, a clinic-ready, let alone commercially available,
bioelectronic device, is yet to be found. Figure 3A displays a
selection of hydrogel-based bioelectronic devices reported in the
scientific literature, with illustrations of their intended deployment.
Table 2 lists a selection of notable examples of complete
bioelectronic devices, classified according to the microfabrication
process employed, and scored on a qualitative scale indicating the
level of maturity based on the preclinical validation data reported.

Figure 3B provides an overview on the status of the
technology, with a map of all complete hydrogel-based
microfabricated bioelectronic devices published in the
literature, to the best of our knowledge. We classify the
devices according to the technique used to process the
hydrogel material (rows) and the level of maturity based on
the validation data presented (x-axis). This map reveals that most
of the published work includes acute and chronic tests conducted
with rodents to confirm the ability to deliver electrical
stimulation or to record electrophysiological responses. In
smaller proportion, device operation tests with pigs
(Sawayama and Takeuchi, 2021), cats (Huang et al., 2018) and
rabbits (Xue et al., 2021) have been reported. In terms of
microfabrication approach, the majority of the reported
devices are manufactured using photolithography, soft
lithography and transfer printing techniques, owing to the
wider availability of the associated equipment. Some of the
devices integrate hydrogels both as a functional electrical
element and as an encapsulation using different
microfabrication methods (Lin et al., 2021; Tringides et al.,
2021). Finally, we note that no device has been tested in
clinical trials yet, testifying to the novelty of this material
technology. Some devices were tested chronically in vivo on
both rodents and large animal models, suggesting a
translational pathway planning. The longest in vivo
implantation period reported thus far is 6 weeks. For example,
Liu et al. (2020a) successfully implanted a hydrogel based
electrode for chronic epicardial and endocardial mapping of
the heart in a pig for 6 weeks. Won et al. (2022) showed that
electrodes made of PEDOT:PSS encapsulated in soft SBS
produced minimal damage to the sciatic nerve tissue in
comparison with a rigid Au cuff electrode control, after
4 weeks implantation in mice.

6 Discussion

Hydrogels have extensively gained research interest over the past
two decades (from less than 500 publications per year in 2002 to
over 10,000 in 2022) (Correa et al., 2021). Owing to their wide range
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of property tunability, they are promising interface materials for
mimicking the mechanical, chemical and electrical properties of
biological tissues. Most contributions to the scientific literature focus
on the synthesis and structuring of hydrogels, both at the micro and

macro scale. However, full integration of hydrogel materials into
minimally invasive and biomimetic bioelectronic devices is yet to be
achieved at large scale, as numerous important technological and
manufacturability challenges remain unsolved.

FIGURE 3
(A) Example applications of hydrogel-based bioelectronic devices. Reproduced with permission from reference: (a) (Lei et al., 2017), copyright
2021 Springer Nature. (b) (Park et al., 2019), copyright 2020 Springer Nature. (c) (Wang et al., 2017), copyright 2018 Wiley-VCH. (d) (Yeom et al., 2020),
copyright 2020 American Academy for the Advancement of Science. (E) (Zhou et al., 2020). (f) (Nam and Park, 2018), copyright 2020 Frontiers. (g) (Li
J. et al., 2020). (h) (Thakur et al., 2021). (i) (Sun et al., 2023), copyright 2023 American Academy for the Advancement of Science. (B)Map of hydrogel-
based bioelectronic devices according to the microfabrication technique to process hydrogel layers (rows) and their level of maturity (x-axis).
Reproduced with permission from reference (Sasaki et al., 2014), (Won et al., 2022), (Yuk et al., 2020) and (Shur et al., 2020). Copyright 2014 Wiley,
2022 American Academy for the Advancement of Science, 2020 Springer Nature and 2020 American Chemical Society respectively.
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Patterning small features on hydrogels for long term
implantation is a challenging endeavour, as they tend to degrade
much faster compared to inorganic materials. Biostability data varies
widely: Wang et al. (2017) reported that 87% of a chitosan/alginate
hydrogel degraded after 12 days in vivo, while Browning et al. (2014)
showed PEGDA hydrogels, subcutaneously implanted, stabile for up
to 12 weeks. Stability in biological media over time is an essential
requirement that has yet to be widely demonstrated with hydrogel-
based devices. A possible strategy to address this challenge is to use
synthetic monomers to further increase the lifetime of the structure
(Takeda et al., 2015; Loh et al., 2020). In general, however, beside
isolated examples, developing robust and standardized
manufacturing methods accessible to the wider bioelectronic
microfabrication community has yet to be achieved to unlock
reproducible manufacturability of hydrogels at the microscale.

Another consideration that is specific to bioelectronic interfaces, is
the unsuitability of hydrogels as barrier layers encapsulating electrical
conductors. While the advantages of soft materials in reducing the
mechanical mismatch to biological tissue are well-established, complete
and stable bioelectronic devices cannot bemade entirely of hydrogels, as
these cannot guarantee the necessary insulation when biological fluids
are absorbed. Given enough diffusion time, their intrinsic permeability
to ionic fluids renders the entire volume conductive, bridging
conductors intended to carry separate electrical signals. To overcome
this challenge, elastomers with a slightly higher modulus (MPa range)
have been proposed to encapsulate and electrically insulate the
conductors, while containing the consequent decrease in mechanical
compliance (Liu et al., 2019). Hydrogels can also be coated on thin
elastomer substrates to provide the interface with the biological tissue at
specific locations (Tringides et al., 2021). This strategy trades off

TABLE 2 Selection of hydrogel-based bioelectronic devices, classified according to the fabrication technique. Devices are qualitatively scored based on a level of
maturity (LM) scale: 1- Proof of concept (mechanical, electrical and electrochemical testing); 2- In vitro testing (e.g., cytotoxicity); 3- In vivo acute testing on small
animals (rodents); 4- In vivo acute testing on large animals (pigs, monkeys, cats, dogs); 5- In vivo chronic testing on rodents; 6- In vivo chronic testing on large
animals; 7- Clinical trials.

Fabrication
process

Hydrogel
material

Function of the
hydrogel in the device

Application LM Key metrics Resolution Ref

Photo-lithography PEDOT: PSS
hydrogel

Conductive hydrogel
encapsulated in elastomer
PFPE-DMA

Stimulation of the
sciatic nerve

5 • σ = 47.4 ± 1.2 S/cm 2 µm Liu et al.
(2019)• tH = 200 nm

• E = 32 ± 5.1 kPa
(compression)

• Z > 100 MΩ

PEG Coating of the electrode,
hydrogel loaded with anti-
inflammatory drugs and
PEDOT:PSS

Stimulation of the
sciatic nerve

1 • Z = 580.2 ± 40.1 Ω
(1 kHz)

200 µm Heo et al.
(2016)

• tH = 208 ± 11 μm

• CDC = 2.67 ±
0.37 μC/mm2

Soft lithography HA–Collagen
I–laminin

Encapsulation of polyimide
microelectrodes

TE electronic nerve
interface

1 • Diameter = 1mm 1 mm Spearman
et al. (2020)• EH = 2.55 ± 0.05 kPa

PU PU encapsulation and
PEDOT/PU–hydrogel hybrid
(working electrode)

Advanced tissue
engineering including
electronics

2 • σ = 120 S/cm 40 µm Sasaki et al.
(2014)• tH = 200µm

• Elongation ratio = 100%

Direct ink writing and
Inkjet printing

PEDOT:PSS
hydrogel

PEDOT: PSS electrical circuit
encapsulated in PDMS

Neural probe 5 • E = 1.1 MPa 30 μm Yuk et al.
(2020)• σ = 28 S/cm

• Z = 50–150 Ω (1 kHz)

PANI hydrogel Conductor track N.A. 1 • Capacitance = 480 F/g 18 μm Pan et al.
(2012)• R = 3.2 Ω

• σ = 0.23 S/cm

Transfer printing Fe3+ -[PEG-
Dopa]4

Encapsulation Microelectrode array
for recording the
sciatic nerve

6 • E = 17.9 ± 0.3 kPa 25 μm Huang et al.
(2018)• tH = 1 mm

• Z = 32.2 ± 8.3 kΩ
(f = 1 kHz)

Gelatin and
GelMa

All hydrogel-based device
GelMa doped with Ag NWs, Pt
NWs, and PEDOT:PSS

Microelectrode array
for neural interface

2 • ZGelMa = 38.3–52.4 Ω
(f = 1 kHz)

30 µm Lin et al.
(2021)

• E = 180 kPa

• Rs = 592 ± 22.7 Ω

Laser patterning PEDOT: PSS PEDOT: PSS hydrogel
encapsulated in PDMS

Stimulation and
recording of the sciatic
neve

5 • E = 57 MPa 6 µm Won et al.
(2022)• σ = 670 S/cm

• Z = 6 kΩ (f = 1 kHz)
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elasticity with acceptable barrier performance. In general, although
considerable advances have been reported in building interfaces that
mimic biological tissue, the path to a fully synergistic bioelectronic
device remains yet unpaved.

The limitations above, coupled to other specific design
challenges such as the management of swelling and the
associated interfacial stresses, constitute a significant set of
roadblocks that today hinders the surfacing of complete
hydrogel-based bioelectronic devices ready for clinical use or
long-term preclinical validation. The authors expect a
near-future increase in the research momentum to address the
challenges presented herein, with the aim of enabling
microelectronic manufacturing of fully biomimetic bioelectronic
interfaces.
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Glossary

2PP Two-photon polymerization

AG Arabic gum

Anti-HBc Hepatitis B core antibody

CDC Charge delivery capacity (charge capacity per unit area)

CNC Cellulose nanocrystal

DA Dimethylacrylate

DE Diglycidyl ether

Dopa Dopamine

E Young’s modulus

GelMa Gelatin methacryloyl

GMA Glycidyl methacrylate

IPN Interpenetrating polymer network

LOx Lysyl oxidase

NWs Nanowires

PAA Polyacrylamide

PAAN Polysodium acrylate

PACP Poly(aniline-co-pyrrole)

PAMAM Poly(amido amine)

PANi Polyaniline

PBMA Poly(butyl methacrylate)

PCL Polycaprolactone

PDCA Pyridinedicarboxamide

PDMS Polydimethylsiloxane

PEDOT Poly(3,4-ethylenedioxythiophene)

PEG Polyethylene glycol

PEG-SVA Poly(ethylene glycol disuccinimidyl valerate)

PEG-VS Poly(ethylene glycol) vinyl sulfone

PFPE-DMA Dimethacrylate-functionalized perfluoropolyether

PGA Poly(glycolic acid)

PHEMA Poly(hydroxyethyl methacrylate)

PI Polyimide

PMEP-DMA Poly(methyl ethylene phosphate)-dimethacrylate

PMMA Poly(methacrylic acid)

PNH Poly(N-isopropylacrylamide-co-2-hydroxyethyl
methacrylate)

PPy Polypyrrole

PU Polyurethane

PSS Polystyrene sulfonate

PVA Polyvinyl alcohol

R Resistance

Rs Sheet resistance

SBS Styrene-butadiene-styrene

SU-8 Structured by UV (refers to the epoxy-based negative
photoresist)

tH Thickness of the hydrogel layer

Z Impedance

σ Electrical conductivity
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