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Recent clinical studies have suggested that introducing 3D patient-specific aortic
root models into the pre-operative assessment procedure of transcatheter aortic
valve replacement (TAVR) would reduce the incident rate of peri-operative
complications. Tradition manual segmentation is labor-intensive and low-
efficient, which cannot meet the clinical demands of processing large data
volumes. Recent developments in machine learning provided a viable way for
accurate and efficient medical image segmentation for 3D patient-specific
models automatically. This study quantitively evaluated the auto segmentation
quality and efficiency of the four popular segmentation-dedicated three-
dimensional (3D) convolutional neural network (CNN) architectures, including
3D UNet, VNet, 3D Res-UNet and SegResNet. All the CNNs were implemented in
PyTorch platform, and low-dose CTA image sets of 98 anonymized patients were
retrospectively selected from the database for training and testing of the CNNs.
The results showed that despite all four 3D CNNs having similar recall, Dice
similarity coefficient (DSC), and Jaccard index on the segmentation of the aortic
root, the Hausdorff distance (HD) of the segmentation results from 3DRes-UNet is
8.56 ± 2.28, which is only 9.8% higher than that of VNet, but 25.5% and 86.4%
lower than that of 3D UNet and SegResNet, respectively. In addition, 3D Res-UNet
and VNet also performed better in the 3D deviation location of interest analysis
focusing on the aortic valve and the bottom of the aortic root. Although 3D Res-
UNet and VNet are evenly matched in the aspect of classical segmentation quality
evaluation metrics and 3D deviation location of interest analysis, 3D Res-UNet is
the most efficient CNN architecture with an average segmentation time of 0.10 ±
0.04 s, which is 91.2%, 95.3% and 64.3% faster than 3DUNet, VNet and SegResNet,
respectively. The results from this study suggested that 3D Res-UNet is a suitable
candidate for accurate and fast automatic aortic root segmentation for pre-
operative assessment of TAVR.
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1 Introduction

Transcatheter aortic valve replacement (TAVR) is a
revolutionary technology for treating aortic stenosis (AS), with
the advantages of no thoracotomy, less trauma, and faster
recovery than surgical valve replacement (Elattar et al., 2014;
Eleid and Holmes, 2017). With the emerging trend of expanding
TAVR indications to younger and low-surgical-risk AS patients, the
safety of TAVR has become a universal concern which requires
careful patient-specific pre-operative planning and assessment
(Walther et al., 2015; Leon et al., 2016; Puri et al., 2017; Youssefi
et al., 2017; Mack et al., 2019). In an attempt to gap the limitation of
the medical imaging assessment, recent developments provide
powerful tools to support clinicians for precise patient-specific
pre-operative morphological and functional assessment, such as
image-based patient-specific 3D reconstruction, 3D printing,
virtual reality (VR), augmented reality (AR) and numerical
simulation techniques represented by finite element analysis
(FEA) and computational fluid dynamics (CFD) (Levin et al.,
2020; Jian et al., 2021; Otto et al., 2021; Wang et al., 2021;
Chessa et al., 2022; Li et al., 2022).

As the basis of these applications, the rapid and accurate
segmentation and 3D reconstruction of medical images have
gradually become the key issues for personalized medicine.
Traditional segmentation procedures mainly rely on manual
operations requiring specialist knowledge, which are still time-
consuming and labor-intensive (Kasel et al., 2013; Maragiannis
et al., 2014; De Jaegere et al., 2016; Qian et al., 2017;
Haghiashtiani et al., 2020). Especially when it comes to pre-
operative TAVR assessment, manual segmentation generally cost
tens of minutes due to the complex anatomy of the aortic root,
including the ascending aorta, aortic valve, and coronary arteries.
Thus, manual segmentation cannot provide a time-sensitive clinical
recommendation with the increasingly large scale of patients
receiving TAVR and the urgency of TAVR when patients with
severe AS occasionally present with an acute decompensated state
(Elbadawi et al., 2020). Moreover, the quality and reproducibility of
manual segmentation are difficult to guarantee, and human errors
induced in the manual segmentation stage could result in inaccurate
or even wrong analysis results (Bertolini et al., 2022). These
drawbacks prohibit its daily application in clinical centers.

To address the difficulties mentioned above, studies on the
automatic segmentation of medical images started in the middle
of the 1990s. The early stage of automatic image segmentation is
featured by the methods based on supervised techniques such as
active shaped models, which still require human intervention in
extracting discriminant features from the images (Cootes et al., 1995;
Cribier, 2002; Bengio et al., 2013; Kenny and Monaghan, 2015).
With the growing clinical demand and the development of artificial
intelligence techniques, fully automatic medical image segmentation
methods based on deep learning (DL) overcame the drawbacks
mentioned above and have become the technique of choice over the
past decade (Smith et al., 2011; Litjens et al., 2017; Shen et al., 2017;
Minaee et al., 2020). Among the segmentation-dedicated DL
methods, 3D CNNs based architectures that were capable of
analyzing volumetric medical image data provided powerful tools
for the 3D reconstruction of lesions and organs (Thalji et al., 2014;
Ranschaert et al., 2019; Panayides et al., 2020; Tsakanikas et al., 2020;

Banerjee et al., 2021; Romaszko et al., 2021; Harrison et al., 2022).
Among these, 3D UNet was the first medical image segmentation-
dedicated 3D CNN, which was proposed in 2016 (Çiçek et al., 2016).
It was first used to segment kidneys and then quickly extended to
other tissues or organs, such as cardiac, brain and lung (Lundervold
and Lundervold, 2019; Chen et al., 2020; Liu et al., 2021a). Since
then, several novel 3D CNNs have been proposed for medical image
segmentation, including VNet, variants of 3D UNet (3D Res-UNet,
3D Dense-UNet, 3D Attention-UNet, etc.), SegResNet, etc (Milletari
et al., 2016; Fang et al., 2019; Myronenko, 2019; Liu et al., 2021b).

In recent years, these 3D CNNs have been gradually used to
segment the aortic root automatically (Fassa et al., 2013; Fan et al.,
2019; Ravichandran et al., 2019; Macruz et al., 2022; Sieren et al.,
2022). Sieren et al. compared the performance between manual and
3D UNet segmentation based on CTA exams of the aorta of
191 patients and demonstrated that automated aorta
segmentation by using 3D UNet is feasible (Sieren et al., 2022).
Macruz et al. presented a 3D UNet-based framework for automated
segmentation of the thoracic aorta in thoracic CT studies, which
provides the basis for determining aortic diameter measurements
and accurately predicting thoracic aortic aneurysms (Macruz et al.,
2022). Ravichandran et al. evaluated the performance of 3D UNet
and its variants in 3D segmentation of the aortic root under small
samples by using a single evaluation metric Dice similarity
coefficient (DSC), which indicated that the segmentation quality
of the variants of 3D UNet is better than that of 3D UNet
(Ravichandran et al., 2019). Although the current state-of-the-art
literature focusing on CNN-based segmentation of aortic root is
promising, there is a lack of a comprehensive evaluation of both
segmentation quality and efficiency of the current popular 3D CNN
architectures, especially for TAVR procedure which requires rapid
and accurate pre-operative assessment.

Therefore, in this study, we compared the comprehensive
segmentation performance of the four popular segmentation-
dedicated 3D CNNs (3D UNet, VNet, 3D Res-UNet and
SegResNet) under small sample low-dose CT datasets and
realized a fully automated, accurate segmentation and
reconstruction framework, which provides a reliable guarantee
for pre-operative morphological and functional assessment
of TAVR.

2 Materials and methods

2.1 Data preparation

2.1.1 Imaging data
In this study, 98 sets of anonymized chest CTA images acquired

from low-dose multidetector 128-slice CT scanners (uCT 760,
United Imaging Healthcare, Shanghai, China) were
retrospectively collected from the pre-operative TAVR
examination database of patients without calcification. All the
scans included the aorta with 192–339 slices in the Z-axis. The
slice size, thickness, and tube voltage are 512 × 512 pixels, 0.75 mm,
and 120 kV, respectively. The pixel spacing of the scans varied
between 0.25 and 0.60 mm. The axial spacing between slices is
0.5 mm. The image sets in Digital Imaging and Communications in
Medicine (DICOM) format were manually inspected, and three
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image sets were excluded due to low signal-noise ratio or severe
artifacts.

2.1.2 Label annotation
To reduce human error, two clinical engineers experienced in

image segmentation and a senior radiologist participated in the
labeling process. Firstly, the patient CT data in DICOM format were
imported intoMaterialise Mimics version 21.0 software (Materialise,
Leuven, Belgium) and three orthogonal sections were manually
established based on the aortic annulus plane using the
multiplane reconstruction function of the software (Ya’qoub
et al., 2022). After that, the engineers individually labeled the
mask of the aortic root with the help of the threshold
segmentation algorithm (Underwood et al., 2000) (Figure 1). The
mask covered the entire aortic root, an approximately 40 mm long
segment starting from the aortic annulus plane. What’s more, the
position of the coronary ostium is crucial for pre-operative
assessment of TAVR to avoid coronary obstruction. Therefore,
the coronary arteries about 10 mm distal from the coronary
ostium were included in the mask as well. The average manual
mask time for each patient is about 26 min. After the label
annotation, the senior radiologist decides the label to be used in
the experiments and the ground truth based on the quality
assessment.

2.1.3 Image pre-processing
Due to the original CTA images being too large and noisy, a

series of data pre-processing is conducted before training and
validation. Firstly, noise reduction and normalization of the
images were performed to enhance the signal-to-noise ratio of
the images. Next, the pixel and axial spacing were adjusted to
1 and 0.75 using bilinear interpolation to compress the data. In
addition, to increase data diversity and improve training robustness,
data augmentation was conducted on the pre-processed images
following the methods described by Chlap et al. (2021) and He
et al. (2011). All the volume data in the training set were augmented
by randomly cropping into four sub-volumes, with the center being
a foreground or background voxel based on the Positive-to-Negative
Ratio of 1:1. Especially the size of the cropped sub-volumes used in
this study was selected by the pre-tests which compared the

segmentation performance of the three different sub-volume sizes
(64 × 64 × 64 pixels, 96 × 96 × 96 pixels, 128 × 128 × 128 pixels) on
the validation set. After the augmentation, the original training set
size was multiplied four times.

2.2 CNN architectures for evaluation

Four 3D CNN architectures were evaluated in this study,
including 3D UNet, 3D Res-UNet, VNet, and SegResNet. The
specific differences between the evaluated 3D CNN architectures
are listed in Table 1.

2.2.1 3D UNet model
The 3DUNet model is a popular architecture based on 3DCNN,

which consists of an encoder path and a decoder path (Çiçek et al.,
2016). The 3D UNet used in this study has five layers with 16, 32, 64,
128 and 256 feature channels, respectively. In the encoder path, each
layer contains two 3 × 3 × 3 convolutions, and then a 2 × 2 × 2 max
pooling with strides of two in each dimension. In the decoder path,
each layer consists of an up-convolution of 2 × 2 × 2 by strides of two
in each dimension, followed by two 3 × 3 × 3 convolutions. The
shortcut connections of equal-resolution layers in the encoder path
provide high-resolution features for the decoder path. Instance
normalization is used to prevent contrast shifting, ensuring input
image contrast is not skewed by being batched with images with
significantly different contrast ranges.

2.2.2 VNet model
The VNet model is another widely used architecture for 3D

medical image segmentation (Milletari et al., 2016). In this
architecture, a residual block was added to each layer, and the
pooling operations in 3D UNet were replaced by 2 × 2 × 2 strided
convolutions. In addition, the channel concatenation in the skip
connections of 3D UNet was replaced with the element-wise
summation. Benefiting from replacing pooling with convolution,
VNet not only reduces memory demand during training but also
makes the training process better understood and analyzed. In
addition, the use of residual block alleviates the gradient
vanishing problem in the deep networks. In this study, the VNet

FIGURE 1
Schematic diagram of 3D label of aortic root. (A) Sagittal, coronal, horizontal view of label. (B) 3D visualization of label of aortic root.
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has 5 layers. The residual block in the first, second, and rest layers
contain one, two, and three 5 × 5 × 5 convolutions, respectively.

2.2.3 3D Res-UNet
The 3D Res-UNet model is one of the most famous derivations

of the 3D UNet model. Compared with 3D UNet, 3D Res-UNet
improved the accuracy and efficiency in image segmentation by
introducing residual block into the down-sampling path and up-
sample unit in the up-sampling path (Yang et al., 2019). It also
applied the 2 × 2 × 2 convolutions to replace the pooling operation.
Furthermore, parametric rectifying linear units allow the network to
learn a better activation, improving segmentation performance.

2.2.4 SegResNet
The SegResNet model was recently proposed and performed well in

3D MRI brain tumor segmentation as an encoder-decoder-based
asymmetrical 3D CNN architecture with a larger encoder to extract
image features and a smaller decoder to segment the image (Myronenko,
2019). Each encoder layer has a different number of ResNet-like blocks.
Different from other networks, each decoder layer first begins with
upsizing to reduce the number of features by using 1 × 1 × 1 convolution
and double the spatial dimension by using 3D bilinear up-sampling,
followed by the addition encoder output of the equivalent spatial level.

2.3 Training and testing

2.3.1 Implementation details
All the 3D CNNs were trained for 500 epochs using the Adam

optimizer with the following parameters: learning rate = 0.0001, β1 =
0.9, β2 = 0.999, ε = 1e-8, batch size = 1. The Dice coefficient loss
function (Diceloss) is used as loss function to evaluate the
convergency of the training in all experiments. The definition of
Diceloss is given in Eq. 1, where ygt and ypred are the ground truth
and binary predictions from CNNs, ε was a constant set to 1e-5.

Diceloss � 1 − 2 ygt ∩ ypred
∣∣∣∣∣ ∣∣∣∣∣ + ε

ygt
∣∣∣∣∣ ∣∣∣∣∣ + ypred

∣∣∣∣∣ ∣∣∣∣∣ + ε
(1)

The entire dataset was randomly divided into a training set
(76 images) and a validation set (19 images). To explore the impact
of the size of the training set on the segmentation performance, a
sensitivity analysis was first conducted by setting up the three
different sizes of the training set, 25%, 50% and 100% of the
entire training set, respectively. After that, a five-fold cross-
validation scheme was adopted for each 3D CNN under the
entire training set. Due to the large original image, a 160 ×

160 × 160 pixels sliding window is used to divide the validation
set images to improve computing efficiency.

All experiments were implemented on a workstation powered by
an NVIDIA GeForce RTX 3090 GPU with 24 GB of RAM. The code
was implemented with PyTorch 1.9.1 in Windows 10. The overall
experimental design of the workflow diagram is shown in Figure 2.

2.3.2 Evaluation metrics
To quantitively compare the segmentation performances of the 3D

CNNs, five metrics widely used in segmentation quality assessment
were evaluated in this study, including recall, Dice similarity coefficient
(DSC), Jaccard index, Hausdorff distance (HD) and 3D deviation. The
specific definitions of the metrics are listed below.

Recall, also called Sensitivity or True Positive Rate (TPR),
measures the portion of positive voxels in the ground truth
identified as positive by the predictions of CNNs (Eq. 2).

Recall � ygt ∩ ypred
ygt

(2)

DSC is the pair-wise overlap ratio between the predictions and
the ground truth, ranging from 0 to 1 (Eq. 3).

DSC � 2 ygt ∩ ypred
∣∣∣∣∣ ∣∣∣∣∣
ygt
∣∣∣∣∣ ∣∣∣∣∣ + ypred

∣∣∣∣∣ ∣∣∣∣∣ (3)

Jaccard index also reflects the overlap ratio between the
intersection and union of predictions and the ground truth with
the range between 0 and 1 (Eq. 4).

Jaccard � ygt ∩ ypred
∣∣∣∣∣ ∣∣∣∣∣
ygt ∪ ypred
∣∣∣∣∣ ∣∣∣∣∣ (4)

HDmeasures the distance between ygt and ypred by indicating the
greatest distances from a point in ypred to the closest point in ygt
(Eq. 5).

HD � max dygtypred , dypredygt{ }
� max max

x∈ygt
min
y∈ypred

d x, y( ), max
y∈ypred

min
x∈ygt

d x, y( ){ } (5)

The CNN-based segmentation results and ground truth were 3D
reconstructed using the Python platform and VTK library. The 3D
deviation metrics between CNN-based segmentation and ground truth
were analyzed using Geomagic software (Geomagic Inc., Research
Triangle Park, NC). In addition, the segmentation efficiency of the
3D CNNs was compared by using the average segmentation time spent
on the validation set.

TABLE 1 Model architecture comparison of different 3D CNNs.

Networks Params/M Layers Kernel size Residual block Up/down sampling Skip connection

3D UNet 5.70 5 3 × 3 × 3 Max pooling concat

VNet 45.60 5 5 × 5 × 5 √ convolution add

3D Res-UNet 4.81 5 3 × 3 × 3 √ convolution concat

SegResNet 1.17 4 3 × 3 × 3 √ convolution add
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3 Results

3.1 Impacts of sub-volume size on model
performance

To explore the suitable sub-volume size of the training set for
our study, the pre-tests of the impacts of sub-volume size on 3D
CNNs performance were conducted. The three different sub-
volume sizes (64 × 64 × 64 pixels, 96 × 96 × 96 pixels, 128 × 128 ×
128 pixels) of the training set were selected to train and validate

3D Res-UNet for just one fold under the entire training set.
Subject to hardware limitation, the sub-volume size of 128 × 128
× 128 pixels was the largest size implemented to train 3D Res-
UNet in this study. The results showed that for these three sub-
volume sizes, the convergence rate was negatively related to the
sub-volume size, while segmentation quality performance is
positively related to that (Figure 3) (Figure 4). This might
indicate that the larger sub-volume size would produce better
segmentation quality. In the subsequent studies, 304 (76 × 4)
augmented 128 × 128 × 128 pixels sub-volumes were employed to
train different 3D CNNs.

FIGURE 2
The overall experimental design of the workflow diagram.

FIGURE 3
The influence of different sizes of sub-volumes on the
convergence of the loss function during training.

FIGURE 4
The influence of different sizes of sub-volumes on the
segmentation performance of validation set samples.
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3.2 Impacts of training dataset sizes on
model performance

3.2.1 Training performance
Figure 5 shows the Diceloss profiles of training and validation

under different sizes of the training set. It demonstrated that the
convergence rate of all the 3DCNNs was positively related to the size
of the training set. When trained by 25% of the entire training set,
only VNet performed a notable overfitting phenomenon which
might be caused by its higher model complexity and the limited
dataset. When trained by 100% of the entire training set, the training
set error and the validation set error of 3D CNNs had the same
downward trend, indicating that all 3D CNNs found a good fit
between under-fitting and over-fitting in the training process.
Therefore, the subsequent five-fold validation was conducted to
compare the segmentation performance of the four 3D CNNs using
the entire training set and the validation set (Section 3.3). In
addition, compared with VNet and SegResNet, 3D UNet and 3D
Res-UNet performed a faster convergence rate by reaching a training
Diceloss of nearly 0.15 in less than 50 epochs with 100% of the entire
training set.

3.2.2 Segmentation performance
Figure 6 shows the segmentation performance of the 3D CNNs

under the different sizes of the training sets. The segmentation
performance of all the 3D CNNs was affected by the size of the
training dataset. Among these 3D CNNs, the segmentation quality

of VNet is more sensitive to the size of the training set. Table 2
showed that the evaluation metrics notably deteriorated with the
decrease of training set size in VNet, while the performance
deterioration in other CNNs is mild.

In detail, when the size of the training set was reduced to 50% of
the entire training set, the segmentation quality of the 3D CNNs was
comparable on the evaluationmetrics. However, when the size of the
training set was reduced to 25% of the entire training set, the
segmentation quality of VNet showed the most notable
deterioration on recall, DSC, and Jaccard by 3.83%, 6.97%, and
11.54%, while that of the other three 3D CNNs was decreased by less
than 4%. Even though the recall, DSC, and Jaccard of 3D UNet, 3D
Res-UNet and SegResNet did not show a great decrease, HD of them
was sharply deteriorated by 13.96%, 56.41% and 34.67%,
respectively, indicating that the inadequate training dataset could
severely affect the CNN-based segmentation performance.

3.3 Segmentation performance comparison

3.3.1 Segmentation quality evaluation
Table 3 shows the segmentation performance metrics of the 3D

CNNs. All the 3D CNNs achieved amean DSC higher than 0.95 over
the five-fold cross-validation, and the differences in mean DSC
between groups were less than 1%. Similar to DSC, the differences in
other metrics between groups were less than 1%, including recall and
Jaccard index. In terms of HD, VNet (7.72 ± 1.89) and 3D Res-UNet

FIGURE 5
The performance of the training and validation process. The changes of the Diceloss of (A) 3D UNet, (B) VNet, (C) 3D Res-UNet and (D) SegResNet
during training and validation process under different training set sizes.
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(8.56 ± 2.28) performed better than SegResNet (10.74 ± 5.41) and 3D
UNet (15.96 ± 8.71). The difference between VNet and 3DRes-UNet
is within 10%, while the difference between VNet and 3D UNet as
well as SegResNet is beyond 30%.

To provide the details of 3D deviations between CNN-based
segmentation and ground truth, 3D surface reconstruction using the

marching cubes algorithm based on Python platform and VTK library
was conducted to obtain the 3D reconstruction models from CNN-
based segmentation and ground truth. Specifically, due to the bilinear
interpolation conducted to compress the data in image pre-processing,
it is essential to re-sample the size of CNN-based automatic
segmentation to the original image size before 3D reconstruction.

FIGURE 6
The segmentation performance of the four 3DCNNs trained by different size of the training set, including (A) Recall, (B)DSC, (C) Jaccard, and (D)HD
metrics.

TABLE 2 The segmentation quality of the four 3D CNNs under the different size of the training dataset.

Model The size of training set (%) Recall/% DSC/% Jaccard/% HD/%

3D UNet 100 — — — —

50 −1.55 0.05 0.07 −6.16

25 −0.67 −0.29 −0.55 −13.96

VNet 100 — — — —

50 −1.70 −1.46 −2.72 −18.04

25 −3.83 −6.97 −11.54 −80.93

3D Res-UNet 100 — — — —

50 0.03 −0.93 −1.72 −4.88

25 −2.40 −2.02 −3.67 −56.41

SegResNet 100 — — — —

50 0.37 0.11 0.17 −32.34

25 −1.18 −0.28 −0.52 −34.67
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After automatic 3D reconstruction, we processed the reconstruction
models from CNN-based segmentation and ground truth by surface
smoothing (Figure 7). To evaluate the 3D deviations between the 3D
reconstruction models from CNN-based segmentation and ground
truth, four metrics widely used in 3D model deviation analysis were
evaluated in this study, including maximum distance, average distance,
standard deviation (STD), and rootmean square (RMS) value (Table 4).
It was found that the segmentation results of 3D UNet have the largest
maximum and averaged deviation from the ground truth compared
with other evaluated 3DCNNs, whichmight be attributed to the lack of
residual block.

Furthermore, the results from this study also suggested that
even though the CNN-based segmentation results have the same
DSC and HD, there is no necessary connection between the 3D
deviation locations and classical evaluation metrics. In some cases
of high DSC (>0.94) and low HD (<7), a large deviation was
observed at the location of interest, including the aortic valve and
the bottom of the aortic root, which is crucial for pre-operative
morphological and the subsequent functional assessment of
TAVR (Figure 8A). Therefore, it is incomplete and limited to
evaluate the segmentation performance of 3D CNNs on the aortic
root solely relying on the classical metrics. In response to this

problem, a statistical analysis of the maximum deviation location
was performed based on the 3D deviation cloud between the
CNN-based segmentation and ground truth, including ascending
aorta, coronary arteries, aortic valve, and the bottom of the aortic
sinus (Figure 9). It indicated that different 3D CNNs exhibited
different tendencies in the four prone deviation local positions.
Despite 3D Res-UNet and VNet being more prone to conduct a
large deviation at ascending aorta and coronary arteries, they
performed better at the bottom of the aortic root compared with
3D UNet and SegResNet, which would be more accurate for pre-
operative morphological and functional assessment of TAVR.

3.3.2 Segmentation efficiency evaluation
Regarding segmentation efficiency, compared with manual

segmentation, all the evaluated CNN-based average segmentation
time consumed was reduced by more than 500 times from 26 min
to several seconds (Table 3). 3D Res-UNet (0.1s) and SegResNet
(0.28s) performed the faster segmentation time compared with
that of 3D UNet (1.13s) and VNet (2.14s). Among these, the
average automatic segmentation time of 3D Res-UNet was
significantly shorter than that of other 3D CNNs (p < 0.001),
which are 91.2%, 95.3%, and 64.3% faster than 3D UNet, VNet

TABLE 3 Cross validation results of different models.

Networks SEN/% DSC Jaccard HD Time/s

3D UNet 95.72 ± 0.15 0.954 ± 0.044 0.912 ± 0.007 15.96 ± 8.71 1.13 ± 0.58

VNet 95.45 ± 0.89 0.958 ± 0.004 0.912 ± 0.007 7.72 ± 1.89 2.14 ± 1.17

3D Res-UNet 95.65 ± 0.67 0.961 ± 0.004 0.920 ± 0.009 8.56 ± 2.28 0.10 ± 0.04

SegResNet 96.52 ± 0.59 0.957 ± 0.005 0.919 ± 0.008 10.74 ± 5.41 0.28 ± 0.15

FIGURE 7
From left to right, automatic 3D reconstruction visualization results based on 3D UNet, VNet, 3D Res-UNet and SegResNet, respectively.

TABLE 4 3D deviation analysis based on automatic 3D reconstruction results.

Networks Max distance/mm Average distance/mm STD/mm RMS/mm

3D UNet +2.6149/−2.6207 0.195 0.589 0.631

VNet +2.5002/−2.6161 0.159 0.541 0.576

3D Res-UNet +2.5527/−2.6121 0.152 0.526 0.557

SegResNet +2.5616/−2.5238 0.174 0.570 0.607
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TABLE 5 Comparison of the segmentation performance of this study with the previous studies.

Study Networks DSC Jaccard HD

This Study 3D Res-UNet 0.961 ± 0.004 0.920 ± 0.098 8.56 ± 2.28

Macruz et al. (2022) 3D UNet 0.920 \ \

Sieren et al. (2022) 3D UNet 0.950 \ 8.00

Ravichandran et al. (2019) 3D Inception UNet 0.838 \ \

Fan et al. (2019) Attention DRN 0.960 0.928 \

FIGURE 8
3D deviation graph of 3D automatic reconstruction models of manual segmentation and 3D automatic reconstruction models of automatic
segmentation for two cases with higher DSC (A) and lower DSC (B) in the validation set. Four each case, from left to right, we show the 3D deviation map
of 3D reconstructionmodels of manual segmentation and 3D reconstructionmodels of automatic segmentation based on 3DUNet, VNet, 3D Res-UNet,
SegResNet, respectively. The above is a side perspective, the below is a bottom view.
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and SegResNet, respectively. Therefore, 3D Res-UNet shows
greater potential for real-time pre-operative morphological
assessment of TAVR among the evaluated 3D CNNs.

4 Discussion

In this study, the comprehensive performances of the four popular
segmentation-dedicated 3D CNNs for the aortic root segmentation
were quantitively evaluated. To the best of our knowledge, this is the
first study focusing on the comprehensive comparison of CNN-based
aortic root segmentation performance for the pre-operative assessment
of TAVR. The automatic segmentation quality and efficiency results
suggest that 3D Res-UNet is the most accurate and efficient 3D CNN
architecture, which could provide a rapid and reliable guarantee for pre-
operative morphological assessment and subsequent functional
assessment of TAVR.

4.1 Image pre-processing

This study introduced a series of image pre-processing before
training and validating 3D CNNs. Firstly, due to statistical
uncertainty in all physical measurements, the inevitable noise is
introduced in CT images (Diwakar and Kumar, 2018). Therefore,
the median filter was conducted in the image pre-processing to
improve the image quality in this study which has been
demonstrated to help improve the lymph segmentation performance
effectively (Zhang et al., 2021). In addition, due to the wide range of
Hounsfield Unit (HU) in CT images from −1024 to 3071, it is necessary
to enhance the contrast between the background and the target area by
image intensity normalization, which has been proven to be beneficial
to improve the segmentation performance based on CNNs (Jacobsen
et al., 2019). What’s more, subject to hardware limitations, this study
conducted bilinear interpolation as the image resampling method

which is widely used in data compression to reduce the image
resolution and further reduce the data size. Furthermore, data
augmentation has become an effective solution to the limited data
problem by increasing the sufficiency and diversity of the training set,
especially for acquiring limited medical images (Shorten and
Khoshgoftaar, 2019). Therefore, this study conducted one of the
basic image augmentation methods by randomly cropping into four
sub-volumes which has been proven to help reduce overfitting and the
error rate of CNN models (Krizhevsky et al., 2017).

4.2 The selection of sub-volume size

Several studies have suggested that choosing an adequate sub-
volume size in the training of 3D CNN is one of the essential factors
in achieving a good segmentation result (Sabottke and Spieler,
2020). However, sub-volume size selection is a tradeoff between
computation resource, time, and accuracy. In the research field of
CNN-based aorta segmentation, Ravichandran et al. deployed 64 ×
64 × 64 pixels sub-volume training on three NVIDIA TITAN V
GPUs with 36 GB RAM (Ravichandran et al., 2019; Rukundo, 2023).
Fan et al. cropped a sub-volume size of 48 × 128 × 128 pixels with a
GTX 1080Ti GPU (Fan et al., 2019). To explore the suitable sub-
volume size for our study, the pre-tests of the impacts of sub-volume
size on 3D CNN performance were conducted. Although the pre-
tests showing a larger sub-volume size would result in better
segmentation quality, it also demands a faster GPU and larger
RAM. This result agrees well with the previous studies (Sabottke
and Spieler, 2020). Thus, subject to hardware limitation, the sub-
volume size of 128 × 128 × 128 pixels was selected in this study.

4.3 The selection of training set size

In general, DL models represented by 3D CNNs require a large
amount of training data to effectively learn the target task (Ghadimi
et al., 2021). However, due to the scarcity of annotated medical images,
it is hard to build a large dataset at the initial stage of developing such 3D
CNNs in the field of medical image segmentation. Therefore, it is
significant to investigate the CNN-based segmentation performance of
the aortic root under the small sample size. Due to that the selecting of
an appropriate dataset size for 3D CNNs is still a challenging open
problem (Cheung et al., 2021; Nũnez-Garcia et al., 2019), this study
conducted a sensitivity analysis to explore the impact of the training set
size on the CNN-based segmentation performance of the aortic root.

The results show that the training performance and
segmentation performance of VNet is most sensitive to the size
of the training dataset, which might be due to its more network
parameters caused by the larger convolutional kernel size (Table 1),
further leading to the need for more training data to guarantee the
segmentation performance. Compared with VNet, even though the
recall, DSC and Jaccard of 3D UNet, 3D Res-UNet and SegResNet
did not show a notable decrease with the reduction of the training
dataset, HD of them was sharply deteriorated, which might indicate
that less training data could severely worsen the capacity of 3D
CNNs to capture complex boundary details in the aortic root
segmentation. Therefore, when selecting a suitable 3D CNN
under small samples, it should be considered that CNN models

FIGURE 9
Statistics of the large deviation local position of automatic 3D
reconstruction based on the four CNNs in the validation set. A, B, C,
and D represent the ascending aorta, coronary arteries, aortic valve
and the bottom of the aortic root, respectively.
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with higher complexity could bring the problem of reliance on large
datasets, despite their excellent learning ability.

4.4 Segmentation performance

4.4.1 Segmentation quality
4.4.1.1 Classical metrics analysis

Segmentation quality is the most important aspect in evaluating
CNN-based automatic segmentation. Several classical segmentation
quality assessment metrics have been proposed, including recall,
DSC, Jaccard index, and HD.

Among the metrics, similarity coefficients (SCs), such as DSC
and Jaccard index, are the essential spatial-based metrics
representing the overlap ratio between segmentation results and
ground truth. As one of the classical SCs, DSC was widely used to
evaluate image segmentation quality, which is traditionally
considered positively correlated with segmentation quality.
However, its threshold of distinguishing good and poor
segmentation quality varied by several factors, including
segmentation objects, CNN architectures, image quality, and
dataset size. In the field of cardiovascular segmentation, a DSC of
0.7 has been well-accepted as the segmentation quality threshold
(Robinson et al., 2018; Robinson et al., 2019; Hann et al., 2021). In
this study, all the evaluated 3D CNNs achieved a mean DSC higher
than 0.95 over the five-fold cross-validation, and the differences in
mean DSC between groups were less than 1%. This result is
comparable with the previous studies focused on aorta
segmentation based on private CT datasets (Zou et al., 2004; Fan
et al., 2019; Ravichandran et al., 2019; Macruz et al., 2022; Sieren
et al., 2022), which has an average DSC of 0.917 ± 0.054 (Table 5). In
addition, the Jaccard index derived from this study also agrees well
with the related study (Fan et al., 2019). The comparison results
demonstrated that the CNN-based automatic segmentation
framework established in this study was essentially reliable.

However, a single metric (DSC) cannot comprehensively reflect the
segmentation quality. Therefore, HD is conducted to evaluate the
segmentation quality based on the spatial distance that can
quantitively indicate the largest error between the boundary of
CNN-based segmentation and ground truth. HD is generally
sensitive to boundary morphology, which makes it suitable for
evaluating cases where the complex boundary is of interest (Taha
and Hanbury, 2015). Our results showed that the average HD of 3D
UNet (15.96 ± 8.71) is notably higher than that of VNet (7.72 ± 1.89),
3D Res-UNet (8.56 ± 2.28), and SegResNet (10.74 ± 5.41), which
suggested that the residual block in the latter three 3D CNNs
contributed to the better capture of complex boundary details in the
aortic root segmentation. This result is consistent with the theoretical
analysis of the function of the residual block (He et al., 2016).

4.4.1.2 3D deviation analysis
Although the above classical metrics are widely used for

segmentation quality assessment, they are based on the overall
morphological characteristics, which cannot reflect the important
geometric details for pre-operative morphological and the
subsequent functional assessment of TAVR. Therefore, the 3D
deviation analysis was carried out to demonstrate the detailed
local errors between CNN-based segmentation and ground truth

intuitively. As shown in Figure 9, all the evaluated 3D CNNs were
prone to large deviations in the ascending aorta and coronary
arteries due to the absence of anatomical boundaries (Figure 8B).
In addition, the thin structures and ambiguous boundaries of the
aortic valve are difficult to distinguish in CTA images, making it also
difficult for CNNs to accurately segment (Figure 8A). Therefore, all
the CNN-based segmentation are prone to large deviations in the
ascending aorta, coronary arteries, and aortic valve.

Even though the deviation at the distal ends of the aortic root, such
as the ascending aorta and coronary arteries, does not affect the pre-
operativemorphological assessment of TAVR, the segmentation quality
of the aortic valve and the bottom of the aortic root is critical for
successful TAVR. Therefore, compared with 3D UNet and SegResNet,
3D Res-UNet and VNet performed better at the aortic valve and the
bottom of the aortic root, which would be more accurate for the pre-
operative morphological and functional assessment of TAVR.

4.4.2 Segmentation efficiency
In the cardiovascular field, manual segmentation is labor-

intensive and time-consuming. The segmentation time varies
from minutes to hours for different segmented objects, which
limits the clinical applications of patient-specific analysis that rely
on image segmentation, especially for TAVR which requires rapid
preoperative assessment (Byrne et al., 2016).

In our study, benefitting from the improvement of the hardware
platform, all 3D CNNs shorten the segmentation time by more than
500 times compared with the manual segmentation time, which
agrees well with the related study in order of magnitude (Bratt et al.,
2019). Among these 3D CNNs, the average segmentation time of 3D
Res-UNet and SegResNet is less than 1 s. VNet uses the largest
convolution kernel size which tends to be disproportionally
expensive in terms of computational cost, resulting in the longest
segmentation time (Szegedy et al., 2016). 3D UNet uses max pooling
layers as the traditional up/down sampling function enlarging the
model size and memory occupation which may lead to a longer
segmentation time (Ayachi et al., 2020). In comparison, both 3D
Res-UNet and SegResNet use the smaller convolutional kernel size
and convolution operation instead of max pooling layers as the up/
down sampling function which greatly reduces the segmentation
time across orders of magnitude.

4.5 Limitation

Although the results of this study are promising, there are some
limitations. Firstly, although this study provides a relatively
comprehensive assessment of the segmentation performance of the
3D CNNs under the small dataset, it should be noted that the dataset of
this study was collected from a single clinical center and the same
scanner vendor, which limits the generalizability across multiple centers
and scanner vendors (Campello et al., 2021). In addition, this study only
used the annotation results of one annotator as a benchmark and did
not consider the differences between different annotators. The next step
is to compare the results of the same sample annotated by different
annotators. Furthermore, FEA and CFD simulation will be conducted
to evaluate the influence of CNN-based segmentation results on the
mechanical and hemodynamic environment for accurate patient-
specific preoperative functional assessment of TAVR.
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5 Conclusion

The segmentation performances of four segmentation-dedicated
3D CNNs on the aortic root segmentation were evaluated in this
study. Although 3D Res-UNet and VNet are evenly matched in the
aspect of classical segmentation quality metrics and 3D deviation
location of interest analysis, 3D Res-UNet is the most efficient CNN
architecture which provides a rapid and reliable guarantee for pre-
operative morphological assessment and subsequent functional
assessment of TAVR.
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