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Rib fractures remain a common injury for vehicle occupants in crashes. The risk of
a human sustaining rib fractures from thorax loading is highly variable, potentially
due to a variability in individual factors such asmaterial properties and geometry of
the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be
used as occupant substitutes to aid in the prediction of rib injury risk at the tissue
level in crash analysis. To improve this capability, model parametrization can be
used to represent human variability in simulation studies. The aim of this study was
to identify the variations in the physical properties of the human thorax that have
the most influence on rib fracture risk for the population of vehicle occupants. A
total of 15 different geometrical and material factors, sourced from published
literature, were varied in a parametrized SAFER HBM. Parametric sensitivity
analyses were conducted for two crash configurations, frontal and near-side
impacts. The results show that variability in rib cortical bone thickness, rib cortical
bone material properties, and rib cross-sectional width had the greatest influence
on the risk for an occupant to sustain two or more fractured ribs in both impacts.
Therefore, it is recommended that these three parameters be included in rib
fracture risk analysis with HBMs for the population of vehicle occupants.
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1 Introduction

While the general injury risk for vehicle occupants in crashes has been reduced over time,
the risk for sustaining rib fractures remains high (Forman et al., 2019; Kullgren et al., 2020;
Pipkorn et al., 2020). Generally, crash injury statistics indicate that the risk for thoracic
injuries and rib fractures increases with advancing age and increasing body mass index
(BMI), and is greater for females than for males (Bose et al., 2011; Carter et al., 2014; Forman
et al., 2019). These differences indicate that further consideration of occupant variability in
the design and evaluation of vehicle safety is important for reducing rib fracture risk in
crashes.

Improved occupant protection has been achieved through vehicle safety development
using anthropomorphic test devices (crash test dummies) as occupant substitutes in both
physical and computer modeled crash tests. These dummies have simplistic representations
of the human anatomy and are used to estimate occupant injury risk through body region
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assessments in crash tests; for example, chest injury risk can be
estimated based on chest compression. There are, however,
indications that these estimations have only a limited capability
to predict vehicle occupant rib fractures in real-world crashes (Kent
et al., 2003; Brumbelow, 2020; Brumbelow et al., 2022).

As a complement to crash test dummies, finite element
human body models (HBMs), such as THUMS (Shigeta et al.,
2009), GHBMC (Gayzik et al., 2012), SAFER HBM (Pipkorn
et al., 2021), and VIVA+ (John et al., 2022) are also used in
vehicle safety research and development. These computational
models of human occupants have detailed ribcage modeling,
including representations of the individual ribs. Rib fracture
injury can be evaluated at the tissue level using measurements
physically related to fracture, such as strain in the rib cortical
bone (Trosseille et al., 2008). In the THUMS and GHBMCHBMs,
rib elements that have reached a pre-defined strain threshold are
deleted, and deleted elements are considered to represent
fractures in the rib. Alternatively, a probabilistic framework
proposed by Forman et al. (2012) utilizing an age-adjusted
strain-based fracture risk function, has been used for rib
fracture risk predictions with the SAFER HBM (Pipkorn et al.,
2019). Using this method, age-adjusted risks of rib fractures are
calculated using the maximum strain from each rib. Previous
validation of HBM rib fracture prediction has shown that the
SAFER HBM (v.9) predicted the rib fracture outcomes from sled
tests with post mortem human subjects (PMHS) and from
accident reconstructions with good accuracy. However, in a
stochastic study, the predicted rib fracture risk for 30-year-old
occupants was too high (Pipkorn et al., 2019; Larsson et al., 2021).
On the other hand, studies with THUMS (AM 50 v.4) and
GHBMC (M50 v.4.2) have predicted fewer rib fractures than
those sustained by PHMS’ in corresponding impact conditions
(Shigeta et al., 2009; Schoell et al., 2015).

An inherent difficulty with predicting the rib fracture outcomes
in impact experiments or real-word crashes is that the outcome
depends on individual factors that are difficult to control for. While
age, sex, height, and weight are commonly controlled for, material
mechanical properties and local geometry are not, although they
potentially contribute to the occurrence of rib fractures as well.
Studies of these factors have reported large individual differences.
Single rib and overall ribcage geometry, rib cross-sectional
dimensions, and rib cortical bone thickness vary between
individuals (Holcombe et al., 2017a; Holcombe et al., 2019). In
impact experiments with single ribs, it was found that cross-
sectional geometrical measures taken adjacent to the fracture
location (such as total and cortical bone area and cortical bone
thickness) and area moment of inertia explain some of the variability
in rib stiffness and fracture force (Murach et al., 2017; Agnew et al.,
2018; Liebsch et al., 2021). Rib cortical bone material parameters,
such as yield stress and failure strain, trend toward declining values
with increasing age, but nevertheless show a substantial variability
between individuals of similar age (Katzenberger et al., 2020;
Velázquez-Ameijide et al., 2021). Individual variability exists in
the rib trabecular bone (Kemper et al., 2020) and in the costal
cartilage connecting the ribs to the sternum (Forman et al., 2010) as
well. Experiments with human and animal samples also demonstrate
variability in soft tissue mechanical characteristics, for both skeletal
muscle and adipose tissue (Van Sligtenhorst et al., 2006; Gefen and

Haberman, 2007; Böl et al., 2012; Sommer et al., 2013; Sun et al.,
2021).

Aggregated, these results suggest that individual variability
produces variable rib fracture outcomes—even in controlled
PMHS experiments. The following examples lend further support
to this finding. First, in a group of eight PMHS’ that all had a peak
chest compression of 28% ± 1% in frontal chest impact experiments,
between zero (two subjects) and 17 (one subject) rib fractures were
sustained (Kent and Patrie, 2005). Second, in frontal sled tests with
five reclined and belted PMHS’, between zero and 22 rib fractures
were sustained by the test subjects (Richardson et al., 2020). Third,
in 3 m/s side impact sled tests, one out of seven subjects sustained six
rib fractures, while three sustained zero (Miller et al., 2013). Thus,
due to the inherent variability, it is reasonable to expect a
distribution of rib fracture outcomes when different individuals
are subjected to the same impact scenario.

In order to design vehicles and safety systems with reduced or
mitigated rib fracture risk for vehicle occupants, knowledge of the
injury distribution from HBM simulations, and how it is affected by
design alterations, is valuable. Traditionally, an HBM is a fixed
representation of a single individual, often with material and
geometrical properties representing an average person from a
particular subpopulation, such as a 50th percentile male or a fifth
percentile female (in height and weight). Therefore, the HBM will
predict a single fixed rib fracture outcome in an impact simulation.
An exception is probabilistic rib fracture risk prediction, which can
produce multiple age-adjusted risk predictions from the same, fixed,
HBM rib strain predictions. In recent years, morphing (re-shaping)
the geometry of HBMs based on statistical human shape models has
been used to create several HBMs that geometrically represent male
and female occupants of varying age, height, and weight (Hu et al.,
2019; von Kleeck et al., 2022; Larsson et al., 2022b). However, these
HBMs still represent geometrically average individuals, with an
average ribcage shape, for the subpopulation described by each
choice of sex, age, height, and weight. However, ribcage shape
statistical models based on these parameters can only explain
approximately 50% of human ribcage shape variability (Wang
et al., 2016; Holcombe et al., 2017a). The residual variability in
ribcage shape is potentially important for assessing rib fracture risk.

A general limitation with models created with average inputs is
that they do not necessarily predict the average outcome if non-
linearities are present (Cook and Robertson, 2016). As rib fracture
risk is non-linear in terms of strain (Larsson et al., 2021) any effects
on strain in the ribs from geometrical and material variations have
non-linear effects on rib fracture risk. Therefore, it cannot be known
if the rib fracture prediction obtained from a single HBM
representing some subpopulation average is an over- or
underestimation; there is a need for more knowledge about the
injury distribution in order to make informed design choices. A
recent study presented a methodology to compute distributions of
probabilistic rib fracture risks through HBM simulations in a far-
side crash scenario (Perez-Rapela et al., 2021). In that study, a
response surface (i.e., a meta-model) was created to predict HBM rib
fracture risk based on six parameters describing human, crash, and
safety system variability. The final response surface, created from
405 input-output examples, was then used in Monte Carlo
simulations to compute the distributions of rib fracture risk as
safety system parameters were altered. The human variability

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Larsson et al. 10.3389/fbioe.2023.1154272

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1154272


parameters (used to morph the HBM for every simulation) were
height, weight, and waist circumference, but no parameters
representing human variability in material properties or rib and
ribcage geometry were included. Therefore, the effect of these
parameters on rib fracture risk is not known.

A major hurdle for including these aspects of human variability
in vehicle safety evaluations with HBMs is the exponential growth in
the number of possible parameter combinations as the number of
parameters increases. As vehicle crash simulations with HBMs are
computationally expensive (hours to days per simulation, depending
on the specific load case and computing resources), it is important to
minimize the number of model parameters. To facilitate an
informed tradeoff between computational cost and the
information gained about the potential injury outcomes, it is
necessary to know which human variability factors to prioritize
for inclusion. Further, detailed anatomical and biomechanical
reference data needed for HBM building are limited. Knowledge
about which variability inputs are most important can provide
guidance for future anatomical and biomechanical
characterization studies. Therefore, the aim of this study was to
identify the human thorax property variations that influence rib
fracture risk for the population of vehicle occupants in two crash
scenarios.

2 Materials and methods

The study was carried out in two steps. The first step was to
represent individual variability by parametrizing existing geometry and
materialmodels of the SAFERHBMv10 (SHBM) (Pipkorn et al., 2021).
The SHBMwas chosen as the baselineHBM for the study because it has
a ribcage model validated for rib cortical bone strain and strain-based
probabilistic rib fracture risk predictions in various impact
configurations (Iraeus and Pipkorn, 2019; Pipkorn et al., 2019).

In the second step, the parametrized SHBMwas subjected to frontal
and near-side impact scenarios in generic vehicle interior sled models
(Iraeus and Lindquist, 2016; Pipkorn et al., 2019). A parametric
sensitivity analysis was performed to quantify how the variability of
certain geometrical and material parameters contributed to rib fracture
risk predictions. Rib fracture risk, the risk that an occupant sustained
two or more fractured ribs (NFR2+), was calculated using the age- and
strain-based probabilistic method (Forman et al., 2012; Larsson et al.,
2021). The maximum of first principal strain in each rib cortical bone,
calculated in the middle element layer, was used for the risk calculation.
The occupant age was fixed at 45 years in the NFR2+ calculations, as
this corresponds to a rib fracture risk function of roughly average strain
sensitivity across the age span of bone samples it was constructed from
(Larsson et al., 2021).

All simulations were performed using LS-Dyna (16 cores,
R9.3.1 MPP, Livermore Software Technology, Livermore
California, United States.)

2.1 Representing human variability through
HBM parametrization

The geometric features of the ribs and ribcage and material
models of the SHBM, detailed in the following sections, were

parametrized to represent the population variability (sourced
from published studies). As the SHBM represents an average
male occupant, male data were used where applicable.

Each parametric variation was driven by a scaling coordinate, s,
which either corresponds to the number of standard deviations
(SDs) or was interpolated in a range defined by upper and lower
bounds (depending on available data for the parameter). The
targeted range of variability for each parameter was ±2 SDs, or
95% of the range of available data. The exceptions were costal
cartilage modulus and material properties for muscle and adipose
tissue: the costal cartilage modulus was varied within a range
corresponding to 90% of the estimated distribution due to
instabilities in the costal cartilage elements for low modulus
values; for muscle and adipose tissue, the upper and lower
bounds of material parameters were based on tissue behavior in
different test setups.

2.1.1 Rib and ribcage geometry
Ribcage shape, rib cross-sectional dimensions, and rib cortical

bone thickness were parametrized according to the expressions
summarized in Table 1. The residual variability in ribcage shape,
i.e., the variability not explained by sex, age, height, and weight
trends in statistical ribcage shape models, was modelled through
representing the ribcage shape variability among a sample of average
males. Parametrization of ribcage shape, previously presented in
Larsson et al. (2022a), was based on principal component analysis
(PCA) of ribcage geometric data from average height and weight
males. The process is briefly explained below.

Parametric curves describing rib centroidal path geometry
(curves passing through the centroid of consecutive rib cross-
sections), previously fitted to CT-scan data of over
1,000 individuals (Holcombe et al., 2016; Holcombe et al., 2017a;
Holcombe et al., 2017b), were used to geometrically describe ribcage
shape. From these individuals, n = 89 males were chosen based on
the inclusion criteria: age >18 years, height 1.72–1.82 m, and weight
72–82 kg. Next, a PCA was performed using points generated along
the n = 89 sets of rib curves. The first six of the resulting principal
components (PCs) together described more than 90% of the
variance in ribcage shape, so they were used to morph the
SHBM ribcage and surrounding parts to represent variability in
ribcage shape.

For each PC, morphing targets were generated by the parametric
expression in Eq. 1, where Ci is a vector of rib curve point
coordinates, μ is the average point coordinate from PCA, Pi is
the i th principal component, σ i is the sample SD of PC scores for the

TABLE 1 Parameters modifying rib and ribcage geometrical features and the
parametric expressions used.

Parameter name Parametric expression

Ribcage shape PC’s, i � 1, . . . , 6 Ci(s) � μ + PT
i *σ i*s (Eq.1)

Rib cortical bone thickness T(s) � exp(log(Tnom) + σμ*s) [mm] (Eq.2)

Rib cross-sectional width
W(s) � Wnom + 2.7

2
*s [mm] (Eq.3)

Rib cross-sectional height
H(s) � Hnom + 3.9

2
*s [mm] (Eq.4)
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i th principal component, and s is a scaling coordinate. Thus, for
i � 2 and s � 1.5, Ci(s � 1.5) represents the discretized rib curves of
a ribcage with 1.5 SD of the score for PC 2. First, the morphing
aligned the centroidal paths of the SHBM ribs to the corresponding
centroidal paths generated by Eq. 1, and second, it adapted
surrounding tissues to the changes in ribcage shape. Ribcages
morphed to ±2 SDs of the sample scores for each PC are shown
in Figure 1. The SHBM torso, as morphed to adapt to the ribcage
shape changes from PC 1, is shown in Figure 2. Further details of
PCA and SHBM morphing are provided in Larsson et al. (2022a).

The SHBM has varying rib cortical bone thickness, along and
around all ribs, assigned at each node in the rib element meshes,
based on averaged male measurements (Choi and Kwak, 2011). To
determine scaling ranges for the thickness, individual maps of rib
cortical bone thickness from Holcombe et al. (2019) were re-
analyzed. Within an individual rib, the thickness measurements
were approximately log-normally distributed (Figure 3). Thus,
parametric log-normal distributions with parameters μ and σ

were fitted to all 33 individual rib measurements (Figure 3). In
log-space, the fitted μ parameters were approximately normally
distributed, with an SD of σμ � 0.22; this value was used to scale
each nodal thickness value of all the SHBM ribs according to Eq. 2,
where T(s) is the new nodal thickness value, exp() and log() are the
natural exponential and logarithm functions, and Tnom is the
original nodal thickness value. The same scaling factor was used
to scale the thickness all 24 ribs simultaneously.

The SHBM ribs have elliptical cross-sections, with
dimensions as well as cross-sectional orientation varying along
the ribs and between rib levels, based on average male
measurements (Choi and Kwak, 2011; Iraeus et al., 2020).
Variability in rib cross-sectional height and width was
achieved by morphing SHBM ribs along the major (rib height)
and minor (rib width) axes of the elliptical rib cross-sections. To
determine scaling ranges, SDs of maximum and minimum area
moments of inertia (I max and I min) of male sixth-level ribs were
used (Holcombe et al., 2019). As the SHBM has simplified

FIGURE 1
Lateral view of ribcage of SHBM as morphed to ±2 SDs of corresponding scores for PC 1–6 (left to right).

FIGURE 2
SHBM torso with parts removed to show ribcage and internal parts. (A): Ribcagemorphed to −2 SDs of PC 1 score, (B): 0 (average ribcage shape), (C):
+2 SDs for PC 1 (left to right).
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representations of rib sternal and vertebral ends, the average SD
values for only 20%–80% of the rib span length were used. The
cross-sections of all ribs were scaled simultaneously along the
entire length of the ribs, using the same scaling ranges around
their respective nominal width, Wnom (Eq. 3; Table 1), or height,
Hnom (Eq. 4; Table 1), using the Ansa pre-processor (v19.1, Beta
CAE Systems, Thessaloniki, Greece). In Table 1, Eqs 3, 4, a cross-
sectional height scaling of ±3.9 mm corresponds to an average rib
area moment-of-inertia change of ±2*SDs of I max, and a width
scaling of ±2.7 mm corresponds to ±2*SD of I min. In a
subsequent step, the surrounding soft tissues were morphed,
to ensure smooth transitions to the intercostal muscle mesh
connected to the ribs and to avoid contact surface
intersections as rib dimensions were altered.

To avoid the influence of torso mass variability on the rib
fracture risk predictions, the density of soft tissue materials in
the HBM were uniformly scaled to retain the original HBM mass
for all parametric changes that modified the torso geometry.

2.1.2 Variability in material mechanical parameters
Table 2 summarizes the parametric expressions used to scale the

material parameters of rib cortical bone, rib trabecular bone, and

costal cartilage. For rib cortical bone, an isotropic bi-linear material
model (LS-Dyna *MAT_24) was used (Iraeus et al., 2020). The
material parameters Young’s modulus, E, yield stress, σY, and plastic
modulus, P (Eq. 5) were co-varied to represent a “stiffer” or “softer”
material response (by increasing or decreasing s, respectively).
Figure 4 shows the bi-linear stress-strain curves for different
levels of the scaling coordinate and compares them to a decade
of average age curves from tensile testing at 0.5 strain/s
(Katzenberger et al., 2020).

The SHBM rib trabecular bone was also modeled as a bi-linear
isotropic material (LS-Dyna *MAT_24). The bi-linearity was based
on material properties reported from compressive testing of human
rib trabecular bone from 15 individuals (Kemper et al., 2020). The
expression (Eq. 6) scaling the trabecular bone material parameters
was configured to cover 95% of the range of material parameters for
the scaling coordinate s ∈ [−2, 2].

The costal cartilage was updated to use the effective material
modulus identified from 28 individuals (Forman et al., 2010). For
s ∈ [−2, 2], the expression in Eq. 7 interpolates the 5th to 95th
percentiles of a log-normal distribution with the sample mean and
SD of 21.4 ± 12.0 MPa from Forman et al. (2010).

The SHBM subcutaneous adipose tissue and skeletal muscle were
modeled as visco-hyperelastic materials (LS-Dyna *MAT_077_O with
Prony series). For adipose tissue, material parameters were varied
together to represent “softer” and “stiffer” material representations;
see Table 3. Parameter ranges were obtained through parameter
identification (Naseri, 2021) for tissue samples in different test
setups (Gefen and Haberman, 2007; Geerligs et al., 2008; Comley
and Fleck, 2012). The muscle tissue material model was used for
both the thoracic skeletal muscles and the intercostal muscles. The
nominal material was presented by Lanzl et al. (2021). The bulk
modulus was varied for the muscle material across a range based on
passive muscle cross-fiber compressive test results (Van Sligtenhorst
et al., 2006; Böl et al., 2012; Mohammadkhah et al., 2016); see Table 3.
As the parameter ranges for adipose and skeletal muscle tissue material
models represent variability in tissue response across different
experiments, rather than between individuals in a single experiment,
the scaling parameters for these tissues were considered uniformly

FIGURE 3
(A): Density histogram of all rib cortical bone thickness measurements from a representative individual (blue bars) and probability density function of
the corresponding fitted log-normal distribution (red curve). (B): Probability density functions of fitted log-normal distributions from all 33 individuals in
Holcombe et al. (2019), and the distribution from mean of fitted parameters (thick black curve).

TABLE 2 Parametric expressions for scaling material model parameters of ribs
and costal cartilage.

Parameter name Parametric expression

Rib cortical bone
Cort s( ) �

E � 14.7 + 2.0*s GPa[ ]
σY � 100.7 + 12.9*s MPa[ ]
P � 1.94 + 0.5*s GPa[ ]

⎧⎪⎨
⎪⎩ (Eq.5)

Rib trabecular bone

Trab s( ) �

E � 25.7 + 46.7*
0.95*s
4

MPa[ ]

σY � 0.42 + 0.65*
0.95*s
4

MPa[ ]

P � 5.66 + 11.9*
0.95*s
4

MPa[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Eq.6)

Costal Cartilage Cart−E(s) � 21.4 + 1.15*s2 + 9.05*s [MPa] (Eq.7)
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distributed in the following sensitivity analysis. This corresponds to an
equal weighting of soft tissue material parameters, regardless of scaling
coordinate value.

2.2 Parametric sensitivity analysis

Parameter influence on NFR2+ risk was quantified through a
variance-based sensitivity analysis method (Zhang and Pandey,
2014). Using this method, for each parameter, sensitivity indices
which quantified the contribution of input parameter variability
to the total variance of the NFR2+ output were calculated. The
method and variance-based sensitivity analysis is briefly
described below.

The output of a model, Y, depends on its input parameters,
X � [x1, x2, ..., xn], through some function, Y � h(X). For the
current application, the model output was the NFR2+ rib
fracture risk and the input parameters were those presented
in the previous sections. The function was the occupant crash

simulation and the NFR2+ risk calculation that resulted in an
NFR2+ risk prediction for every configuration of the input
parameters. All parameter values were considered normally
distributed, except costal cartilage modulus, which was log-
normally distributed, and soft tissues (adipose and skeletal and
intercostal muscle material), which were considered uniformly
distributed.

Variance-based sensitivity analysis utilizes the variance
decomposition of the output (Sobol, 1990; Saltelli et al., 2008) (Eq. 8):

VY � ∑
n

i

Vi +∑
n

i

∑
n

j> i
Vij + ... + Vij...n (8)

Where Vi is the partial variance of Y due to varying parameter xi,
Vij is due to the interaction ofxi and xj, etc.The primary, or first-order,
sensitivity index, defined as Si � Vi

VY
, represents the main average effect

contribution (disregarding interactions) of varying xi, for all possible
combinations of the remaining input parameters. The second-order
index is defined as Sij � Vij

VY
, and higher order sensitivity indices are

FIGURE 4
HBM lines represent the different values of the scaling coordinate used in the bi-linear material model. (A): Rib cortical bone stress vs. strain. The
range of 30–90s (dashed) is average responses for corresponding ages (Katzenberger et al., 2020). (B): Rib trabecular bone stress vs. strain. Test results
(gray lines) correspond to the material parameters from individual test results.

TABLE 3 LS-dyna *MAT_077_Omaterial parameters for adipose andmuscle tissues. Nominal, maximum, andminimum values and the parametric expressions used
to vary the material parameters.

Material parameter Nominal Max Min Parametric expression for s ∈ [−2, 2]
Adipose tissue

Poisson’s ratio, ν [-] 0.49998 0.499995 0.49978 ν � 0.499996 − 1.6216 exp(−1.2951s)*10−5
µ [Pa] 35 41 29 µ � 35 + 3*s

α [-] 20 20 20

Viscoelastic Prony series

βi [1/ms] Gi [kPa]

0.006 0.80 1.04 0.56 G1 � 0.80 + 0.12*s

0.05 1.80 2.34 1.26 G2 � 1.80 + 0.27*s

0.6 2.22 2.90 1.54 G3 � 2.22 + 0.34*s

Muscle tissue

Poisson’s ratio, ν [-] 0.495 0.495 0.495

µ [Pa] 108 63 153 µ � 108 + 22.5*s

α [-] 13.2 13.2 13.2
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defined analogously. The total sensitivity index; STi, accounts for the
total contribution to VY due to xi, including all higher-order
interactions (Homma and Saltelli, 1996; Sobol, 2001).

The sensitivity indices can be calculated analytically for simple
functions or be computed through Monte Carlo methods, sampling
a large number of points X, for general functions. For the current
study, sensitivity indices were calculated by an approximative
method based on a multiplicative dimensional reduction method
(M-DRM) (Zhang and Pandey, 2014). It is assumed that the model
output around a chosen point in the input space, the cut-point:
X � C � [c1, c2, ..., cn], h0 � h(C), can be decomposed into a set of
one-dimensional functions, through M-DRM (Eq. 9):

h X( ) ≈ h1−n0 *∏
n

i�1
hi xi, C−i( ) (9)

Where hi(xi, C−i) is a function of xi and C−i is C without ci.
From this assumption, it follows that computing one-
dimensional integrals (through, e.g., Gaussian quadrature)
provides sufficient information to calculate the sensitivity
indices. For a function of n parameters and a quadrature rule
of NGP Gauss points, at most n*NGP function evaluations are
needed, see Zhang and Pandey (2014) for details.

Here, the cut-point, or the baseline case about which all parameters
were varied, was selected with their average values (i.e., s � 0 for all
parameters), and a five-point Gauss-Legendre quadraturewas used. The
range of parameter variation considered was s ∈ [−2, 2] for all
parameters; their values were modified according to the expressions
presented in the previous sections. The parametric sensitivity analysis
was performed twice for two different crash scenarios, a frontal impact
and a near-side impact.

2.3 Occupant crash simulations

The SHBM was positioned as a driver in generic driver-side
vehicle interior models equipped with generic representations of
safety systems and the capability to model intrusions into the
occupant compartment (Iraeus and Lindquist, 2016; Pipkorn
et al., 2019). The vehicle models were subjected to accelerations
corresponding to either a frontal impact or a near-side impact
scenario. In the frontal impact scenario, the delta velocity was
45 km/h. The steering wheel airbag had a peak pressure of
25 kPa, and the pre-tensioned seatbelt was load-limited to 3.5 kN
(as measured in the webbing above the HBM shoulder). The seatbelt
was routed over the SHBM torso and lap using the closest path
method in Primer pre-processor (v17.0 Oasys Ltd., Solihull,
United Kingdom). No intrusion into the occupant compartment
was modeled in the frontal impact case. The near-side impact had a
peak door intrusion of 88 mm (measured at the armrest of the door
panel interior), and a lateral delta velocity of 24 km/h. The seat-
mounted side airbag had a peak pressure of 55 kPa, and the
inflatable curtain had a peak pressure of 60 kPa. In both impacts,
the delta velocity was chosen such that the cut-point version of the
HBM predicted close to 50% risk of NFR2+. The vehicle and impact
parameters were held constant in all subsequent simulations while
the parameters representing human variability were varied in
the HBM.

3 Results

All simulations completed successfully (no error terminations).
The resulting kinematics of the baseline SHBM with all parameters
at their nominal values (s � 0 for all parameters) in the frontal and
the near-side crash scenarios are shown in Figure 5. In both impact
cases with the baseline HBM, the predicted NFR2+ risk was 51%
(Supplementary Material; Supplementary Table SA1).

The NFR2+ risk predictions obtained in each evaluated scaling
coordinate for the frontal impact and the near-side impact are
shown in Supplementary Table SA1. First-order and total
sensitivity indices are shown in Figure 6 for the frontal impact
and Figure 7 for the near-side impact. In both impacts, rib cortical
bone thickness, rib cross-sectional width, and rib cortical bone
material properties were identified as the most influential for
NFR2+ risk. Parameters representing soft tissue materials,
i.e., torso adipose tissue, skeletal muscle tissue, and intercostal
muscle tissue, had only a small influence on the NFR2+ risk in
both impacts.

According to the total sensitivity indices, STi, approximately 40%
of the variance in NFR2+ risk in both impact scenarios can be
attributed to the population variability in rib cortical bone thickness
alone. That is, for a fixed cortical bone thickness, the total variance of
NFR2+ is reduced by 40%. The corresponding variance reductions
for fixed rib cortical bone material parameters and fixed rib cross-
sectional widths are 30% and 20%–25% (depending on impact),
respectively (Figures 6, 7).

The differences between the first-order effects, Si, and the total
effects, STi, for rib cortical bone thickness, rib cross-sectional width,
and rib cortical bone material (Figures 6, 7) indicates the presence of
substantial interaction effects for NFR2+. Second-order indices, Sij,
for frontal impact are shown in Supplementary Figure SA1. Similar
interaction effect magnitudes were obtained in both impacts. The
three most influential interactions were between cortical bone
thickness and cortical bone material stiffness, cortical bone
thickness and rib cross-sectional width, and rib cross-sectional
width and cortical bone material stiffness. For all remaining
parameters, the top three interaction effects were with rib cortical
bone thickness, rib cortical bone material stiffness, and rib cross-
sectional width.

4 Discussion

This study used a variance-based parametric sensitivity analysis
to identify the most influential property variations in the human
thorax for SHBMNFR2+ rib fracture prediction in frontal and near-
side impacts.

4.1 Findings

In both impacts, parameters representing rib properties (rib
cortical bone thickness, rib cortical bone material stiffness, and rib
cross-sectional width) had the greatest influence on the NFR2+
predictions. (See Figures 6, 7; Supplementary Table SA1). Rib
fracture risk increased with reduced cortical bone thickness,
reduced cortical bone material stiffness, and reduced cross-
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sectional width. The first two results are in line with findings from
previous HBM studies, which reduced these properties in HBMs to
create average representations of older individuals (Kent et al., 2005;
Schoell et al., 2015; von Kleeck et al., 2022). For reduced cross-
sectional width, increased fracture risk is in line with findings from
single rib fracture modelling, where decreased cross-sectional width
in a region of the rib increased element damage (element fracture

criteria) in that region (Rampersadh et al., 2022). Further, rib
material properties and rib cross-sectional dimensions have
previously been identified as highly influential parameters for the
overall structural responses and strain in parameter studies using
HBM ribs under single rib-bending conditions (Fleischmann et al.,
2020; Iraeus et al., 2020). In physical impact experiments with
human ribs, the regression model with the highest explanatory

FIGURE 5
Kinematics of the SHBM in frontal and near-side lateral cut-point evaluations; s = 0 for all parameters. Top: Frontal impact at (left to right) 0, 40, 80,
and 120 ms post-impact. Bottom: near-side impact at times 0, 20, 40, 60, and 80 ms post-impact. Arms and legs removed for improved visibility.

FIGURE 6
Frontal impact NFR2+ first-order sensitivity indices Si (black dots) and total sensitivity indices, STi (red diamonds) calculated for each parameter.
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power for peak force measured before rib fracture was based on a
combination of age and the Whole Bone Strength Index (Agnew
et al., 2018). The Whole Bone Strength Index is section modulus
divided by the rib length. Since rib cortical bone material properties
generally degrade with increasing age, the age factor in that
regression model may serve as a proxy for degrading material
properties. Furthermore, among single predictors for peak force,
rib cross-sectional measures such as maximum and minimum area
moment of inertia, and total- and cortical bone area have the greatest
explanatory power (Agnew et al., 2018). These cross-sectional
measurements are directly related to rib width and the cortical
bone thickness around the rib cross-sections. These observations
indicate that the results from the present study correlate with
physical human rib findings.

Compared to the top three parameters, the other parameters had
a much smaller influence on the results. The ribcage shape
parameters (Ribcage shape PCs 1–6) determined the overall
shape of the ribs and ribcage, which influenced how the external
loading (from, e.g., the seatbelt and airbags) was distributed among
individual ribs (Larsson et al., 2022a). Of these parameters, PCs
1 and 2 (Supplementary Table SA1) were the most influential.
However, the greatest magnitude scaling coordinate values for
these parameters had the greatest effects on the risk prediction.
These values correspond to individuals which have ribcage shape
variations (PC scores) above 1.8 SDs away from the average, and
thus have less weight in the sensitivity analysis. In other words, in
comparison to the top three parameters, the global ribcage shape
variability is not highly influential for the rib fracture outcome for
most individuals.

Moreover, the soft tissue material parameters were the least
influential parameters in both impact configurations. Parameter
ranges were set to correspond to ranges of test results from

different tests. Therefore, these three parameters were assigned
uniform distributions as there is insufficient data to determine
distributions, and to determine if any one of the test results are
more common. As a result, the effect of these parameters was
effectively increased, since, in the sensitivity analysis, the same
weighting was applied for results obtained for high-magnitude
scaling coordinate values as for the low values. Still, their
influence was comparatively low. The parametric adipose and
muscle tissue material models were compared to compressive test
results of adipose tissue (Comley and Fleck, 2012), and cross-fiber
muscle tissue (Böl et al., 2012; Zhai and Chen, 2019) in
Supplementary Figure SA2. While the adipose tissue model
shows a substantial sensitivity to loading rate, the parametrized
Lanzl et al. (2021) muscle model does not. The soft tissues in the
HBM torso act as layers that transmit external loading to (or within,
in the case of the intercostal muscle) the ribcage, but the rib fracture
risk was only marginally affected by variability in their material
properties within the current ranges. It should be noted that due to
the rate dependency, the soft tissue material models have the
potential to be more influential for other loading rates.
Additional test data characterizing human soft tissue behavior in
vehicle crash loading is needed.

As noted, the three most influential parameters were found to be
those affecting the material properties and cross-sectional measures
of the ribs themselves. Their predominant influence can be
explained by linear elastic beam theory. In both impacts, the ribs
were generally deformed through bending. The flexural rigidity, or
bending resistance, of a beam structure is the product of Young’s
modulus and the second area moment of inertia for the axis of
bending. Here, Young’s modulus was directly influenced by rib
cortical bone material, and the second area moment of inertia was
influenced by the ribs’ cortical bone thickness and cross-sectional

FIGURE 7
Near-side impact NFR2+ first order sensitivity indices, Si (black dots), and total sensitivity indices, STi (red diamonds), calculated for each parameter.
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width. (Rib cross-sectional height also influences the area moment
of inertia, but for the current axis of bending, the width of the rib is
the dominating dimension.) The rib trabecular bone material is
enclosed within the cortical shell and is approximately two to three
orders of magnitude softer than the cortical bone, and thus had a
smaller influence on the flexural rigidity of the ribs. Of the remaining
parameters—for features external to the ribs—those for adipose
tissue and skeletal muscle tissue contributed to the way the external
loading was distributed, and those for intercostal muscle, costal
cartilage, and overall ribcage shape contributed to the loading
among the individual ribs. However, the most influential
parameters were those most closely linked to controlling the
resistance to deformation of the ribs themselves. That is, among
the studied factors, those affecting the flexural rigidity of the ribs are
most relevant for the occupant rib fracture risk predictions.

4.2 Ranges for the most influential
parameters

For realistic sensitivity analysis results, it is important that the
parameters and their ranges correspond to the extent of variability
existing in the population. For the three most influential parameters,
some assumptions about their variability were made.

For rib cortical bone thickness variability, the scaling expression
used (Eq. 2; Table 1) varied the thickness around the nominal
thickness value at all nodes in all 24 ribs, assuming that the cortical
bone thickness variability identified in sixth-level ribs is
representative for all rib levels. For the SHBM sixth rib,
distributions fitted to the cortical bone thickness for different
levels of the scaling coordinate are shown in Figure 8, together
with the overall thinnest, thickest, and average thickness
distributions from the Holcombe et al. (2019) sample used to
define the scaling ranges. As shown in the figure, the used
scaling range resulted in a range of SHBM sixth level rib bone
thickness variability that was similar to the extent of variability in the
sample. Holcombe and Derstine (2022) recently presented SDs of rib

cortical bone thickness at different measurement sites in rib levels
2 to 11, obtained from a sample comprising 240 males and females
aged 20–90 years. The Holcombe and Derstine (2022) SD of rib
cortical bone thickness, averaged for each rib level, was 0.24 mm for
sixth level ribs and was similar in other rib levels (0.21–0.24 mm),
indicating that the influence of cortical bone thickness variability on
NFR2+ is not inflated by applying too-large thickness variations in
the SHBM ribs.

The rib cross section width scaling of the SHBM ribs used a range
based on sixth-level rib measurements, corresponding to a rib width SD
of 1.35 mm (Eq. 3; Table 1). Kindig (2009) reported rib width SDs from
rib levels 2 through 10 from nine PMHS’ (two female). The largest
width SD of 2.3 mm was reported from the vertebral end of rib level 2,
and the smallest SD of 0.5 mm at the posterolateral region of rib level 7.
Averaged along the rib length, the Kindig rib width SDs for the different
rib levels was 0.9–1.2 mm. Mohr et al. (2007) reported rib width SDs,
averaged over the rib length, ranging from 2.1 mm (rib level 8) to
1.7 mm (rib level 7) from measurements of ribs at levels 3 through 9 in
eight PMHS’ (five males and four females). Compared to Kindig and
Mohr et al.‘s rib width SDs of 0.9–1.2mm and 1.7–2.1mm, respectively,
the SD of 1.35 mm used for the SHBM rib widths appear reasonable.
The influence of rib cross-sectional dimensions on HBM rib fracture
risk predictions highlight the importance of detailed human reference
data along the length of the ribs, including inter-individual variability.

The parametrization of the rib cortical bone material scaled
several parameters together to achieve a bi-linear material response
representing overall stiffer and softer material characteristics. The
scaling ranges were based on published standard deviations of
material parameters for the material model used in the SHBM
ribs (Iraeus et al., 2020), based on test results from 12 individuals
of various ages (Kemper et al., 2005; Kemper et al., 2007). Therefore,
the SD used in this study was influenced by the effect of aging. We
can visually compare the scaling range used to more recent test
results from different individuals (Katzenberger et al., 2020).
Figure 9 shows the average (s = 0) and ±2*SDs (s = ±2) for the
HBM rib material, together with individual test results from younger
(30 ± 5 years old) and older (70 ± 5 years old) subjects. While
material from the younger subjects tends to have higher stresses (for

FIGURE 8
Probability density functions of sixth rib cortical bone thickness.
Black curves correspond to the overall thinnest, average, and thickest
individual bones in the Holcombe et al. (2019) n = 33 sample. Blue,
orange, and yellow curves demonstrate the distribution of
cortical bone thickness in the SHBM for s = −2, s = 0 and s = 2,
respectively.

FIGURE 9
Individual test results from rib cortical bone tensile testing for
younger (30 ± 5 years) and older (70 ± 5 years) subjects, together with
scaled HBM cortical bone material curves.
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a given level of strain) than that from the older subjects, the range of
variability within each age group is comparable to the variability
ranges used for the SHBM in the current study. As the SHBM range
of rib material properties appear centered between the younger and
older subject results, the range of variability used here roughly
corresponds to the range of variability in material properties that
can be expected for subjects around 50 years of age. As the rib
fracture risk was lower for stiffer material and higher for softer
materials (Supplementary Table SA1), it is likely that the sensitivity
to variability in cortical bone material is age-dependent. If variability
were modeled around the younger subjects’ average, there would be
an overall decrease in predicted NFR2+ risk. As the rib fracture risk
cannot go below 0%, the range of resulting risks can potentially be
compressed by this lower bound. Similarly, modeling variability
around the older subjects’ average might produce several predictions
at the 100% risk level. Hence, the age trends in rib cortical bone
material properties should be considered when variability is
considered within a certain subpopulation, such as elderly
occupants. Further, as judged by visual comparison in Figure 9,
the method of scaling rib cortical bone material parameters together
corresponds well to how stress-strain responses tend to differ
between individual samples. That is, an increased Young’s
modulus (initial slope of curves), is related to an increased yield
stress (stress level where the curve bends away from the initial linear
trend in the test results, kink in material model) and increased
plastic modulus (the later slope of the curve). A strong correlation
between Young’s modulus and yield stress, but not for plastic
modulus has been reported from analysis of individual results
from 12 subjects (Iraeus et al., 2020). More detailed parameter
sensitivity analysis can determine if plastic modulus variability needs
to be considered separately in future work.

4.3 Parametric sensitivity analysis

A variance-based parametric sensitivity analysis method was
used for the current study. The method considered the distribution
of each parameter within the population. Considering the
distributions is important, since small effects from common
parameter values might have an overall greater contribution to
rib fracture outcomes than large effects from extreme, but rare,
parameter values when outcomes are aggregated across a
population. Further, this method was able to demonstrate the
existence of interaction effects between different parameters.
However, the sensitivity indices were calculated using an
approximative method based on the assumption that the function
being analyzed can be decomposed according to the M-DRM (Eq.
9). It has been shown that this method can compute the sensitivity
indices with accuracy similar to state-of-the art Monte Carlo
methods for several different functions, provided enough
integration points are used (Zhang and Pandey, 2014). Here, we
used a five-point Gauss-Legendre quadrature, which integrates
ninth-degree polynomials exactly. Analysis with three-point
integration resulted in similar sensitivity indices in both impacts
and also identified as most influential the same three parameters.
Still, how well the M-DRM assumption holds for HBM occupant rib
fracture risk is not known, and thus the sensitivity analysis results
should be interpreted as indicative. Evaluating the sensitivity indices

for the rib fracture risk (approximately 6 h per function evaluation)
with Monte Carlo-based computations was not feasible, due to the
time cost that would have been required. Previous studies
investigating HBM rib fracture sensitivity to parameters have
used factorial analysis, where only a few parameters have been
changed in a few steps (Kent et al., 2005; Schoell et al., 2015; von
Kleeck et al., 2022). A full factorial analysis with three parameter
levels (high, mid, and low) and the 15 parameters included in the
current study would require over 14.3 million (315) function
evaluations. Including only two levels for the parameters will still
require about 32.8 thousand (215) function evaluations. Thus, the
currently used method was a practical choice, but its accuracy for the
current use case should be evaluated in future work.

4.4 Limitations and future work

There are several limitations with this study. First, only an average
male HBM, in terms of height and weight, was used. The choice of HBM
was based on previous validation of rib strain and rib strain-based rib
fracture risk predictions (Iraeus and Pipkorn, 2019; Pipkorn et al., 2019).
In these validations v.9 of SHBMwas used.Updates for v.10 included new
thoracic soft tissuemeshes, including separate skeletalmuscle and adipose
tissue layers and a new pelvis model. The ribcage model, including
intercostal muscles was kept from v.9 (Pipkorn et al., 2021). Parameter
variability also exists among individuals in other subpopulations (such as
small females or large males). For a given impact scenario, the amount
and location of loading to the torso can change due to changes in body
mass and height. However, the parameters identified as influential here,
related to how the ribs resist deformation due to external loading, will
likely remain influential even for other subpopulations. There is a
possibility that the influence of soft tissue parameters increases if the
relative volume of soft tissues increases (such as for obese occupants),
which should be investigated in future work.

Secondly, only two impact conditions were considered in the current
study; both cases were set up so that the average HBM obtained close to
50% risk of NFR2+. In real life, crashes occur in a wide range of angles
and velocities. For both lower and higher impact velocities, the relative
influence of the parameters would decrease. For very low impact speeds,
the rib fracture risk could be 0% regardless of parameter settings, while it
could become saturated at 100% for some or all parameter settings at
higher impact speeds. The two impact scenarios used represent impact
conditionswith a high risk of occupant rib fractures in real-world crashes
(Pipkorn et al., 2020), and represent two different modes of loading to
the ribs. In a frontal impact, the loading from the seatbelt to the chest
tends to bend the anterior ends of the ribs towards the spine, thus
resulting in tensile strains on the cutaneous side of the ribs. In a side
impact, the intruding side structure and airbag instead apply loading to
the lateral region of the ribs, causing that region to bend inwards,
resulting in tensile strains at the pleural side of the loaded ribs. Despite
the different rib loading modes, the same parameters were found to be
themost influential, which indicates that the results found here should be
robust over a range of impact directions. It is possible that ribcage shape
variability can have a larger influence under other external conditions,
such as scenarios in which the ribcage either comes into contact, or not,
with a vehicle interior component depending on ribcage dimensions.
Further evaluations using different boundary conditions for thoracic
loading are needed to confirm the general validity of the results.
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Third, while the parameter study performed here is extensive, it is
not exhaustive. The parameters included were limited to entities already
represented in the HBM. For example, the rib cortical bone is modeled
by shell elements with varying thickness. The elements represent
homogeneous material throughout this thickness, while rib cortical
bone has an inhomogeneous structure: individuals can, for example,
have varying degrees of intra-cortical porosity (Agnew and Stout, 2012).
These pores and other local microstructure properties can potentially
serve as sources of stress concentration during loading and can thus be
highly relevant for the individual rib fracture risk. Such details are,
however, beyond the modeling capacity of current full-body HBMs for
occupant impact simulations. Further, some entities present in the
HBM thorax were not parametrized, such as the thoracic spine or the
soft internal thoracic organs. From PMHS chest impact experiments
with and without internal thoracic organs, it is known that 30%–40% of
the thorax stiffness can be attributed to the internal organs (Kent, 2008;
Murach et al., 2018). The thoracic internal organs are modeled by a
lumped representation in the SHBM, for which no variability ranges
could be identified. Further evaluations with more detailed rib or
thoracic models may lead to a better understanding of how
variability in bone structure and soft thoracic organs contributes to
population rib fracture outcomes.

Fourth, the morphing procedure applied for some parameters
altered the mesh and thereby the mesh quality. A reduced mesh
quality increases the risk of numerical artifacts that can influence
the results. However, in the current work, morphed elements passed
in-house mesh quality criteria for the HBM, indicating a low risk for
numerical artifacts. Further investigating the effect of improved element
quality requires re-meshing. In that case, it is unknown if any changed
results are due to the new mesh or due to parameter changes.

4.5 Outlook

The results from this study showed that rib cortical bone thickness,
rib cross-sectional width, and rib material properties were the most
influential parameters for HBM rib fracture risk predictions. These
findings can aid the selection of model parameters in future HBM
studies. For studies aiming to model the distribution of occupant rib
fracture outcomes, including the population variability of the threemost
influential factors will likely result in a more realistic estimation of the
injury distribution, while keeping the number of model parameters low.
As individual variability exists for humans of different sex, age, height,
and weight, the validity of rib fracture distributions computed in studies
with morphed HBMs, representing occupants of different
subpopulations, can be improved by including the important
parameters identified here. HBMs that reflect both global and local
variability among different occupants can be used to develop vehicles
and safety systems with reduced rib fracture risks for all occupants.

5 Conclusion

Out of 15 evaluated structural and material factors, the greatest
influence on predicted rib fracture risk were found for rib cortical
bone thickness, rib cortical bone material properties, and rib cross-
sectional width.

For rib fracture risk analysis with HBMs for the population of
vehicle occupants, it is recommended that the variability in rib
cortical bone thickness, rib cortical bone material properties, and rib
cross sectional width be considered.
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