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The issue of agricultural pollution has become one of the most important
environmental concerns worldwide because of its relevance to human survival
and health. Microbial remediation is an effective method for treating heavy metal
pollution in agriculture, but the evaluation of its effectiveness has been a difficult
issue. Machine learning (ML), a widely used data processing technique, can
improve the accuracy of assessments and predictions by analyzing and
processing large amounts of data. In microbial remediation, ML can help
identify the types of microbes, mechanisms of action and adapted
environments, predict the effectiveness of microbial remediation and potential
problems, and assess the ecological benefits and crop growth after remediation. In
addition, ML can help optimize monitoring programs, improve the accuracy and
effectiveness of heavymetal pollutionmonitoring, and provide a scientific basis for
the development of treatment measures. Therefore, ML has important application
prospects in assessing the effectiveness of microbial remediation of heavy metal
pollution in agriculture and is expected to be an effective pollution management
technology.
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1 Introduction

The safety of agricultural land as the basis for human survival and development is of
increasing concern (Roy et al., 2022). In recent years, the levels of heavy metals in agricultural
land have been increasing due to industrial activities, fertilizer application, coal burning, and
other human activities (Xu et al., 2014). Heavy metals are characterized by non-
biodegradability, high toxicity, and ease of accumulation, and are the most common
type of pollutants in the agricultural environment, seriously affecting ecosystem
function, food security, and human health (Sharma et al., 2022). In addition, higher
levels of heavy metals may lead to changes in soil structure and nutrient loss, which in
turn may affect crop quality and yield (Fei et al., 2022). Therefore, it is necessary to analyze
the effects of heavy metal pollution on agricultural land and to assess the level of heavy metal
pollution in agricultural land.
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2 Phosphate solubilizing
microorganisms as a green technology
for improving crop growth and
remediating heavy metal
contamination

Microorganisms play an important role in the growth of crops in
agricultural fields, and can enhance crop growth by improving the
soil environment, promoting nutrient cycling, and improving plant
immunity in a variety of ways. Phosphorus solubilizing
microorganisms (PSM) are a group of microorganisms that can
convert soil organic phosphorus compounds or insoluble inorganic
phosphorus compounds into plant-available phosphorus elements.
As one of the first beneficial functional microorganisms discovered
in agricultural fields, the main functions of PSM include 1)
increasing the effective soil phosphorus content through the
release of organic acids, biological enzymes, and a series of other
secretions to promote plant nutrient uptake and growth and
development (Alori et al., 2017). 2) Forming a symbiotic
relationship with plant roots, using inter-root substances secreted
by plants for subsistence, as well as secreting hormones and enzymes
(indoleacetic acid, 1-Aminocyclopropane-1-carboxylate deaminase,
etc.) to help plants absorb nutrients (Rawat et al., 2020). 3) Produce
plant antibodies (e.g., cell wall lysis enzymes, antibiotics, etc.) to
suppress plant diseases, activate the plant’s immune system, and
enhance plant resistance to diseases (Zaidi et al., 2016). 4)
Decomposing organic matter and promoting soil aeration and
water retention capacity, thus improving soil structure and
nutrient retention (Tian et al., 2021). 5) Phosphate solubilizing
microorganisms are able to adsorb, accumulate and complex
heavy metal ions as well as toxicity reduction through cellular
self and secretions (extracellular polymers, glutathione, etc.)
(Chen et al., 2023b). 6) The use of phosphate solubilizing
microorganisms can also reduce the use of chemical fertilizers
and pesticides, reducing the negative impact on the environment
(Ahemad, 2015). In addition, the good affinity of PSM allows it to be
used together with other materials to improve soil properties and
remediate environmental pollution (Chen et al., 2019; Feng et al.,
2022; Lai et al., 2022; Chen et al., 2023a).

3 Artificial intelligence—machine
learning has been initially applied in
agricultural environments at this stage

Soil contamination assessment in agriculture is a prerequisite to
ensure that crops can be grown properly and safely consumed, and
the classical research paradigms include three types: experiment,
theory, and computational science. Traditional methods for land
contamination assessment include the single factor index, single
factor pollution index, potential ecological risk index, and
contamination load index (El Azhari et al., 2017; Lu et al., 2021).
These methods show some limitations in practical applications due
to the lack of adaptability and accuracy of the built mathematical
models. The era of big data has given rise to the data-driven
paradigm based on big data, which refers to data sets with
complex structures, including those that do not have or have not
yet mastered their causal relationships. The core of the data-driven

approach lies in acquiring knowledge by analyzing large amounts of
data. Common data analysis methods include classification,
clustering, association (correlation, regression, etc.),
discrimination, principal component analysis, statistical inference,
etc. (Wu et al., 2020).

In recent years, data mining methods using artificial intelligence
algorithms such as machine learning have become a hot research
topic. Machine learning method is an advanced data analysis
method, which is often applied to analyze the hidden
information between input data and output results (Dobbelaere
et al., 2021). An integrated model composed of multiple learning
algorithms has the advantages of good predictive performance and
high interpretability (Zhang et al., 2022). For example, random
forest can directly process high-dimensional data without feature
selection (Ali et al., 2021). Gradient boosting decision tree use a loss
function with robustness to outliers (Yang et al., 2023). These
models have been successfully applied to problems such as
forecasting, engineering design, and material optimization, saving
significant labor and time costs (Tian et al., 2022; Veloso et al., 2022).
Currently, machine learning is widely used in agriculture. For
example, Hamrani et al. successfully predicted greenhouse gas
emissions in agricultural land using nine models separately, such
as support vector machine, random forest, etc. Among them, long
short-term memory network has the most accurate prediction for
both CO2 (R

2 = 0.87, RMSE = 30.3) and N2O (R2 = 0.86, RMSE =
0.19) (Hamrani et al., 2020). Saha et al. combined a machine
learning model and multi-criteria decision-making models to
assess agricultural land fertility and site suitability, it was found
that agricultural land with higher organic carbon content and cation
exchange capacity, and low bulk weight was more advantageous
(Saha and Mondal, 2022). Some studies have also shown that clay
content in the soil, soluble phosphorus, and soluble organic carbon
are the main factors affecting phosphorus concentration in
groundwater of agricultural land using support vector machine,
random forest, and neural network (Yang et al., 2023). These
successful examples show that it is feasible to use machine
learning methods for prediction, assessment, and analysis of
pollution problems in agricultural environments.

4 Building machine learning models to
predict crop yield and safety after
remediation of heavy metal
contamination is one of the hot spots
for future research

In agricultural land, crop yield is influenced by several factors,
including heavy metal contamination concentrations, nutrient
elements in the soil, and microbial communities. These factors
also have some mechanisms of action among each other.
Currently, it is difficult to quantify the effects of these
mechanisms of action on crop yield. Therefore, it has become a
trend to use machine learning models to simulate and assess soil
contamination levels (Wang et al., 2021; Liu et al., 2023). Based on
the powerful data analysis methods of machine learning, and
integrating the data-driven method (statistical analysis) with the
model-driven method (causal analysis), it is possible to link heavy
metal contamination with crop yield. It would be an effective
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technical tool to explore the effect mechanism of remediated heavy
metal contamination on nutrient elements, microorganisms and
crop yield. The analysis diagram is shown in Figure 1.

Based on the excellent predictive performance of machine
learning models, it is feasible to build a model to predict crop
yield. Typical machine learning model structures include supervised
learning represented by regression analysis and statistical
classification, unsupervised learning represented by generating
adversarial network (GAN) and clustering, and reinforcement
learning (LeCun et al., 2015; Castaldo et al., 2016; Wang et al.,
2020). Currently, deep learning represented by neural network is
rapidly developing, which would be more efficient to integrate with
supervised learning, unsupervised learning, and reinforcement
learning to classify data and identify features. Due to the
differences in the datasets, the prediction performance of each
model behaves differently. During the model construction
process, multiple models are usually selected for simultaneous
parameter optimization and prediction, and the model with the
best prediction performance is finally selected. Besides, a sufficient
amount of data is also one of the important factors to support the
success of model prediction. For example, Jhajharia et al. integrated
3,664 sets of yield data of various crops with soil type and rainfall of
agricultural land in the Rajasthan region, and the results confirmed
that crop yield could be successfully predicted using random forest
model (R2 = 0.963, RMSE = 0.035) (Jhajharia et al., 2023). Iniyan
et al. counted data on precipitation, humidity, temperature, area, soil
type, crop type, season, and yield for the last 18 years in the
Maharashtra region. After training eight machine learning
models such as linear regression, ridge regression, and gradient

boosting, it was found that the long short-term memory network
showed the best prediction performance with 86.3% accuracy
(Iniyan et al., 2023). Panigrahi et al. successfully used linear
regression, decision tree regression, and other models to predict
the yield of three different crops of corn, peanuts, and Bengal beans
based on the monthly minimum and maximum temperature and
annual rainfall in the Telangana (Panigrahi et al., 2023). Therefore, it
is feasible to predict the yield of various crops using machine
learning models, but the availability of sufficient data support
from research institutions or government may be the key to it.

Machine learning models can not only predict crop yields, but
also analyze the effect of PSM on remediation of heavy metal
contamination or post-remediation soil properties on crop yields
through interpretable algorithms such as feature importance,
partial dependence, individual conditional expectation, and
Shapley additive explanation. For example, by analyzing the
partial dependence of a certain heavy metal ion, the
concentration threshold for that heavy metal to affect crop
growth is determined. Alternatively, using the characteristic
importance algorithm, it is possible to obtain the importance
weights for the effects of various types of heavy metals on crop
yield. Such weighting factors, which can be introduced into the
formula for calculating the risk level of heavy metal contamination,
make the assessment results more informative. In addition, the
joint application of machine learning and high-resolution aerial
imaging technology has been shown to be feasible. For example,
feature information is obtained based on high-resolution aerial
imaging technology, and then machine learning models are used to
predict the heavy metal concentrations at unknown points to

FIGURE 1
Application pattern diagram of machine learning model in heavy metal pollution remediation in agriculture.
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finally assess the soil contamination risk levels. The accuracy of
this combined application of techniques to assess contamination
levels was verified to be significantly better than the traditional
kriging interpolation and inverse distance weight interpolation
methods (Jia et al., 2021). In conclusion, machine learning models
can simultaneously combine soil quality and crop yield so that the
two are interlinked, which means that the impact of soil quality on
crop growth can be analyzed along with predicting crop yield,
correcting adverse factors that affect yield and continuously
improving agricultural land quality. Thus, machine learning can
be used as an effective technical tool to predict and evaluate the
impact of phosphorus dissolving microbially remediated soils on
crop yields.

5 Discussion

As an efficient and fast data analysis and processing method,
machine learning has often been applied to solve various
agricultural environmental problems in recent years. Its
powerful prediction and analysis capability saves a lot of
labor cost and time cost for research, and the application of
machine learning in agricultural survey technology will be more
promising in the future with the advancement of technology and
the increase of data. However, the application direction of the
technology is currently more limited. In the future, artificial
intelligence, machine learning, and computer vision can be used
to identify the growth status of crops and prevent them from
being infected with toxic pests to affect their yield. On the other
hand, machine learning is essentially a data-driven method,
there is currently less training data available to researchers. A
large amount of open-source data is also necessary for training
models in future research. In this context, data-driven method
and model-driven method can complement each other, which
includes: 1) introduce casual analysis measures to researches
that usually relied entirely on statistical analysis to solve data
dependency and improve the analysis applicability and accuracy;
2) introduce statistical analysis measures to researches that
usually relied entirely on casual analysis, to improve the
analysis efficiency.

In conclusion, machine learning can be used to achieve accurate
analysis and prediction of agricultural data, improve the efficiency
and quality of agricultural production, and promote the
development and upgrading of the agricultural industry.
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