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Introduction: Lung cancer the most prevalent cause of cancer-related deaths,
and current therapies lack sufficient specificity and efficacy. This study developed
an injectable thermosensitive hydrogel harboring hollow copper sulfide
nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment.

Methods: The hydrogel-encapsulated CLH system can remotely control the
release of copper ions (Cu2+) and drugs using photothermal effects for non-
invasive controlled-release drug delivery in tumor therapy. The released Cu2+

consumes the overexpressed GSH in TME and the generated Cu+ further exploits
the TME characteristics to initiate nanocatalytic reactions for generating highly
toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide
adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can
catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles.
H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like
reaction, leading to a burst of reactive oxygen species in TME, which further
enhances the therapeutic effect of chemokines.

Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor
model mice showed a significant delay in tumor growth and no systemic toxicity
was detected.

Discussion: In conclusion, we have established a CLH nanodrug platform that
enables efficient lung tumor therapy through combined photothermal/
chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve
cascade catalysis, leading to explosive amplification of oxidative stress.

KEYWORDS

lung cancer, hydrogel, β-lapachone, CDT, self-supplies H2O2

OPEN ACCESS

EDITED BY

Long Bai,
East China University of Science and
Technology, China

REVIEWED BY

Shrey Sindhwani,
University of Toronto, Canada
Xin Li,
Leibniz Institute for Interactive Materials
(DWI), Germany
Wei Xie,
Hefei Comprehensive National Science
Center, China
Jinyuan Liu,
South Dakota School of Mines and
Technology, United States

*CORRESPONDENCE

Huawei Yang,
Lordyhw@163.com

Ying Cui,
cuiying819@163.com

Lei Yao,
yaolei7915@126.com

†These authors have contributed equally
to this work

RECEIVED 21 March 2023
ACCEPTED 18 April 2023
PUBLISHED 02 May 2023

CITATION

Ning S, Mo J, Huang R, Liu B, Fu B, Ding S,
Yang H, Cui Y and Yao L (2023), Injectable
thermo-sensitive hydrogel loaded hollow
copper sulfide nanoparticles for ROS
burst in TME and effective
tumor treatment.
Front. Bioeng. Biotechnol. 11:1191014.
doi: 10.3389/fbioe.2023.1191014

COPYRIGHT

© 2023 Ning, Mo, Huang, Liu, Fu, Ding,
Yang, Cui and Yao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 02 May 2023
DOI 10.3389/fbioe.2023.1191014

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1191014/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1191014/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1191014/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1191014/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1191014/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1191014&domain=pdf&date_stamp=2023-05-02
mailto:Lordyhw@163.com
mailto:Lordyhw@163.com
mailto:cuiying819@163.com
mailto:cuiying819@163.com
mailto:yaolei7915@126.com
mailto:yaolei7915@126.com
https://doi.org/10.3389/fbioe.2023.1191014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1191014


Introduction

In recent years, the incidence of lung cancer has been increasing
steadily, with mortality rates for lung cancer remaining high
(Sugarbaker and DaSilva, 2011). Non-small cell lung cancer
(NSCLC) accounts for approximately 80% of lung cancer, of
which early NSCLC accounts for only 20%–30%, and surgery is
the main treatment (Milano et al., 2014; Evison et al., 2015; Vallone
et al., 2017). However, the adverse reactions of chemotherapy drugs
limit wide clinical application, so it is paramount to develop a novel
lung cancer therapeutic option. Being an emerging and effective
cancer treatment strategy, chemodynamic therapy (CDT) has
recently attracted a lot of attention in the field of cancer
treatment (Yu et al., 2021; Deng et al., 2022; Peng et al., 2023). It
converts weakly oxidized hydrogen peroxide (H2O2) into highly
cytotoxic hydroxyl groups (·OH) in situ within tumor region via a
Fenton/Fenton-like reaction, thereby inducing apoptosis and
inhibiting tumor growth (Shen et al., 2018; Dong et al., 2019). In
contrast to conventional therapies, CDT is not dependent on
intracellular oxygen content and does not require exogenous
energy such as X-rays, continuous light and ultrasound input,
which not only effectively avoids the limited penetration depth of
light and radiation from X-rays, but also overcomes the inherent
barrier of hypoxia within tumor area. In addition, CDT is less toxic
to normal cells and can achieve specific killing of tumor cells, and
therefore has great potential for application in tumor therapy.
However, CDT research is still in its infancy and the therapeutic
effect is not yet ideal. Methods for effectively improving the
therapeutic effect of CDT is still an important research direction
(Yu et al., 2020; Yang et al., 2021). In addition, GSH overexpressed
within tumor microenvironment (TME), as an important
antioxidant in cells, can scavenge the generated hydroxyl radicals
(·OH) and weaken the cellular redox effect (Zhu et al., 2018; Zhu
et al., 2022a), and this antioxidant defense of cancer cells becomes a
major obstacle for CDT effectiveness (Franco et al., 2007; Chang
et al., 2019; Wu et al., 2020).

At present, research on the use of nanomedicines for tumor
treatment is emerging endlessly (Zhu et al., 2020; Zhu et al., 2021a;
Chen et al., 2022a; Dai et al., 2022; Li et al., 2022; Opoku-Damoah
et al., 2022; Xiang et al., 2022; Cao et al., 2023; Lu et al., 2023; Ning
et al., 2023). Iron-based nanomaterials were widely used as classical
Fenton reaction catalysts in CDT studies (Feng et al., 2020; Cheng
et al., 2021). However, reaction of Fe2+-mediated Fenton reaction is
relatively inefficient and strongly dependent on the acidic
environment, thus the reaction efficiency is low within weakly
acidic TME, resulting in slow generation of reactive oxygen
species and limited therapeutic effects (Lin et al., 2020). In recent
years, it has been found that besides Fe2+ catalyzing the
decomposition of H2O2 to produce OH, other transition metal
ions such as Mn2+, Cu2+ and Co2+ could also accelerate or replace
Fe2+ to play this role (Liu et al., 2018; Fu et al., 2019; Sang et al.,
2020). Among these metal elements, Cu2+ is renowned for its
excellent properties. Firstly, as a cofactor of many natural
enzymes in living organisms, copper has excellent
biocompatibility and is widely involved in biochemical reactions
in vivo. Moreover, it has been reported within literature that copper
ion-like Fenton reactions have a broader pH range than Fe3+. More
importantly, the conversion of Cu2+ to Cu+ can effectively consume

intracellular GSH and reducing loss of ROS, with reduced Cu +
reacting with H2O2 in tumor cells to produce OH, thus improving
CDT efficiency and enhancing anti-tumor effects (Wu et al., 2019a;
Ma et al., 2019). CuS, as a naturally occurring inorganic mineral, is
not only capable of releasing Cu2+ under acidic conditions, though it
can also react with H2O2 in tumor sites to produce ROS for CDT
(Liu et al., 2021). Moreover, as one of the first-developed inorganic
semiconductor photothermal reagents, CuS nanoparticles are able to
convert irradiated near-infra-red (NIR) light into energy through
local plasmon resonance effect (Liang et al., 2019; Ding et al., 2022).
By delivering CuS nanoparticles (NPs) to the tumor tissue,
photothermal therapy (PTT) can be performed through thermal
effects when the tumor is exposed to NIR laser irradiation.
Therefore, the combination therapy of PTT and CDT, based on
CuS nanoparticles, could achieve excellent synergistic therapeutic
effects. In addition to the Fenton-like properties of the metastable
metal itself, the Fenton reaction rate is also dependent on the
concentration of the reactant substance, such as the
concentration of H2O2 (Cun et al., 2022; Deng et al., 2022).
Although the H2O2 content in tumor sites is higher than for
normal tissue (Zhu et al., 2022b; Zhu et al., 2022c), the limited
content still regulates the rate of Fenton-like reactions, thus limiting
the therapeutic effect of CDT.

The natural compound β-lapachone (Lap), chemically known as
3,4-dihydro-2,2-dimethyl-2H-naphtho [1,2-b]-pyran-5,6-dione,
belongs to the group of 1,2-naphthoquinones (Cun et al., 2022).
Lap retains a wide range of biological and pharmacological effects,
with its pharmacological actions including antibacterial, anti-
inflammatory, anticancer, and anti-angiogenic. The main
cytotoxic mechanism of Lap is through NADP(H)-quinone
oxidoreductase l (NQ01) bioactivation, which generates reactive
oxygen species through a quinone-hydroquinone-quinone redox
cycle process. The consumption of 60 mol of NAD(P)H per mole of
Lap in approximately 2 min generates >120 mol of equivalent H2O2

(Wang et al., 2019). However, low solubility of Lap in water
(0.038 mg/mL), short plasma half-life (24 min), narrow
therapeutic window and the tendency to develop
methemoglobinemia beyond the window, all greatly limit its
application.

Herein, we have developed a CLH nanohydrogel system that
amplifies oxidative stress through cascade catalysis by co-loading
CuS nanoparticles and Lap into agarose hydrogels. The hydrogel
delivery system can exist in the tumor site for a long time, avoiding
the trouble and trauma of repeated injection in the tumor (Scheme 1)
(Qiu et al., 2018; Wu et al., 2019b; Zhu et al., 2021b). This CLH
system, with the excellent photothermal conversion efficiency of
CuS NPs, is able to convert NIR light into thermal energy, leading to
tumor warming and thus photothermal therapy, leading to tumor
ablation. Agarose hydrogels has temperature sensitive
characteristics (Qiu et al., 2018; Zhang et al., 2022), combined
with the photothermal properties of CuS, to achieve demand-
controlled Lap release. The acidic TME can accelerate the
degradation of CuS NPs, and the released Cu2+ generates Fenton-
like reaction with H2O2. Cu

2+ can consume overexpressed GSH
inside tumor tissue through redox reaction to generate Cu+, which
further catalyzes H2O2 to generate cytotoxic OH radicals. Through
this synergistic effect, intracellular ROS levels were significantly
increased and oxidative stress was amplified. Meanwhile, the
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released Lap underwent a useless redox cycle in the presence of
NQO1 and efficiently produced H2O2, which not only directly
caused DNA damage, though also further increased the rate of
Fenton-like reaction by self-supplying H2O2, thus enhancing the
killing ability of CDT on tumor cells. In vitro and in vivo anti-tumor
analysis of subcutaneous A549 lung tumors in murines showed that
CLH significantly inhibited tumor growth, without adverse effects -
such as inflammatory reactions. The system is combined with
synergistic photothermal/chemical kinetics to induce H2O2 self-
supply and achieve reactive oxygen species burst through cascade
catalysis, thus achieving effective tumor treatment effects.

Results and discussion

Transmission electron microscopy (TEM) analysis revealed
the morphology and size distribution of CuS NPs. A hollow
nanostructure of CuS was observed. Studies have shown that this
hollow CuS has higher photothermal conversion efficiency (30%)
(Zhang et al., 2019) (Figure 1A). Their elemental mapping
illustrates the Cu and S elements in CuS (Figure 1B). The
powder X-ray diffraction (XRD) characterization also proved
the phase structures of the obtained CuS nanocrystals. The
patterns of obtained CuS Janus were consistent with the
standard data of hexagonal phase CuS (JCPDS no. 06-0464)
(Figure 1C). As shown in Figure 1D, the CuS dispersion
exhibited a strong absorption band within NIR region, which
could render the capability of CuS for photothermal conversion.
Furthermore, this group examined the effect of laser in weak

acidic and neutral environments on the release of copper ions,
using inductively-coupled plasma optical emission spectrometry
(Figure 1E), demonstrating that the 808 nm laser irradiation is
capable of accelerating the release of copper ions in an acidic
environment.

The CLH platforms are prepared by co-encapsulating
laplachones and preparing CuS NPs in FDA-approved agaroses,
which are then characterized by scanning electron microscopy
(SEM) (Figure 2A). Due to the elastic deformation ability of the
hydrogel, it gradually dissolves on heating. When the temperature
returns to ambient level, the hydrogel solidifies, consistent with the
rheological curve within Figure 2B. Subsequently, the photothermal
conversion properties of CLH hydrogel platforms, containing
various doses of CuS NPs, were investigated by exposing them to
a NIL-II laser for 7 minutes. It is worth noting that studies have
shown that the safe laser power is lower than 0.6W cm−2, so it is
appropriate for us to adopt 0.5 W cm−2 power here (Li et al., 2021).
The dose- and time-dependent temperature rise curves were
demonstrated (Figure 2C). The infrared thermal imaging
technology further verifies that CLH has obvious temperature
rise after irradiation, and also proves its excellent photothermal
properties (Supplementary Figure S1). In addition, the experimental
results also prove that CLH has good photothermal stability
(Supplementary Figure S2). Combined with the excellent
photothermal properties of CuS NPs, when irradiated with an
808 nm laser, the temperature of the hydrogel platform increased,
resulting in liquefaction of the gel and consequent drug release
(Figure 2D). Once the irradiation is halted, the temperature drops,
the hydrogel solidifies, and release of the stored drug is halted, thus

FIGURE 1
(A) TEM image, and (B) corresponding elemental mapping images of CuS. (C) XRD pattern of CuS. (D)CuS absorbance spectra. (E) Release profiles of
copper ions in weak acidic and neutral environments, with or without irradiation (808 nm, 0.5 W cm−2).
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SCHEME 1
Schematic illustration of injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for reactive oxygen species burst within
TME and attaining effective tumor treatment.

FIGURE 2
(A) Representative SEM images of CLH. (B) Viscosity measurements of reversibility for CLH during temperature jumps, from 23.17°C to 62.82°C. (C)
Heating curves of varying CLH doses upon 808 nm laser at 0.5 W/cm2. (D) The CLH release profile, with or without 808 nm laser irradiation, with black
arrows indicating irradiation time points.
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achieving CuS NPS-mediated photothermal controlled drug release/
delivery.

Given the good photothermal effect of the CLH platform, this
study subsequently explored the apoptotic effect of CLH in vitro. As
mentioned previously, the main mechanism of tumor apoptosis by
CLH could be the dissolution of hydrogel under light and the release
of Lap. This latter event can catalyze the production of H2O2

through an ineffective redox cycle, in-turn catalyzed by the
overexpression of NQO1 in tumor tissue. The generated H2O2

can not only cause direct tumor damage, though can also be
further converted into highly toxic hydroxyl radicals via Fenton-
like reactions, leading to the outbreak of reactive oxygen species
within TME. In addition, Cu2+ can also deplete excess GSH within
tumor region, further enhancing the production of ROS. Since ROS
is a key factor within the induction of apoptosis by this CLH
platform, this study first detected intracellular hydrogen peroxide
and OH production in different treatment groups, using a hydrogen
peroxide assay kit/hydroxyphenyl fluorescein (HPF). This study also
prepared a CuS-coated hydrogel (CH) as a control group to further
compare test results. The control group, laser group, CH group and
CLH group alone hardly produced fluorescence signals (Figures 3A,
B), probably since the drug could not function under the hydrogel
wrapping. The combined CH + NIR group produced moderate OH
fluorescence, though no H2O2 fluorescence was produced,
indicating that the hydrogel dissolved under 808 nm laser
irradiation and the released Cu2+ exerted the combined CDT and
PTT. The CLH platform, constructed by adding Lap to the hydrogel
platform, produced the strongest H2O2 fluorescence and OH

fluorescence under the laser, which further demonstrated that
lap-like can generate H2O2 within tumor region/s to further
amplify the Fenton-like mediated oxidative stress. Typically, GSH
is overexpressed within in situ tumor tissue to meet the redox
homeostasis required for their growth, and its depletion of ROS
is therefore considered a major obstacle to tumor therapy (Zhu et al.,
2022a; Chen et al., 2022b; Opoku-Damoah et al., 2022). To
determine how the prepared CLH synergized with NIR radiation
to deplete glutathione, this study examined GSH levels across
differing treatment groups (Figure 3C). The GSH levels within
CH + NIR and CLH + NIR groups were significantly decreased,
possibly due to the depletion of intracellular GSH levels by Cu2+,
while Lap could also produce a noticeable level of H2O2 to promote
GSH depletion, further enhancing the therapeutic effect of CDT.
Consequently, this study performed treatment combinations
containing various doses of CuS on A549 tumor cells and
assessed cellular viability through MTT assay (Figure 3D). Cells
within control, laser and CLH treatment groups did not exhibit any
significant cytotoxicity, which also indicated satisfactory
biocompatibility for CLH. The CH + NIR group produced
moderate cytotoxicity onto A549 cultures, whereas under 808 nm
laser irradiation, CLH treatment produced significant cytotoxicity.
Cell death was further enhanced with increasing CuS concentration,
indicating that CLH-based apoptosis was concentration dependent.
Thus, such assays demonstrated that this combined treatment
strategy could compensate the deficiency of H2O2 within tumor
mass, through Lap self-supply of H2O2 and depletion of GSH within
tumor cells through Cu2+, thus further amplifying oxidative stress

FIGURE 3
(A) Fluorescence images of ROS production in A549 cells following various treatments. (B) Fluorescence intensity of OH from Figure 3A. (C) The
effect of different formulations on intracellular GSH levels (n= 3). (D)Cytotoxicity of differing doses of CuSNPs on A549 cells. (n= 3). *p < 0.05, **p < 0.01,
***p < 0.005; Student’s t-test.
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FIGURE 4
(A) Upon being irradiated with 808 nm laser at 0.5 W/cm−2 for 5 minutes, the temperature elevated in murines having A549 tumor, within specified
treatment groups (n= 5). (B) Tumor-volume change curves of A549 tumor-bearing female BALB/C nudemurines following various treatments (n= 5). (C)
Tumor weight of A549 tumor-bearing female BALB/C nude murines following different treatments (n = 5). (D) Murine weight changes in different vivo
treatments (n= 5). (E) TUNEL, Ki-67 and ROS immunofluorescence staining in tumor region of each group post-treatments. (F) TUNEL, (G) Ki-67 and
(H) ROS fluorescence intensity.
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and improving the therapeutic effect. CuS can kill tumor cells
significantly only at higher concentrations. On the one hand, it
shows that CuS has good biological safety, and on the other hand, it
suggests that direct injection of hydrogel into tumor to make it
highly enriched may obtain better therapeutic effect.

Prior to probing the in vivo treatment effect of CLH, this study
initially probed for in vivo photothermal effect. Following treatment
of A549 murines with PBS and CLH respectively, tumor tissue was
irradiated with an 808 nm laser for 5 min, and the increase in tumor
temperature was recorded by infrared thermography within
different treatment groups. Tumor temperature within CLH
group reached 46.6°C within 5 min of 808 nm laser irradiation.
Conversely, tumor temperature rose by only 2.3°C following PBS
administration within identical irradiation settings (Figure 4A). The
skin thickness of nude mice is about 550 μm thick (~30 μm skin,
~220 μm leather, ~300 μm subcutaneously) (Calabro et al., 2011;
Byers et al., 2017), so the surface vasculature of the tumor implanted
subcutaneously is visible. The 808 nm laser used in this work belongs
to the near-infrared region, which can reach the position 5 mm
below the skin, and the distance increases with the increase of the
spot area (Zhao et al., 2018; Chu et al., 2022). Therefore, PTT can be
used for tumor treatment with high clinical application potential.
From one perspective, high temperature allow CLH to release CuS
NPs and Lap for controlled drug release, while conversely, high
temperatures also destroy proteins and selected active substances
within tumor tissue, allowing tumor ablation. In addition, CLH is

expected to effectively inhibit tumor growth by enhancing the
synergistic effect of oxidative stress and glutathione depletion in
tumor tissues. Hydrogels containing CuS NPs alone (CH) were
prepared as a control group. A549 tumor-bearing nude murines
were randomly divided into six groups: 1) PBS; 2) NIR; 3) CH; 4)
CLH; 5) CH + NIR; and 6) CLH + NIR. Each treatment group was
monitored for tumor volume every 2 days throughout the
observation period. As shown in Figures 4B, C, there was no
significant inhibition of tumor growth by single application of
PBS or 808 nm laser irradiation. In contrast, the CH group had a
slight inhibitory effect on tumor growth, which seemed to contradict
the results of in vitro cytotoxicity tests. In contrast, the CH and CLH
groups had a slight inhibitory effect on tumor growth, which seemed
to contradict the results of in vitro cytotoxicity tests. In fact,
hydrogels are decomposed slowly in vivo through bioenzyme
activity (Qiu et al., 2018; Zhu et al., 2022b; Zhang et al., 2022),
and a small amount of CuS NPs released have some inhibitory effect
on tumor growth through ROS produced by CDT, while CLH
prepared by adding Lap into the hydrogel platform seems to be
able to further inhibit tumor growth. The killing effect of CH + NIR
group on tumor tissue was further enhanced, which may be because
the photothermal effect of CuS under light can accelerate the release
of Cu2+, further improve the efficiency of CDT, and thus produce
more ROS. However, due to the limited H2O2 content of the tumor
tissue, this resulted in low CDT efficiency and did not completely
inhibit tumor growth. Notably, the addition of Lap to the hydrogel

FIGURE 5
H&E staining of major organs post-treatments. Scale bars: 100 μm.
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platform and the preparation of CLH produced a significant
inhibition of tumor proliferation under 808 nm irradiation, since
Lap could catalyse the production of H2O2 through a futile redox
cycle, in-turn catalysed by tumor tissue overexpression of NQO1.
H2O2 was further converted to highly toxic hydroxyl radicals
through the Fenton-like reaction, leading to a burst of reactive
oxygen species in TME, which also validates the ability of CLH +
NIR to amplify oxidative stress and complete inhibition of tumor
growth. Efficacy following various treatments was further assessed
by TdT-mediated dUTP nick-end labeling (TUNEL) staining and
Ki-67 staining (Figures 4E–G). In contrast to the control and laser
groups, which showed no significant changes in cell status, the
TUNEL results showed significant apoptosis/necrosis in both the
CLH and CH + NIR groups (Figure 4F). However, the degree of
apoptosis and necrosis within CLH + NIR group was significantly
higher than for other treatment groups, consistent with the trend of
tumor growth. Ki-67 staining was commonly used to detect the
proliferation status of cancer cells (Zhu et al., 2021a; Duo et al., 2021),
and the results were consistent with the TUNEL results, confirming
that the combined photothermal/chemical kinetic synergistic effect of
CLH + NIR induced H2O2 self-supply, in order to achieve reactive
oxygen species burst through cascade catalysis and thereby leading to
apoptosis of tumor cells.We verified the production of ROS in tumors
(Figures 4E and H). The results showed that CLH + NIR group could
produce a large amount of reactive oxygen species in the tumor.
Therefore, the anti-tumor effect of CLH system was the synergistic
effect of ROS and heat. All groups caused no significant body weight
loss (Figure 4D). The histopathology changes of major organs
including liver, heart, kidney, spleen, lung and brain were collected
and investigated post-H&E staining (Figure 5). There were no obvious
physiological and morphological changes and inflammatory
responses in five groups. And we conducted further blood
biochemical analysis (Supplementary Figure S3), all the indicators
were normal. This result shows that the health of the mice was
not affected after the treatment. The results demonstrated that no
organ damage was observed, further confirming the good
biocompatibility of CLH.

Conclusion

In conclusion, our development of injectable thermosensitive
hydrogel-loaded hollow copper sulfide nanoparticles and Lap can be
used for reactive oxygen species burst in TME and effective tumor
therapy. This platform was effective in generating heat under NIL-II
radiation, resulting in dissolution of the hydrogel and release of CuS and
lap to the tumor site. The acidic TME can accelerate the degradation of
CuS NPs. Cu2+ can consume the overexpressed GSH in tumor tissues
through redox reactions to generate Cu+, which further catalyzes H2O2

to generate cytotoxic hydroxyl radicals. Through this synergistic effect,
intracellular ROS levels were significantly increased and oxidative stress
was amplified. Simultaneously, under the action of NQO1, the released
Lap undergoes a redundant redox cycle to efficiently produce H2O2,
which causes not only direct DNAdamage, though also further improve
the Fenton-like reaction rate through self-supply of H2O2, thereby
enhancing the apoptotic ability of CDT to tumor cells. This platform,
combined with photothermal/chemokinetic synergism, induces H2O2

self-supply and achieves reactive oxygen species burst through cascade

catalysis, thus significantly inhibiting the growth of subcutaneous
A549 lung tumors in murines. In the future, this CLH-mediated
reactive oxygen burst strategy is expected to enhance traditional
tumor therapies. Reactive oxygen species outbreaks within tumor
cells often induce non apoptotic death modes such as
immunogenic death, pyroptosis, and ferroptosis. Therefore,
CLH has great potential in enhancing tumor immunotherapy
and reversing tumor chemoradiotherapy resistance.
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