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Radiotherapy (RT) incorporated multidisciplinary treatment is producing excellent
clinical results, but its efficacy in treating late-stage gastric cancer is constrained
by radioresistance and RT-related toxicity. Especially, since reactive oxygen
species are the pivotal effectual molecules of ionizing radiation, improving ROS
production by nanoparticles and other pharmacological modulation to amplify
oxidation of polyunsaturated fatty acids and subsequent ferroptotic cell death is
shown to enhance cancer cell radioresponse. Herein, we constructed a
nanosystem by loading Pyrogallol (PG), a polyphenol compound and ROS
generator, into mesoporous organosilica nanoparticles named as MON@pG.
The nanoparticles exhibit proper size distribution with amplified ROS
production and substantial glutathione depletion under X-ray radiation in
gastric cancer cell line. Meanwhile, MON@PG enhanced radiosensitivity of
gastric cancer in xenograft tumor model by ROS-mediated accumulation of
DNA damage and apoptosis. Furthermore, this augmented oxidative process
induced mitochondrial dysfunction and ferroptosis. In summary, MON@PG
nanoparticles show the capacity to improve RT potency in gastric cancer by
disrupting redox balance and augmenting ferroptosis.
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1 Introduction

Although gastric cancer (GC) incidence and mortality have decreased in recent decades,
GC remains one of the greatest tumor burdens and the third most common reason for
cancer-related deaths globally (Siegel et al., 2022). In spite of recent breakthroughs in
therapeutic modalities and immunotherapy reagents, treating locally progressed and
metastatic GC is still problematic and challenging (Yu et al., 2019; Chiaravalli et al.,
2022). According to the latest evidence, preoperative radiation (RT) for GC can have a
favorable therapeutic effect, although the adjuvant RT has proven otherwise (Lee et al., 2021;
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Lordick et al., 2021). As an efficient and secure mode of therapy for
gastric cancer hemorrhaging, palliative radiation have a satisfied
hemostatic effect with positive overall survival rate (Takeda et al.,
2022). However, GC possesses affluent lymphatic network and
peritoneal metastatic tendency, the delivery of sufficient radiation
to tumor sites but tolerable dose to adjacent tissues is not always
achievable for planning target volumes, which seriously impairs the
treatment efficacy of RT in clinical practice (Mondlane et al., 2018;
Wang et al., 2021; Mao and Zhang, 2022).

Ionizing radiation induces cancer death via endogenous
oxidative damage caused by elevated intracellular levels of
reactive oxygen species (ROS) and direct DNA double-strand
breaks (DSBs) (Zou et al., 2017). By breaking multiple molecular
targets, orchestrating peroxidation reaction and meddling with the
mitochondrial membrane integrity, radiation-induced ROS
prompts metabolic disturbances in the energy homeostasis (Yang
et al., 2021). However, glutathione (GSH), a pivotal role in radical
scavenging and electrophile elimination, can effectively remove
excess ROS to protect cells against oxidation threat. Clearly, the
everlasting tug of war between ROS and GSH is crucial for tumor
resilience to radiation challenge (Liu et al., 2022).

As characterized by hypoxia with overabundant H2O2 and
glutathione (GSH) (Geng et al., 2001; Rouschop et al., 2013;
Wang et al., 2013), tumor microenvironment (TME) cultivate the
proliferation, survival, and migration of tumor cells by expansion of
aberrant tumor blood vessels (Finger and Giaccia, 2010). Hypoxia
diminishes ROS generation by reprogramming mitochondrial
energy consumption (Harada et al., 2012). Robust DNA repair
and damage-bypass mechanisms within the hypoxic TME have
been identified as important promoters of tumor progression
despite treatment efforts (Brown and Wilson, 2004; Yoshimura
et al., 2013).

Ferroptosis is defined as regulated necrosis catalyzed by iron that
occurs when ROS initiate immoderate peroxidation of
polyunsaturated fatty acids (PUFA) (Dixon et al., 2014). During
the process lipid hydroperoxides disintegrate into reactive wastes
such as malondialdehydes (MDA), which by cross-coupling may
deactivate proteins involved in membrane integrity to promote
ferroptosis (Lu, 2009). Glutathione peroxidase 4 (GPX4) retaines
special capacity to detoxify hydroperoxides to shield biomembranes
from oxidative stress, which can be inactivated by depletion of
intracellular glutathione (GSH) (Tsaturyan et al., 2022).

Various innovative strategies, including photothermal agents
and photosensitizer with catalysis properties, have been explored to
promote oxygenation in TME (Yu N. et al., 2018; Espinosa et al.,
2018; Xu et al., 2018). Many nanoparticles radiosensitizer have been
customized to overcome hypoxia-induced RT resistance by
enhancing ROS generation and inducing ferroptosis (Dou et al.,
2018; Li et al., 2018; Hassannia et al., 2019; Lyu et al., 2020).
Mesoporous organosilica nanoparticles (MON) has been an
encouraging alternative to traditional platforms in drug delivery,
due to its ample surface area, low toxicity, decent biocompatibility
(Zhang F. et al., 2021; Zhang et al., 2022). Particularly, GSH-
responsive biodegradable MON carriers has show promising
potential in tumor-specific drug release due to the reducing
property of TME with higher GSH level (Yu L. et al., 2018).

Herein, we construct a novel nanocomposites (MON@PG) by
docking pyrogallol to MON in order to sensitize GC cells to ionizing

radiation. Pyrogallol (PG), a trihydroxybenzene compound, has
shown antineoplastic effect many cancer cells including gastric
cancer by disrupting the cellular redox equilibrium (Park et al.,
2008). Notably, studies have shown that PG can promote ROS
generation in a concentration dependent manner along with
significant consumption of intracellular GSH (Mahmoud et al.,
2022). As shown in Scheme 1, the controlled release of PG from
MON@PG in cancer cells was achieved by matrix degradation in
response to GSH. The unloaded PG induces ROS burst and GSH
exhaustion, which amplifies the ROS-mediated DNA damage,
mitochondrial dysfunction, lipid peroxidation and ferroptosis
under irradiation. Essentially, the constructed MON@PG
represent a promising approach to tilt redox balance in favor of
sensitized radioresponse of GC.

2 Materials and methods

2.1 Materials

Tetraethoxysilane, cetyltrimethylammonium tosylate (CTAT),
triethanolamine (TEA), γ-chloropropyl trimethoxysilane (CP), bis
[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), 3-
aminopropyltriethoxysilane (APTES), sulforhodamine B (SRB),
polyacrylic acid (PAA), dichloromethane, pyrogallol were
acquired from MilliporeSigma (St Louis, USA). Selenium powder,
sodium powder, sodium borohydride (NaBH4), ammonium nitrate
(NH4NO3), anhydrous sodium sulfate, 30% H2O2, and ethanol
(anhydrous) were purchased from Guidechem (Hangzhou,
China). C18PMH-PEG was purchased from Ruixi Biotech, Inc.
(Xi’an, China). Trypsin-EDTA (0.25%), Hoechst 33,342
(Hoechst), DAPI, Fetal bovine serum (FBS) and DMEM medium
were supplied by Thermo Fisher Scientific Inc. (Waltham, USA).
Antibiotic/antimycotic solution was purchased from Beyotime
Biotech. Inc. (Shanghai, China).

2.2 Cell lines and animals

The American Type Culture Collection was the supplier of
mouse stomach cancer cell line (MFC) cells and human gastric
cancer cell line (MKN45), which were then cultured in DMEM with
1% antibiotic/antimycotic solution and 10% FBS. Female Balb/c
mice (age 4–5 weeks) and New Zealand rabbits (male, 25 weeks old,
2.–2.5 kg) were purchased from Experimental Animal Centre of
Guangdong Province.

2.3 Synthesis of MON@PG

According to earlier reports, bis [3-(triethoxysilyl)propyl]
diselenide (BTESePD) was properly prepared (Zhang F. et al.,
2021). Then, 0.8 g CTAT and 0.2 g TEA were stirred to dissolve
in 40 mL deionized water at 80°C for 30 min, before 1.0 g BTESePD
and 4.0 g tetraethoxysilane were added dropwise into 3 mL ethanol
and stirred for 3 more hours. The products were collected and rinsed
with ethanol for three times before extracted with 1% NH4NO3

ethanol solution for 12 h. Next, 5 mg PG was dissolved in 0.5 mL
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DMSO and mixed with 20 mg MON under sonication prior to be
shaken at 500 rpm at 37°C over night to obtain PG loaded MON.
Moreover, 20 mg C18PMH-PEG was added to the MON@PG
solution and stirred for 1 h before blow drying to prepare more
water-soluble and biocompatible reagent.

2.4 GSH-responsive drug release

Inductively coupled plasma optical emission spectroscopy (ICP-
OES, Pekin-Elmer, USA) was applied to measure the PG yield. The
equation, drug loading content (%) = mass of PG in MON@PG/
mass of MON@PG, was used to calculate the drug loading content.
MON@PGwas dissolved in 10 mMGSH solution at 37 °C to analyze
the drug release capability by ICP-OES over a 50-h period.

2.5 Characterization of MON@PG

The elemental mapping and surface morphology of the MON@
PG were investigated via a transmission electron microscope (TEM,
S-450, Hitachi Limited, Japan). Particle Size And Zeta Potential
Analyzer (Malvern Panalytical, United Kingdom) was applied to
measure the average size of the nanocomposite. The optical
properties of MON@PG was analyzed by UV–Vis spectroscopy
(UV-2600, Shimadzu Vietnam Co., Ltd., Japan). Elemental

composition of MON was investigated by energy dispersive
spectroscopy (EDS, Oxford Instruments, United Kingdom).

2.6 Biocompatibility evaluation

MON@PG with different concentration were incubated in
rabbit whole blood in a 96-well plate at 37 °C for 1 h before
centrifuged at 1,000 g for 3 min. The absorbance of supernatant
was measured by a microplate reader (Multiskan SkyHigh, Thermo
Fisher Scientific Analyzers, USA) at 540 nm. PBS and Triton
X −100 were used as negative control and positive control.
Hemolysis rate (HR) of each well was calculated as follow: HR
(%) = (OD1 −OD2) ∕ (OD3 −OD2) × 100, where OD1, OD2 and OD3

were the absorbances of MON@PG, negative control, and positive
control.

2.7 Cell viability

Cell counting kit-8 (CCK-8, Beyotime Biotech, China) was
applied to measure the cell viability by a microplate reader. MFC
cells was planted in 96-well plates and cultured for 12 h. Following
the addition of different concentrations of MON@PG (PG
concentrations of 10, 20, 40, 60, and 80 μmol/L) to each well, the
plates were either exposed to radiation (4 Gy, Varian Clinac 23EX

SCHEME 1
Illustration of MON@PG nanplatform as a radiosensitizer by enhanced tumor ferroptosis. Prepared MON@PG enter the tumor cells and disintegrate
in GSH-rich cytoplasm. The released PG boost ROS generation and GSH depletion, leading to amplified lipid peroxidation and ferroptosis under X-ray
irradiation.
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Linear Accelerator) or not. After 24 h, cell viability was calculated at
wavelength of 450 nm with optical density.

2.8 Intracellular ROS generation and GSH
depletion

DCFH-DA fluorogenic dye was used to measure intracellular
peroxyl, hydroxyl, and other ROS activity. MFC cells were planted in
12-well plates and cultured for 12 h before incubated with MON@
PG (50 μM) for 12 h, during of which the plates underwent
irradiation or not. Next, treated cells were stained with DCFH-
DA for 30 min before observation under fluorescence microscopy.
The average fluorescence intensity was assessed following flow
cytometry protocols.

To detect the intracellular GSH level, cells treated with various
concentrations of MON@PG (PG concentration of 10, 20, 40, 60,
and 80 μmol/L) with or without irradiation for 24 h were collected
for total glutathione content analysis by Total Glutathione Assay Kit
(Beyotime Biotech, China).

2.9 In vitro Antitumor assay

Cytotoxicity of different treatment groups was detected by EdU
cell proliferation assay. MFC cells were seeded in 12-well plates and
cultured for 12 h before incubated with MON@PG (50 μM) for 12 h,
during of which the plates underwent irradiation or not. Next,
treated cells were stained with YF®555 Click-iT EdU Imaging Kits
(Biorigin Inc., China) following the manufacturer’s protocol and
imaged via fluorescence microscopy.

To measure the cell apoptosis rate, MFC cells were cultured in 6-
well plates before incubated with MON@PG (50 μM), meanwhile
the plates were either exposed to radiation or not. After 24 h, treated
cells were collected and labelled by an AnnexinV-FITC/PI kit
(Beyotime Biotech, China) following the manufacturer’s protocol
prior to flow cytometry analysis.

2.10 DNA damage and comet assay

γ-H2AX, as known as phospho-H2AX, is a marker of DSBs that
can be used to detect DNA damage after irradiation. MFC cells were
cultured in 6-well plates before incubated with MON@PG (50 μM),
meanwhile the plates were either exposed to radiation or not. After
24 h, the treated cells were fixed with 4% paraformaldehyde for
15 min before treated with 0.3% Triton X-100 solution for
permeabilization. Next, cells were incubated with γ-H2AX
antibody (1:150; Affinity Biosciences) overnight at 4°C before
cultured with Cy3-labeled secondary antibody (goat anti-rabbit,
1:200; Invitrogen) and Hoechst. Inverted phase contrast
fluorescence microscope was used for imaging.

For comet assay, MFC cells were cultured in 6-well plates before
incubated with MON@PG (50 μM), meanwhile the plates were
either exposed to radiation or not. The treated cells were
suspended in low melting point agarose before layered on frosted
slides that have been previously coated with normal melting point
agarose. Then, the coated slides were immersed in cold lysis buffer at

4°C for 2 h. Next, slides were soaked in fresh alkaline electrophoresis
buffer for 40 min before electrophoresis at a field strength of 20 V for
30 min. Finally, slides were stained with propidium iodide for
25 min and analyzed with fluorescence microscopy. Tail DNA
(%) was calculated following the equation: Tail DNA (%) = Tail
intensity/(Head intensity + Tail intensity) ×100.

2.11 Evaluation of mitochondrial function

MFC cells were cultured in 6-well plates before incubated with
MON@PG (50 μM), meanwhile the plates were either exposed to
radiation or not. After 24 h, following the manufacturer’s protocols,
the treated cells were collected and tested by a MMP assay kits with
JC-1 (Beyotime Biotech, China) and a mitoROS kit (AAT Bioquest,
China).

2.12 Detection of mitochondrial
permeability transition pore

GC cells (MFC) were first seeded in CLSM culture dishes and
cultured for 12 h, then incubated with MON@PG (50 μM) for 4 h
before irradiation. After 24 h, following the protocol of a
mitochondrial permeability transition pore (mPTP) assay kit
(Beyotime Biotech, China), GC cells were stained by Calcein AM,
then fixed in paraformaldehyde (4%) for 15 min and labeled with
Hoechst for 20 min before CLSM imaging (LSM 880, Zeiss,
Germany).

2.13 Detection of lipid peroxidation

MFC cells were seeded in a CLSM culture dishes and cultured for
24 h. Then, cells were incubated for 12 h with the PBS and MON@
PG with or without X-ray irradiation (4 Gy). To measure lipid
peroxidation, the cells were incubated with C11 BODIPY 581/591
(Abclonal, China) for 1 h and washed twice with PBS to remove
excess dye. Representative images were subsequently acquired by
CLSM. Additionally, C11-BODIPY591/581 staining was combined
with flow cytometry to measure lipid peroxidation in MKN45 cells.
Furthermore MDA level was quantified via a thiobarbituric acid
assay kit (Beyotime Biotech, China) as per manufacturer’s
instructions.

2.14 Western blot analysis

GPX4 and Cleaved Caspase-3 protein (17KD) expression level
were assessed by Western blot analysis with GAPDH as internal
reference control. Protein extraction from pre-treated cells (MFC or
MKN45) were separated by SDS-PAGE and transferred onto
polyvinylideneifluoride (PVDF) membranes before PBS-5% BSA
blocking. After incubating at 4°C with GPX4 (1:500, Abcam, USA),
Anti-Cleaved Caspase-3 (ab2302, 1:500, Abcam), and GAPDH (1:
1000, Abcam) antibodies overnight, the PVDF membranes were
then washed and incubated with secondary antibodies (HRP
Conjugate, 1:2000, Abcam) at room temperature before
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visualization under chemiluminescent Western blot detection
System (Tanon, China).

2.15 In vivo antitumor effect of MON@PG

All animal protocols were approved by Animal Care and Use
Committeeof Southern Medical University. For tumor
inoculation, female Balb/c mice (age 4–5 weeks) were
subcutaneously injected with MFC cells (1 × 107) in the left
hind limb. When the tumor volume reached approximately
40 mm3, the mouse tumor-bearing models were randomized
into four groups: PBS, RT, MON@PG, MON@PG plus RT.
The mice were subsequently injected with nanocompsites via
the tail vein at 14 and 18 days after tumor-bearing, and then
treated twice with or without 4 Gy of X-ray at 15 and 19 days after
tumor-bearing. Tumor volume was recorded every 2 days until
sacrifice and calculated as follows: length × width2 × 0.5. On day
26, the tumors were harvested and weighted for HE staining and
TUNEL immunohistochemistry.

2.16 Statistical analysis

Results are represented as mean ± standard deviation (SD).
Representative immunofluorescence images are shown in the figures.
The therapeutic differences between two treatment groups were
analyzed by Student’s t-test. To analyze the differences among
multiple groups, one-way ANOVA and Tukey’s HSD Test for
multiple comparisons was utilized. Differences between groups were
calculated via SPSS 20.0 (IBM Corp., USA) and considered statistically
significant when p-values <0.05. At least three times each of the
experiments were repeated.

3 Results and discussion

3.1 Synthesis and characterization of
MON@PG

According to earlier studies (Lu et al., 2018; Guo W et al., 2020),
MON nanocarrier were constructed using the sol-gel technique and

FIGURE 1
Characterization ofMON@PGnanoplatform. (A) TEM images ofMON@PGnanoplatform. (B)Dynamic light scattering (DLS) ofMON@PG. (C)UV–Vis
spectra of free PG and MON@PG. (D) Element mapping images of MON. (E) EDS spectrogram of MON. (F) Drug release profiles of MON@PG in the
present or absent of 10 mM GSH. Outcomes are presented as mean ± SD (n = 3).
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FIGURE 2
In vitro antitumor efficacy of MON@PG in MFC cells with different treatments. (A) Cell viabilities of different treatment groups measured by CCK-8
assays. (B) Hemolysis assay of different concentrations of MON@PG incubated with red blood cells extracted from rabbits. (C) The GSH content of MFC
cells following treatments of various concentrations of MON@PG with or without RT. (D) Fluorescence microscopic images of DCFH-DA stained MFC
cells (upper). Flow cytometry (lower left) and related analysis (lower right) of DCFH-DA fluorescence following different treatments. Scale bars:
100 μm. (E) Cell apoptosis flow cytometry (upper) of MFC and Western blotting of cleaved caspase-3 in MKN45 cells (lower) following different
treatments. (F) EdU images (left) and associated analysis (right) in different treatment groups. Scale bars: 30 μm. (G) γH2AX immunofluorescence images
(left) and associated analysis (right) of DNA damage levels in different treatment groups. (H) Comet assay of PI fluorescence stained DNA damage
accumulation (left) and related analysis (right) in different treatment groups. Scale bars: 200 μm; embedded inset: 5 μm.Scale bars: 30 μm.Outcomes are
displayed as mean ± SD (n = 3, ***p < 0.001).
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ethanol. The consistent spherical morphology and monodispersion
of MON@PG were visible in TEM pictures, with the average particle
size being around 142 nm (Figure 1A&B). The absorption spectrum
of MON@PG revealed PG specific absorption (peak at 280 nm)
using UV-Vis spectroscopy (Figure 1C). After centrifuging and
magnetically stirring PG into the produced MON nanocarrier to
create MON@PG nanocomplexes, the presence of Si, O, and S in the
mesoporous nanostructure is highlighted in the EDS spectra of
MON (Figure 1E), which is corroborated by element mapping
images (Figure 1D). Together, these findings demonstrated that
the construction of PG-loaded MON nanocomposites was
successful.

Despite progress in nanodrug delivery systems, effective cancer
targeting and immediate drug release continues to be a challenge (Lu
et al., 2018). In this study, as the BTESePD and tetraethoxysilane in
MON framework provide rich selenium content to form
coordination sites for PG, the disulfide rebridging nanoparticles
displayed biodegradable characteristic in GSH-containing
environment. The rapid release of PG (>60% after 20 h) was
achieved in the presence of 10 mM GSH, which resembled the

intracellular reductive environment, whereas in the absence of
GSH, less than 30% of PG were released after 50 h (Figure 1F).
Since GC cells and its microenvironment possess rich GSH content
(Goroshinskaya et al., 2020), the MON@PG nanosystem proved to
be reduction-sensitive and active tumor-targeting.

3.2 In vitro radiosensitizing antitumor effect
of MON@PG

As reactive metabolic byproducts of the cellular respiratory
chain, ROS are ubiquitous signaling mediators in cell stress and
development. Cellular redox equilibrium andmetabolic homeostasis
could be disturbed as a direct result of dynamic ROS generation. The
connections among ROS-meditated signaling pathway crosstalk,
TME transformation in GC, epithelial-mesenchymal transition,
radio-resistance, and recurrence of GC has been extensively
established (Gu et al., 2018). To protect mammalian cells from
ROS-induced oxidative damage, GSH as a predominant non-
enzyme antioxidant is vital for the reactions needed to eliminate

FIGURE 3
Ferroptosis levels of MFC cells with various treatments. (A) Representative CLSM fluorescence images of C11-BODIPY (581/591) reported lipid
peroxidation (left) and flow cytometry of its green fluorescence (right). Scale bars: 10 μm. (B)MDA assay of MFC cells following different treatments. (C)
Western blot Imaging and Analysis of GPX4 protein expression in both MFC andMKN45 cells. Outcomes are displayed as mean ± SD (n = 3, ***p < 0.001).
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cascading ROS storms. Researchers have attempted to diminish
radioresistance of cancer cell by deactivating GSH-orchestrated
DSBs self-repair (Mao et al., 2022; Zhou et al., 2022). Many
Innovative nanocatalytic reagents stimulated massive ROS
production which surmounted GSH-coordinated antioxidation to
initiate cytochrome c release, mitochondrial malfunction, and
eventually apoptosis of radioresistant cancer cells (Liu et al., 2022).

As a natural substance, PG has been use as a additive in drug
manufacturing. By disrupting the balance of ROS and GSH,
pyrogallol has been shown to have antitumor effect against lung
cancer cells, HeLa cervical adenocarcinoma cells, colon cancer cells
and gastric cancer cells (Mahmoud et al., 2022). According to Park
WH et al., considerable ROS augmentation was seen along with

dose-dependent suppression of cell proliferation in SNU-484 gastric
cancer cells. The GSH content, however, is only depleted when the
PG concentration rises to 80 μM (Park et al., 2008).

In this study, a CCK-8 kit was employed to determine the vitality
of GC cells following various intervention to quantify the cytotoxity
effect. Since it has been established that MON has excellent
biocompatibility (Guo et al., 2022), the cytotoxicity MON@PG
exhibited was consistent with previous study (Figure 2A) (Park
et al., 2008). Besides, the results also showed that MON@PG
nanocomposites did not cause obvious hemolysis at any tested
concentrations (Figure 2B). Once combined to irradiation, a
dose-dependent increase in MON@PG’s cytotoxicity was
observed in MFC cells. To evaluate GSH depletion property of

FIGURE 4
Mitochondrial dysfunction induced by MON@PG combined with irradiation. (A) MitoROS level of different treatment groups: flow cytometry
imaging (left) and associated analysis (right). (B) Flow cytometry of JC-1 fluorescence (left) and associated statistical analysis (right) of different treatment
groups. (C) Representative mPTP CLSM fluorescence images of treated GC cells (left) and associated statistical analysis (right). Scale bars: 10 μm.
Outcomes are displayed as mean ± SD (n = 3, ***p < 0.001).
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MON@PG, a panel of different concentration of MON@PG was
applied to treat cells following RT protocol. The GSH content of the
cells treated with MON@PG progressively fell from 83.3% to 21.1%
as the concentration increased while the MON@PG plus RT group
showed a decrease from 80.2% to 17.7%, which show no significant
change. Moreover 4 Gy irradiation alone only have a minimal effect
on GSH content after 24 h (Figure 2C), suggesting MON@PG
possess excellent GSH consumption ability independent of
irradiation. Considering this, MON@PG containing PG (50 mM,
10 μg/mL) was selected for the following tests.

2′,7′-dichlorofluorescin diacetate (DCFH-DA) fluorogenic dye,
which is cell permeant before deacetylated by esterases to a non-
fluorescent compound, was further employed to measure
intracellular ROS level. As shown in Figure 2D, control group
showed weak fluorescence, while the RT and MON@PG groups
showed minimal intensity. Once combined with MON@PG to
ionizing radiation, the intracellular green fluorescence
significantly increased, indicating that MON@PG and RT could
generate ROS synergistically. Furthermore, the intracellular ROS
intensity was quantified using flow cytometry. Correspondingly,
MON@PG plus irradiation group showed roughly 2.2 and 2.6 fold
increase of ROS level respectively, compared to control group

(Figure 2D). Taken together, MON@PG significantly enhance the
intracellular ROS burst generated by ionizing radiation.
Furthermore, a drastically decreased GSH concentration limited
cell radical scavenging activity and allowed cascading ROS attack,
activating apoptosis signalling pathways (Redza-Dutordoir and
Averill-Bates, 2016). As shown in Figure 2E, MON@PG plus RT
led to 1.6-fold greater level of overall apoptosis (about 57.9%) than
RT and 1.6-fold higher level than MON@PG (about 39%)
respectively. Furthermore, the apoptosis-inducing effects was
confirmed by Western blot analysis as combined treatment group
showed highest expression of active caspase-3, which is a key
mediator of apoptosis-inducing protease pathway (Figure 2E)
(Porter and Janicke, 1999).

EdU test was further applied to measure the inhibition of cell
proliferation following different MON@PG treatments. EdU (5-
ethynyl-2′-deoxyuridine), a nucleoside analog of thymidine, can be
specifically incorporated into DNA of dividing cells to measure de
novoDNA synthesis. We discovered that the EdU fluorescence (red)
positive cells in MON@PG with irradiation group were significantly
lower than that of MON@PG or radiation alone, suggesting that
MON@PG improved the antitumor effect of irradiation (Figure 2F).
Furthermore, the expression of γ-H2AX was measured since it is a

FIGURE 5
The therapeutic efficacy of MON@PG combined with radiotherapy in MFC CDX models. (A) Schematic illustration of therapeutic experiments CDX
models. The arrows point out the schedule of tail-vein injection (green) and X-ray radiation (orange). (B)Measurements of tumormasses after sacrifice in
different treatment groups (n = 5). (C) Tumor volume growth curves of mice from different groups. (D) Weights of tumors from different groups. (E)
Quantitative analysis of percentage of TUNEL positive cells. (F)HE and TUNEL staining images of tumors samples in different treatment groups. Scale
barss: 100 μm. Statistical analysis: two-tailed, unpaired Student’s t-test, ***p < 0.001.
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DSB sensitive biomarker that is significantly expressed throughout
the nucleotide excision repair process and therefore indicates DNA
damage (Mah et al., 2010). Because of the combination therapy’s
ability to produce ROS which can damage nuclear DNA, MON@PG
plus RT increased the expression level of γ-H2AX by 1.6-times
higher than RT group and by 1.8-folds compared to MON@PG
alone (Figure 2G). Furthermore, the comet assay was performed to
examine double DNA strand breaks. When DNA is damaged, the
DNA pieces move and create comet-like patterns (Olive and Banath,
2006). In MFC cells treated with MON@PG plus irradiation, the
frequency of DNA strand rupture was 72.82%, and the DNA
fragments exhibited comet-shaped tails instead of the smooth
edges and complete nuclei in control group (Figure 2H). When
coupled with RT irradiation, the MON@PG generated an amplified
lethal effect on cancer cells by significantly tilting redox balance,
which may directly induce ferroptosis (Bano et al., 2022).

3.3 In vitro MON@PG plus RT induced
ferroptosis

Previous studys have shown that anti-oxidant GSH acts as
cofactor with GPX4 to reduce lipid hydroperoxides. The depletion
of GSH deactivates GPX4 leading to cumulation of ROS-mediated
lipid peroxide and ferroptotic cell death (Lu, 2009; Dixon et al., 2014;
Hassannia et al., 2019). To further evaluate the cytotoxic lipid
peroxidation triggerd by MON@PG, the C11-BODIPY lipid
peroxidation sensor was used to detect the peroxidated PUFA
products in the MFC cells treated with PBS, MON@PG and
irradiation. Oxidied C11-BODIPY causes a shift of fluorescence
intensity from 590 nm (red) to 510 nm (green). As seen in
Figure 3A, MON@PG plus RT group showd the strongest green
fluorescence whcih is about 2 folds of the intensity in RT andMON@
PG group, indicating the highest lipid peroxidation level among all
groups. This finding was further confirmed by C11-BODIPY staining
with flow cytometery analyses. Additionally, MDA as the final
products of PUFA peroxidation is commonly used as a marker of
oxidative stress in cells (Tsaturyan et al., 2022). As illustrated in
Figure 3B, compared with other treatment groups, the MDA level
increased significantly in MON@PG plus RT group. Furthermore,
GPX4 employs GSH to neutralize the toxity of PUFA peroxides and
protects cells from ferroptosis (Zhang Y. et al., 2021). The expression
of GPX4 protein in MON@PG plus irradiation group showed the
lowest expression in this study (Figure 3C), suggesting that GPX4 was
downregulated after MON@PG plus radiation exposure. From these
results, we inferred that the MON@PG-sensitized RT significantly
induced ferroptosis of tumor cells by disrupted redox homeostasis and
GPX4 downregulation, whichmay lay an experimental foundation for
application of MON@PG in future chemoradiotherapy.

3.4 MON@PG induced mitochondrial
dysfunction

Since the mitochondrial electron transport chain is the primary
location of ROS synthesis, it has been established that mitochondria
is one of the a main targets for ROS damage (West et al., 2011).
Studies have revealed that bacterial DNA-like motifs exist in

mitochondrial DNA (mtDNA), and that these motifs are
essential for the activation of antigen-presenting dendritic cells
for the innate antitumor immune response (Fogal et al., 2010;
Gao et al., 2017). Since PG can target mitochondria in a variety
of cancers according to earlier findings (Park, 2016; Revathi et al.,
2019), mitochondria may be one of the possible targets of MON@
PG plus radiation treatment. To detect ROS production in the
mitochondria, a red superoxide indicator (MitoROS 580) that is
tailored to mitochondria ROS detection was utilized. As depicted in
Figure 4A, only mild red fluorescence of MitoROS 580 was observed
in the MON@PG or RT group compared to control group, however
a potent red fluorescence was observed in MON@PG treated cells
once exposed to radiation, indicating that A significant amount of
ROS was produced in cell mitochondria. Loss of MMP (ΔΨm), a
useful biomarker for evaluating mitochondrial function, may
indicate a change in mitochondrial permeability (West et al.,
2011; Zacharioudakis and Gavathiotis, 2022). Therefore, the
MMP of different MON@PG treatments was measured via flow
cytometry by calculating the ratio of fluorescence intensity (red/
green) after JC-1 labeling. The MON@PG plus irradiation groups
had the lowest ratio compared to RT and MON@PG alone group,
further demonstrating that MON@PG sensitized RT can
significantly increase the permeability of mitochondrial
membrane of targeted cells (Figure 4B).

Cytosolic mtDNA, a especially robust pathogen related molecular
patterns that activates numerous innate immune sensors, is particularly
susceptible to mitoROS attack due to shortage of histone formation
(Guo Y et al., 2020). SincemPTP is essential for mtDNA to disseminate
from mitochondria into cytosol, an mPTP assay kit was applied to
measure the impact of MON@PG-induced MitoROS on the
mitochondrial membrane permeability. This assay employs cobalt
chloride to quench the Calcein fluorescence except for
mitochondrial matrix after staining the entire cell with Calcein AM
(green fluorescence). Cobalt cannot penetrate if the inner
mitochondrial membrane is intact, and the mitochondrial matrix
glows green. The Calcein fluorescence is muted and no fluorescence
is seen if the mitochondrial membrane is damaged. In the present
study, almost no green fluorescence was seen in the MON@PG plus
irradiation groups compared to control group and monotherapeutic
groups (Figure 4C), showing that the combined treatment considerably
damaged the mitochondrial structural integrity and its membrane
barrier. Taken together, MON@PG may serve as a potential
radiosensitizer for the radiotherapy of gastric cancer. However, it is
still unclear how MON@PG acts as an antitumor nanoplatform under
irraditaion in experimental animal models.

3.5 In vivo radiosensitizing effects of
MON@PG

The antitumor effect of MON@PG was evaluated on mouse
cancer models in vivo. Balb/c mice models with MFC cell derived
xenograft were established and randomized into four groups when
the tumor volume reached 40 mm3 (Figure 5A). During a 26-day
observation period along with irradiation and intravenous injection
of PBS and MON@PG, tumor growth parameters was measured
every 2 days. MON@PG plus RT group showed a significant
reduction in tumor growth with a 91.5% decrease in tumor
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volume compared with control group, whereas the RT alone group
showed an mild antitumor effect (67.4%) (Figure 5B&C).
Furthermore, average tumor weight in MON@PG plus RT group
significantly decreased compared to other groups (Figure 5D),
suggesting that MON@PG may serve as a potential
radiosensitizer of in vivo tumor growth under radiotherapy.

To further verify the promising therapeutic effect pathologically,
tumor samples were stained with Hematoxylin-Eosin Stain (HE)
and terminal deoxynucleotidyl transferase-mediated deoxyuridine
triphosphate-nick end labeling (TUNEL) staining. MON@PG plus
RT group exhibited profound necrosis on HE staing while control
group showed cancer cells that spreads into muscle. In TUNEL assay
that has been designed to recognize DNA degradation in apoptotic
tissues, the tumor samples from MON@PG plus RT group showed
increased cancer cell apoptosis (dark brown staining) compared
with other groups (Figure 5E &F). These results indicated that the
MON@PG were highly effective in radiotherapy for gastric cancer.

4 Conclusion

Herein, we constructed an nanoplatform by loading PG into
mesoporous organosilica nanoparticles to boost both intracellular
and mitochondrial ROS level, deplete GSH and downregulate GPX4.
This GSH-responsive degradable nanoplatform possess tumor
targeting property and elevates intracellular ROS accumulation,
which causes DNA fragmentation and mitochondrial
dysfunction. Hence, the MON@PG nanoplatform successfully
inhibited cancer proliferation in vitro and in vivo by inducing
ferroptotic cell death to sensitized radiotherapy, offering a
promising alternative chemoradiotherapy for late-stage gastric
cancer treatment.
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