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Introduction: As the golden approach of single-cell analysis, fluorescent flow
cytometry can estimate single-cell proteins with high throughputs, which,
however, cannot translate fluorescent intensities into protein numbers.

Methods: This study reported a fluorescent flow cytometry based on
constrictional microchannels for quantitative measurements of single-cell
fluorescent levels and the recurrent neural network for data analysis of
fluorescent profiles for high-accuracy cell-type classification.

Results: As a demonstration, fluorescent profiles (e.g., FITC labeled β-actin
antibody, PE labeled EpCAM antibody and PerCP labeled β-tubulin antibody) of
individual A549 and CAL 27 cells were firstly measured and translated into protein
numbers of 0.56 ± 0.43 × 104, 1.78 ± 1.06 × 106 and 8.11 ± 4.89 × 104 of A549 cells
(ncell = 10232), and 3.47 ± 2.45 × 104, 2.65 ± 1.19 × 106 and 8.61 ± 5.25 × 104 of CAL
27 cells (ncell = 16376) based on the equivalent model of the constrictional
microchannel. Then, the feedforward neural network was used to process
these single-cell protein expressions, producing a classification accuracy of
92.0% for A549 vs. CAL 27 cells. In order to further increase the classification
accuracies, as a key subtype of the recurrent neural network, the long short-term
memory (LSTM) neural network was adopted to process fluorescent pulses
sampled in constrictional microchannels directly, producing a classification
accuracy of 95.5% for A549 vs. CAL 27 cells after optimization.

Discussion: This fluorescent flow cytometry based on constrictional
microchannels and recurrent neural network can function as an enabling tool
of single-cell analysis and contribute to the development of quantitative cell
biology.
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1 Introduction

Single-cell protein analysis can identify and analyze rare but key
single cells from large populations, thereby facilitating the studies of
cell heterogeneities (Heath et al., 2016; Nissen et al., 2022), which
can contribute to early diagnosis, precision treatment, and drug
development of diseases (Labib and Kelley, 2021).

As the golden approach, flow cytometry estimates single-cell
protein expressions by measuring fluorescent levels of travelling
single cells bound with antibodies with fluorescent probes (Huang
et al., 2020; Tian et al., 2020; Yin et al., 2020). Leveraging calibration
beads with predefined numbers of membrane proteins, specific
numbers of membrane proteins are obtained based on
fluorescent flow cytometry, which, however, cannot quantify
cytoplasmic proteins because of lacking corresponding calibration
beads with well-regulated internal protein numbers (Wang et al.,
2016; Mizrahi et al., 2018). Lately, mass cytometry has realized high
multiplexed detection of proteins, where single cells are bound with
distinct transition element isotope-labeled antibodies, which,

however, can only report relative intensities rather than specific
numbers of targeted proteins because of lacking effective calibration
methods (Mavropoulos et al., 2017; Ajami et al., 2018; Han et al.,
2018; Ali et al., 2020).

Because of the dimensional comparison with biological cells,
microfluidics has become a key technology to analyze single-cell
proteins (Chen et al., 2019). More specifically, microfluidic large
arrays were developed to quantify both intracellular and membrane
proteins of single cells (Papp et al., 2017; Li et al., 2018a; Armbrecht
et al., 2019). In these microfluidic platforms, single cells were
distributed individually in microwells and the proteins under
measurements were captured by antibodies coated beneath and
estimated based on fluorescent intensities. However, different
from flow cytometry, these microfluidic arrays cannot process
single cells within fluid flow, leading to compromised throughputs.

Lately, a microfluidic flow cytometer based on a constrict (a
microchannel with a cross-sectional area smaller than biological
cells) was reported to estimate targeted proteins of single cells, where
the constrict structure functioned as a calibration model of

FIGURE 1
Working flow chart of the constrictional microchannel and the recurrent neural network in single-cell protein analysis, including (A) fluorescent
acquisition based on fluorescent flow cytometry, leveraging constrictional microchannels, (B) cell-type classification via the feedforward neural network,
where fluorescent pulses were translated into protein numbers based on the calibration model enabled by the constrictional microchannel, and (C) cell-
type classification via the recurrent neural network, where fluorescent pulses were processed by the long short-term memory (LSTM) neural
network.
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transferring preliminary fluorescent intensities into the protein
numbers (Li et al., 2017; Liu et al., 2020). However, this
approach was not applicable to quantification of proteins with
uneven distributions within cells and may cause channel blockage
with compromised throughputs.

Aimed to deal with the aforementioned problems, in this paper,
the cross-sectional area of the constrict was enlarged to be
marginally larger than the biological cells, enabling the collection
of fluorescent pulses of stained single cells traveling through
constrictional microchannels without blockage. Then, based on
the volume equivalence between cells and calibration solutions
following through constrictional microchannels, preliminary
fluorescent pulses were translated into protein expressions at the
single-cell level, which were further used for cell-type classification
based on the feedforward neural network. In a second approach,
without quantifying single-cell protein levels, preliminary
fluorescent pulses measured by constrictional microchannels were
processed by the long short-termmemory (LSTM) neural network, a
key subtype of the recurrent neural network, producing accuracies of
cell-type classification for comparison.

2 Materials and methods

2.1 Working mechanism

Figure 1 shows the working flowchart for the cell-type
classification based on fluorescent intensities of stained cells
bound with fluorescence-labeled antibodies including fluorescent
acquisition enabled by fluorescent flow cytometry, leveraging
constrictional microchannels and cell-type classification via the
feedforward or recurrent neural networks.

In fluorescent acquisition, individual cells were stained with
three-type antibodies labeled with fluorescent probes (Figure 1A)
and they were injected into the constrictional microchannel, which
was excited by a laser beam and the fluorescent signals of the cells
were detected using photomultiplier tubes (see Figure 1B;
Supplementary Figure S1). In cell-type classification via the
feedforward neural network, fluorescent pulses were first
translated into single-cell protein numbers, leveraging calibration
curves formed by flushing gradient fluorescence-labeled antibody
solutions through constrictional microchannels with fluorescence
samples (see Figure 1C). Then, quantified three-type single-cell
protein levels of two cell types were applied to the two-layer
feedforward neural network for leukocyte differentiation (see
Figure 1D). In cell-type classification via the recurrent neural
network, six fluorescent pulses of two cell types were directly
applied to the six-layer LSTM neural network for differentiation
(see Figure 1E).

2.2 Cell culture and treatment

The human non-small-cell lung cancer cell line (A549) was
bought from Biology-Medicine Cell Resources of China, and the
human tongue squamous cell carcinoma cell line (CAL 27) was a gift
from the Peking University Hospital of Stomatology. Culturing
reagents of Roswell Park Memorial Institute 1640 and Dulbecco’s

modified eagle medium supplemented with sera and antibiotics were
bought from Thermo Fisher, United States. Materials used for cell
treatment including fixation (paraformaldehyde, PFA), membrane
permeabilization (triton), and blocking (albumin) were purchased
from the Sigma-Aldrich, United States. Fluorescence-labeled
antibodies used for cell staining included β-actin-FITC and
EpCAM-PE antibodies from Abcam, United Kingdom, and β-
tubulin-PerCP antibody from Novus, United States. Positive
photoresist from the AZ Electronic Materials, United States,
negative photoresist of SU-8 from Microchem, United States, and
elastomer of polydimethylsiloxane (PDMS) from Dow Corning,
United States, were used for fabricating constrictional
microchannels.

Membrane and intracellular staining of single cells was
conducted by following well-established approaches including key
steps of fixation, membrane blocking, membrane staining,
membrane permeabilization, intracellular blocking, and
intracellular staining. To be more specific, 1) in fixation,
A549 and CAL 27 cell suspensions were incubated with 4% PFA
solution for a quarter at 4°C; 2) in membrane blocking, 5% BSA was
added for half an hour at 25°C; 3) in membrane staining, EpCAM
antibodies with PE were diluted 100 times for bounding membrane
proteins of cells for half an hour at 37°C; 4) in permeabilization,
0.05% triton X-100 was then added and incubated a quarter at 4°C;
5) in intracellular blocking, the same treatment was repeated as step
2; 6) in intracellular staining, β-actin antibodies with FITC and β-
tubulin antibodies with PerCP were diluted 100 times for bounding
intracellular proteins of cells for 4 h at 37°C. Following each
procedure, a three-time rinse with 0.5% BSA was conducted to
fully remove residual solutions.

2.3 Design and fabrication of constrictional
microchannels

When the diameters of cells (~15 μm) were taken into
consideration, the geometrical dimensions of constrictional
microchannels were determined as a height of 20 μm and a
depth of 20 μm, which was modified from a previous study (Liu
et al., 2020). The constrictional microchannel designed in this study
was fabricated based on conventional fabrication techniques of
microfluidics, which included hard lithography of SU-8, soft
lithography of PDMS, chromium sputtering, and PDMS-glass
bonding.

To be more specific, this constrictional microchannel was
composed of a layer of patterned PDMS and a glass layer
patterned with chromium windows. To fabricate the PDMS layer
with patterned microchannels, the PDMS casting mold was
prepared by the rotating bilayer SU-8 photoresist on top of a
substrate, exposed with development. Briefly, to form the first
layer of the constrictional microchannels with a height of 20 μm,
the photoresist of SU-8 25 was spun on a bare substrate, soft baked,
exposed with contact, and post-baked without development. Then,
the SU-8 25 photoresist was applied, exposed with alignment, and
developed to form microchannels (30 μm height) for cell traveling.
For the step of soft lithography, the Sylgard 184 base and curing
agents with the weight in the ratio of 15:1 were mixed, followed by
vacuuming, pouring, and crosslinking.
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As for the quartz layer with patterned chromium windows, after
sputtering a layer of chromium on the quartz slide, the
AZ1500 photoresist was spin coated, soft-baked, exposed, and
developed. The patterned photoresist was transferred to the
chromium layer based on chromium etching, followed by the
removal of the residual photoresist and coating of a PDMS film
with a height of 1 μm.

Lastly, after surface activation using the treatment of oxygen
plasma, the microfabricated polymer layer composed of detection
channels and the patterned quartz substrate composed of chromium
windows were wetted with deionized water, aligned, and bonded
together under a microscope. The assembled constrictional
microchannels were kept on a hotplate to evaporate residual
water and increase bonding strength.

2.4 Fluorescent acquisition

Key procedures of fluorescent acquisition were summarized as
follows. Initially, a 150-mW laser was used for photobleaching with
20 min (OBIS, Coherent, United States) under the 10X objective lens of
IX 83 from Olympus, Japan. After filling buffer solution of PBS with
0.5%BSA, single cell-bound antibodies with fluorescent probes (β-actin
antibody of FITC, EpCAM antibody of PE, and β-tubulin antibody of
PerCP) were injected into the constrictional microchannel. In order to
drive single cells to travel continuously through the microchannel,

PACE-5000 from GE Druck, United States, was used to generate a
pressure of −1 kPa from the outlet.

A light source (488 ± 2 nm in wavelength and 5 mW in power)
was used to excite fluorescent signals, when stained cells or gradient
antibody solutions were passed through the constrictional
microchannel. For fluorescent detection, PMTs of H10723-01
coupled with a bandpass filter of 534/30 nm, H10723-20 coupled
with a bandpass filter of 575/25 nm, and H10722-20 with a bandpass
filter of 692/40 nm from Hamamatsu, Japan, were used to detect
three-channel fluorescence signals for FITC, PE, and PerCP probes,
respectively. After signal captures by PMTs, a synchronous data
acquisition card (USB-6349, National Instrument, United States)
was used to sample signals at a sampling rate of 500 kHz.

For the raw data, a 50-point median filter was processed to
remove background noises produced by PMTs. After the filtering,
mean values with standard deviations of the preliminary fluorescent
signals were calculated. In order to identify each event, a peaking
value higher than the threshold (mean + 3 × standard deviation) was
recognized as an effective pulse of a stained cell.

2.5 Protein measurement and the
feedforward neural network

In calibrations, under the same experimental conditions of
stained cells, gradient solutions (1:10, 1:50, 1:100, 1:500, 1:1,000,

FIGURE 2
Fluorescent profiles (e.g., FITC-labeled β-actin antibodies, PE-labeled EpCAM antibodies, and PerCP-labeled β-tubulin antibodies) of individual
A549 and CAL 27 cells traveling through constrictional microchannels.
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and 1:5,000) of β-actin-FITC, EpCAM-PE, and β-tubulin-PerCP
antibody were injected into the constrictional microchannel to
collect calibration curves with linear fitting. Due to volume
equivalence formed by the constrictional microchannel, a certain
number of fluorescent molecule-conjugated proteins were converted
into corresponding fluorescent intensities, and thus, the fluorescent
pulses were translated into a number of proteins. For detailed
processes of protein quantification, please refer to the previous
publication (Liu et al., 2020).

In this study, the feedforward neural network (MATLAB 2021b;
MathWorks, United States) was leveraged to conduct cell-type
classification based on aforementioned three-type protein
expressions at the single-cell level. In this neural network, values
of protein expressions were applied to the inputting layer, while the
corresponding cell types (e.g., A549 vs. CAL 27) were used as the
outputting layer. As to the middle layer, a neuron number of 50 was
used for cell-type classification. In addition, the complete dataset
(e.g., 10, 232 A549 and 16, 376 CAL 27) was divided into a training
dataset (70%), a validation dataset (15%), and a testing dataset (15%)
to produce a key parameter of “classification accuracy” in cell-type
classification.

2.6 Recurrent neural network

As for comparison, fluorescent pulses of tumor cell lines of
A549 and CAL 27 were processed by the recurrent neural network
since connections among layered nodes in this network form a graph
along the time sequence to exhibit temporal dynamic behaviors.
Since the conventional recurrent neural network may result in

vanishing gradients, when relatively long sequences were
processed, LSTM was used in this study as a variation of the
recurrent neural network, where a key unit of “forgetting gate”
was included to process relatively long sequences with temporal
gradients effectively kept.

Within six layers of LSTM, three parameters (e.g., batch size,
learning rate, and neuron number) may deeply affect network
performances. First, “batch size” represents the size of training
data in iterations, where increases in batch size with
corresponding decrease in iterations can produce decreases in
performances of generalization and accuracies of classification
but an increase in efficiencies of computation. Here, a group of
batch sizes (e.g., 10, 100, and 1,000) were screened for optimization.

A high learning rate usually means a short computational time
in convergence, while a small learning rate may require repeated
computations without a convergence. In addition, as a
hyperparameter, a high neuron number means a complex
network with the concerns of overfitting, while a low neuron
number may produce a oversimplified neural network. In this
paper, varied values of learning rates (e.g., 0.01, 0.001, and
0.0001) and neuron numbers (e.g., 64, 128, and 256) were used
for optimization.

3 Results and discussion

As shown in Figure 2, data on individual A549 and CAL
27 cells were obtained with three time-coordinated pulses for the
single cells, which represented the fluorescent levels of β-actin
with a FITC probe, EpCAM with a PE probe, and β-tubulin with a

FIGURE 3
(A) Scatter plots of cell diameters and quantitative expressions of cytoplasmic proteins of β-actin/β-tubulin andmembrane proteins of EpCAM from
individual A549 (ncell = 10, 232) and CAL 27 (ncell = 16, 376). (B) Confusion matrix for classifying A549 and CAL 27 cells based on protein numbers and the
feedforward neural network.
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PerCP probe. Similar to an arbitrary pulse, key indicators of Ta,
Ts, and Td and If1, If2, and If3 were collected by fitting these pulses
with ladder shapes.

The time width and traveling velocities of the cell passing
through the constrictional microchannel were quantified as
3.00 ms ± 1.43 ms and 16.32 ± 13.12 μm/ms (A549, ncell =
10,232) and 2.59 ms ± 0.84 ms and 17.16 ± 5.35 μm/ms (CAL 27,
ncell = 16,376). These parameters can, to an extent, reflect the
throughput, which was mainly dominated by the magnitude of
the driving pressure. Potentially, the driving pressure can be
easily increased to further shorten the durations of traveling cells
to less than 1 ms with throughputs significantly improved. For the
raw fluorescent intensities of the pulses in the stable zones, If1, If2,
and If3 were calculated as 29.7 mV ± 17.4 mV, 80.5 mV ± 46.1 mV,
and 25.4 mV ± 12.6 mV for A549 cells, and 44.0 mV ± 19.6 mV,
147.9 mV ± 66.0 mV, and 29.8 mV ± 14.0 mV for CAL 27 cells,
respectively. These preliminary parameters, to an extent, reflect
expressions of proteins during measurements.

Similar to the scatter plots shown in Figure 3A, cell diameters
and quantitative expressions of cytoplasmic proteins of β-actin/
β-tubulin and membrane proteins of EpCAM from individual
A549 or CAL 27 cells were obtained, leveraging calibration curves

with compensations (see Table S1). To be more specific, the cell
diameters were calculated as 15.2 μm ± 4.0 μm for A549 cells and
16.6 μm ± 4.0 μm for CAL 27 cells. For the validation of the
results, A549 and CAL 27 cell suspensions observed by
microscopic images were obtained as 15.9 μm ± 2.7 μm and
17.5 μm ± 2.0 μm, which was comparable with the results
calculated by this method.

Protein expressions of β-actin, EpCAM, and β-tubulin at
single-cell levels were quantified as 1.78 ± 1.06 × 106, 0.56 ±
0.43 × 104, and 8.11 ± 4.89 × 104 for A549 cells (ncell = 10,232),
and 2.65 ± 1.19 × 106, 3.47 ± 2.45 × 104, and 8.61 ± 5.25 × 104 for
CAL 27 cells (ncell = 16,376) (see Table S2). Compared with
previous studies of protein numbers for β-actin (~106 per cell)
and β-tubulin (~104 per cell) (Li et al., 2018b; Liu et al., 2020), the
results of the numbers of β-actin and β-tubulin detected by this
method were comparable. Furthermore, the number of EpCAM
per A549 cells reported in this study fell into the same range with
a previous value, which was ~7,700 based on a microarray assay
(Yang et al., 2016). Moreover, the expressions of EpCAM in
A549 cells were significantly lower than those in CAL 27 cells,
which was consistent with the previous studies (Wu et al., 2019;
Wu et al., 2020).

FIGURE 4
Results of classifying A549 and CAL 27 cells via the LSTM neural network. (A–C) Plots of classification accuracy vs. the iteration number with a varied
“batch size,” “learning rate,” and “neuron number”. (D) Confusion matrix for classifying A549 and CAL 27 cells based on the optimized LSTM neural
network.
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Figure 3B shows the classification accuracies between A549 and
CAL 27 cells, according to protein numbers based on the feedforward
neural network. More specifically, the classification accuracies were
quantified as 76.5% (β-actin), 91.0% (EpCAM), 61.1% (β-tubulin), and
92.0% (β-actin, EpCAM, and β-tubulin). Although the classification
accuracies based on the membrane and intracellular proteins reported
in this study weremuch higher than the classification accuracy of 73.3%
based on only three intracellular proteins (Liu et al., 2020), there was
still a big gap from 100% classification, which needs further efforts in
neural pattern recognition.

Figure 4 shows the results of classifying A549 and CAL
27 cells via the LSTM neural network, specifically including
plots of classification accuracy vs. the iteration number with a
varied “batch size,” “learning rate,” and “neuron number” as well
as a confusion matrix for classifying A549 and CAL 27 cells based
on the optimized LSTM neural network. When the batch size was
increased from 10 to 100 and then 1,000, steps of convergence
and accuracies of classification were noticed to decrease. Due to
the potential consideration of computing resources, here, 100 was
chosen as the optimal batch size in the following utilization of
LSTM (see Figure 4A).

In the optimization of the learning rate, when this parameter was
first decreased from 0.01 to 0.001, the problem of repeating
computations was relieved. As this parameter was further decreased
from 0.01 to 0.0001, significant increases in durations of computation
and convergence were located. Thus, a learning rate of 0.001 was
further used in the following studies (see Figure 4B). If the neuron
number was very high (e.g., 256), overfitting was observed, while if the
neuron number was very low (e.g., 64), underfitting was found. When
these issues were taken into consideration, a neuron number of 128 was
used in this study (see Figure 4C).

When the optimized LSTM neural network was used to process
fluorescent pulses, a classification accuracy of 95.5% (e.g., 95.6% of
training with a sample size of 23,916, 95.4% of validation with a sample
size of 5,125, 95.3% of testing with a sample size of 5,125, and 95.5% in
total with a sample size of 34,166) was obtained in classifying A549 and
CAL 27 cells (see Figure 4D). When the classification results of two
tumor cell lines relying on the feedforward neural network vs. LSTM
were compared, effective increases in classification accuracies from 92%
to 96% were found. This was because in the feedforward neural
network, only three-type protein expressions were used for cell-type
classification, while in LSTM, fluorescent pulses were processed and
more than 100 features were extracted for cell-type classification. Note
that features extracted by LSTM had no physical meanings and they
cannot be directly used for classifying other cell types without proper
training.
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