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The liquid residue resulting from various agroindustrial processes is both rich in
organic material and an attractive source to produce a variety of chemicals. Using
microbial communities to produce chemicals from these liquid residues is an
active area of research, but it is unclear how to deploy microbial communities to
produce specific products from the different agroindustrial residues. To address
this, we fed anaerobic bioreactors one of several agroindustrial residues
(carbohydrate-rich lignocellulosic fermentation conversion residue, xylose,
dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a
starch bioethanol plant) and inoculated them with a microbial community from an
acid-phase digester operated at the wastewater treatment plant in Madison, WI,
United States. The bioreactors were monitored over a period of months and
sampled to assess microbial community composition and extracellular
fermentation products. We obtained metagenome assembled genomes (MAGs)
from the microbial communities in each bioreactor and performed comparative
genomic analyses to identify common microorganisms, as well as any community
members that were unique to each reactor. Collectively, we obtained a dataset of
217 non-redundant MAGs from these bioreactors. This metagenome assembled
genome dataset was used to evaluate whether a specific microbial ecology model
in which medium chain fatty acids (MCFAs) are simultaneously produced from
intermediate products (e.g., lactic acid) and carbohydrates could be applicable to
all fermentation systems, regardless of the feedstock. MAGs were classified using a
multiclass classification machine learning algorithm into three groups, organisms
fermenting the carbohydrates to intermediate products, organisms utilizing the
intermediate products to produce MCFAs, and organisms producing MCFAs
directly from carbohydrates. This analysis revealed common biological
functions among the microbial communities in different bioreactors, and
although different microorganisms were enriched depending on the
agroindustrial residue tested, the results supported the conclusion that the
microbial ecology model tested was appropriate to explain the MCFA
production potential from all agricultural residues.
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1 Introduction

Finding ways to generate chemicals and chemical precursors
from renewable sources is an important step towards creating a
sustainable circular economy that decreases society’s dependance on
fossil fuels. Medium chain fatty acids (MCFAs) are one such class of
product that can be microbially produced, have applications in
lubricant synthesis, production of herbicides and antimicrobials,
and can be further processing into additional chemicals (Sarria et al.,
2017; Scarborough et al, 2018b). Microbes and microbial
communities can produce MCFAs using a wide variety of
biological MCFA
production an attractive target due to the widespread availability

carbohydrate-rich  substrates, — making
of carbohydrate-rich organic wastes that can be used as substrates,
such as undistilled corn beer (Ge et al., 2015), thin stillage (Fortney
et al, 2021), lignocellulosic fermentation conversion residues
(Scarborough et al., 2018a; Scarborough et al., 2018b), a soluble
fraction of municipal solid waste (Grootscholten et al, 2013;
Grootscholten et al, 2014) and winery residue (Kucek et al,
2016b). In addition to MCFAs, other fermentation products have
been identified as coproduced by microbial communities that
MCFAs

accumulation of acetic, lactic, succinic, and butyric acids, as well

generate from various substrates, including the
as ethanol (Han et al., 2018; Fortney et al., 2021). Lactic, succinic,
and butyric acids can be used as building blocks for materials such as
bioplastics (Harmsen et al., 2014). Further, both lactic acid and
ethanol have been shown to be intermediate metabolites during
MCFA production by members of microbial communities that
perform reverse $3-oxidation, also known as chain elongation
(Agler et al, 2012; Zhu et al, 2015; Kucek et al., 2016a; Han
et al,, 2018). Although most MCFA production research has been
conducted with microbial communities, it is not clear how to steer a
community towards maximizing MCFA production without
accumulation of other fermentation products, or how to harness
the microbial community to produce primarily one fermentation
product. Therefore, additional knowledge is needed to enable the
engineering of microbial communities to produce the desired
fermentation products. We are interested in generating models
that can explain and possibly predict the relationship of
microbial community structure with the type of carbohydrate-
rich substrates and the type of fermentation products that
accumulate.

An emerging microbial ecology model describes three main
functions in a chain elongation microbiome; one group of microbes
that can ferment carbohydrates to lactic acid but cannot perform
chain elongation, other microbes that can perform chain elongation
using lactic acid as an electron donor, and others that can perform
chain elongation directly from carbohydrates (Scarborough et al.,
2018a). This model, initially proposed based on experiments using
xylose-rich organic residues from lignocellulosic ethanol production
(Scarborough et al., 2018a), has been suggested for other substrates
(Crognale et al., 2021; Fortney et al.,, 2021; Ingle et al., 2021), and
there is emerging evidence of MCFA-producing microbes with the
genomic capacity for producing MCFA from both lactic acid and
carbohydrates (Kang et al., 2022; Wang et al., 2022). In other cases, it
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is proposed that ethanol can be used as an electron donor and act as
an intermediate during MCFA production (Agler et al., 2012; Kucek
etal, 2016a). To evaluate whether this microbial ecology model can
be generalized to conceptually explain MCFA production from a
variety of carbohydrate-rich organic residues, we evaluated the
microbial communities that were enriched when the same
inoculum was used in bioreactor experiments that fermented
several agroindustrial residues, including thin stillage from starch
ethanol production (Fortney et al., 2021; Fortney et al., 2022), thin
stillage from cellulosic ethanol production (Scarborough et al,
2018a; Scarborough et al, 2020), xylose (Scarborough et al,
2022), dairy manure hydrolysate (Ingle et al., 2021; Ingle et al,
2022), and ultrafiltered milk permeate (Walters et al., 2022; Walters
et al,, 2023). In all cases, the inoculum was from an acid-phase
anaerobic digester at the local wastewater treatment plant (Madison,
WI, United States).

Here we present the comparison of metagenome assembled genomes
(MAGs) from these bioreactors and examine the role of different
microbial groups in the fermentation and chain elongation processes.
For this analysis, we developed a script to identify genes encoding key
metabolic enzymes in the MAGs and a machine learning algorithm to
bin each MAG into relevant categories. This analysis revealed patterns
showing that in fermentations in which MCFA is the primary product
that accumulates, and the feedstock is a carbohydrate-rich substrate, the
microbial ecology model that describes chain elongation occurring via
utilization of intermediates or direct utilization of carbohydrates is
applicable, even though different microorganisms were enriched
depending on the agroindustrial residue tested.

2 Materials and methods

2.1 Metagenome assembled genome (MAQG)
sources

MAG data was obtained from previously published lab-scale
bioreactor studies of microbial communities grown with various
agroindustrial residues (Scarborough et al., 2018a; Scarborough
et al,, 2020; Fortney et al.,, 2021; Ingle et al., 2021; Fortney et al.,
2022; Ingle et al., 2022; Scarborough et al., 2022; Walters et al., 2022).
The operational conditions of the bioreactors are summarized in
Table 1 and additional information on sample collection can be
found in the respective publications. MAGs were obtained from the
inoculum source (two samples, 10 MAGs) (Ingle et al., 2022) and
bioreactors fed cellulosic ethanol thin stillage (six samples,
10 MAGs) (Scarborough et al., 2018a; Scarborough et al., 2020),
synthetic medium containing xylose as the primary carbon source
(three samples, 8 MAGs) (Scarborough et al.,, 2022), hydrolysate
from dairy manure (four samples, 38 MAGs) (Ingle et al., 2021; Ingle
et al., 2022), ultra-filtered milk permeate (34 samples, 123 MAGs)
(Walters et al., 2022; Walters et al., 2023), and starch ethanol thin
stillage (31 samples, 51 MAGs) (Fortney et al., 2021; Fortney et al.,
2022). In all cases, only the best-quality representative MAGs
determined in each study were used. In total, we used an initial
dataset of 240 MAGs from 80 total samples (Table S1).
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2.2 MAG dereplication and taxonomic
classification

The program dRep (v3.2.2; dereplicate command) (Olm et al.,
2017) was used to identify redundant MAGs using default
settings, except -conW was set to 0.5 and -N50W was set to 5.
This reduced the total MAG number from 240 to 217 non-
redundant MAGs (Supplementary Table S2). CheckM (v1.0.11;
lineage_wf and qa commands with default parameters) (Parks
etal., 2015) was used to determine relevant quality parameters for
each of the 217 MAGs (Supplementary Table S2). All 217 MAGs
were taxonomically classified using GTDB-Tk (v1.5.1; database
release 202; classify_wf command with default parameters)
(Supplementary Table S3).

2.3 Alignment and relative abundance
calculations

To predict the
represented by the 217-MAG dataset in samples from the
different bioreactors, the genome FASTA files of all the MAGs
and then Bowtie2 (v2.2.2 with default
parameters) (Langmead and Salzberg, 2012) was used to align the

relative abundance of microorganisms

were concatenated,

FASTQ sequencing files. Resulting SAM files were converted into
BAM files and sorted using samtools (v1.15.1; view and sort
commands with default parameters) (Li et al, 2009). CoverM
(v0.4.0; coverm genome command with default parameters)
(https://github.com/wwood/CoverM) was used to generate
relative abundance statistics of mapped reads in the sorted BAM
files (Supplementary Table S2). We identified 131 MAGs with at
least 1% relative abundance in at least one sample across all
experiments, which we define as the high-abundance MAG
dataset (Supplementary Table S4). A relative abundance of 1%
has been used previously as an abundance threshold (Fitzgerald
et al,, 2015; Scarborough et al., 2018a; Scarborough et al., 2018b;

Scarborough et al., 2020).

2.4 Phylogenetic analyses

Maximum likelihood phylogenetic trees were generated using
RAXML-NG (v0.9.0; model LG + G8+F) (Kozlov et al., 2019) using
1,000 bootstraps. GTDB-Tk (v1.5.1; database release 202; ani_rep
command with default parameters) (Chaumeil et al., 2019) was used
to identify closest related genomes, which were downloaded from
NCBI. The MAGs and closest genomes were compared using
GTDB-Tk  (identify and with  default
parameters) using a set of 120 bacterial single-copy marker genes
(Bac120) for all trees. Prevotella intermedia (GCF_001953955.1) was
used as an outgroup to root the trees.

align  commands

An additional analysis was performed to compare homologs
of subunit B of the electron transfer flavoprotein (EtfB). For this,
EtfB homologs were identified using known protein sequences
(Walters et al., 2023) and tBLASTn (v2.8.1, default parameters)
(Camacho et al,, 2009) with “pident” (percent identity to the
query sequence) > 25% and “qcovhsp” (coverage of the query
sequence) > 70%. EtfB homologs were aligned using MUSCLE
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(v3.8.31, default parameters) and a phylogenetic tree was
constructed using RAXML-NG using 500 boostraps. All files used in
this analysis are available on GitHub (https://github.com/GLBRC/
agroindustrial_residue_metagenomics).

2.5 Non-metric multidimensional scaling
plots

Non-metric multidimensional scaling (NMDS) plots were
generated from the relative abundance calculations for the
217 non-redundant MAGs using R (v4.1.0) (Core Team, 2018).
Specifically, the vegdist command with the “bray” index (from the
vegan package, v2.6-4) was used to determine the distance metrics
and the metaMDS command (from the vegan package, v2.6-4) was
used to generate the NMDS values. Plots were constructed using
ggplot2 (Wickham, 2016) from the NMDS values and edited for
clarity using Adobe Ilustrator (v27.2). Statistical comparisons were
performed using permutation-based multivariate analysis of
variance (PerMANOVA) via the adonis command (from the
vegan package, v2.6-4) with “euclidean” distance and the
Benjamini-Hochberg adjustment (adjusted p-value <0.05 accepted
as significant) (Benjamini and Hochberg, 1995; Anderson, 2017).
The R script used to generate the NMDS plot is available on GitHub
(GitHub page: https://github.com/GLBRC/agroindustrial_residue_
metagenomics).

2.6 Homology-based gene identification

A homology-based analysis was performed to identify genes

encoding enzymes of fermentation and central carbon
metabolism in each MAG. The query protein sequences used
were manually vetted through either EcoCyc (Keseler et al,
2011), MetaCyc (Caspi et al, 2020), SWISS-PROT via
UniProtKB (Boutet et al., 2016), or other published datasets.
Query protein amino acid sequences and metadata were
downloaded from the UniProtKB database. tBLASTn (v2.8.1)
(Camacho et al., 2009) was used to identify homologs using
default parameters. Subject sequences that had an e-value less
than 1 x 107'%, a “pident” (percent identity to the query sequence)
value greater than 25%, and a “qcovhsp” (coverage of the query
sequence) value greater than 70% were used to determine gene
homologs (Supplementary Table S5). All files and scripts are
available on GitHub (GitHub page: https://github.com/GLBRC/

agroindustrial_residue_metagenomics).

2.7 Multiclass classification machine
learning algorithm

MAGs were classified into four functional groups. The first
group, “Ferment to Intermediates”, consists of MAGs that ferment
carbohydrates into intermediate extracellular products, such as
ethanol or lactic acid. The second group, “Intermediate Chain
of MAGs that
extracellular products (e.g., ethanol or lactic acid) into medium
chain fatty acids (MCFAs) using reverse $3-oxidation. The third

Elongators”, consists convert intermediate
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group, “Carbohydrate Chain Elongators”, consists of MAGs that
ferment carbohydrates directly into MCFAs. A fourth group,
“uninvolved”, was used to bin MAGs that could not be classified
into the three functional groups.

Multiclass classification machine learning was utilized to
the MAGs
fermentation pathways that were detected. A training set was

categorize based on gene homologs of key
constructed using organisms known to fit into one of the four
groups (Supplementary Table S6). Bifidobacterium species and lactic
acid bacteria were used for the Ferment to Intermediates training set
(Okada et al.,, 1979; Pokusaeva et al., 2011; Pruckler et al., 2015;
Tanner et al., 2016; Eckel and Vogel, 2020; Ferrero et al., 2021;
Kasmaei et al., 2022; Ksiezarek et al.,, 2022), Clostridium and
Megasphaera species were used for the Intermediate Chain
Elongators training set (Wallace et al., 2003; Seedorf et al., 2008;
Jeon et al., 2017; Kobayashi et al., 2017; Tao et al., 2017; Yang et al.,
2018; Yoshikawa et al., 2018; Litty and Muller, 2021), Caproicibacter
and Roseburia species were used for the Carbohydrate Chain
Elongators training set (Kim et al., 2015; Tamanai-Shacoori et al.,
2017; Flaiz et al., 2020; Schoelmerich et al., 2020), and Acetobacter,
Prevotella, and Sphaerochaeta species were used for the uninvolved
training set.

Multiple multiclass classification machine learning algorithms
were tested using the auto_ml module (v2.9.10) (https://github.com/
ClimbsRocks/auto_ml). The algorithms tested against baseline were
Decision Tree (Pedregosa et al., 2011), Random Forest (Pedregosa
et al,, 2011), Linear Regression (Pedregosa et al., 2011), XGBoost
(https://xgboost.readthedocs.io/en/stable/index.html),
Network (Pedregosa et al., 2011), Nearest Neighbors (Pedregosa
et al, 2011), Extra Trees (Pedregosa et al, 2011), CatBoost

Neural

TABLE 1 Bioreactor operational conditions.

10.3389/fbioe.2023.1197175

(Prokhorenkova et al., 2018), and LightGBM (Zhang et al., 2017).
The machine learning algorithms were evaluated for correct
classification of training set genomes into functional groups using
multiple analyses: the logloss metric (-log(p), where p is the
probability of correctly categorizing the training set) (Bian and
Tao, 2011) for each algorithm compared to the baseline value of
no algorithm, precision-recall (PR) curves for each algorithm and
receiver operating characteristic (ROC) curves for each algorithm
(Haibo and Garcia, 2009). These evaluations showed that using the
LightGBM model provided the largest decrease in logloss metric (a
99.91% compared to baseline alone) while
maximizing true positives and minimizing false positives. The

improvement

script, files used for the machine learning analysis, and the
results of the multiclass classification machine learning analysis
are available on GitHub (GitHub page: https://github.com/
GLBRC/agroindustrial_residue_metagenomics).

2.9 Hierarchical clustering

MAGs were classified into predicted functional groups using
hierarchical clustering based on the detected genes in metabolic
pathways important in MCFA production (Walters et al., 2023).
Hierarchical clustering was performed in R (v4.1.0) (Core Team,
2018) using the gplots R package (v3.1.3, heatmap.2 command with
default parameters, https://github.com/talgalili/gplots/). MAGs
were classified using the hierarchical clustering results in the
Ferment to Intermediates group if they had high percentage of
genes detected in the bifid shunt or phosphoketolase pathways and
low percentage of genes detected in the lactic acid utilization and

Feedstock Experiment? Main organic substrates SRT® HRT® Temperature References
in the feedstock (days) (CEVS)
Manure Hydrolysate =~ Manure Hydrolysate glucose, xylose 6 6 35°C 5.5 Ingle et al. (2021)
Milk Permeate 1 lactose 6 6 35°C 5.5 Walters et al. (2023)
Ultra-Filtered Milk (CSTR)
Permeate Milk Permeate lactose >40 0.5 room temp 5.5 This Study
2 (USB)
Cellulosic EtOH Thin = Cellulosic-EtOH Thin xylose 6 6 35°C 5.5 Scarborough et al. (2018a),
Stillage Stillage Scarborough et al. (2020)
Xylose Synthetic Xylose xylose 6 6 35°C 5.5 This Study
Medium
Starch-EtOH 1 glycerol, carbohydrates, lactic 6 6 35°C 5.5 Fortney et al. (2021)
acid
SR-Starch-EtOH 2 glycerol, carbohydrates, lactic 6 6 35°C 5.5 Fortney et al. (2021)
acid
Starch EtOH Thin SR-Starch-EtOH 3 glycerol, carbohydrates, lactic 1 1 35°C 5.5 Fortney et al. (2021)
Stillage acid
SR-Starch-EtOH 4 glycerol, carbohydrates, lactic 6 6 55°C 5.0 Fortney et al. (2021)
acid
SR-Starch-EtOH 5 glycerol, carbohydrates, lactic 1 1 55°C 5.0 Fortney et al. (2021)
acid

“CSTR, continuously stirred tank reactor; USB, upflow sludge blanket reactor; SR, solids removed from the thin stillage by decanting.

"SRT, solid retention time; HRT, hydraulic retention time.
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FIGURE 1

Overview of bioreactors operated with the different agroindustrial feedstocks and their contribution to the non-redundant MAG dataset. (A)

Graphical overview of inoculum source and enrichments with different fe
reactors were completely mixed flow-through reactors, except for Milk P

edstocks, indicating the number of MAGs assembled from each source. All
ermeate 2, which was an upflow sludge blanket reactor. See Table 1 for

operational conditions. (B) Flow chart indicating how the MAGs were filtered for this work. From a total of 240 MAGs, dRep (Olm et al., 2017) was
used to identify redundant MAGs and define a set of 217 non-redundant MAGs. Abundance was then used to define a set of 131 high-abundance and non-

redundant MAGs.

reverse {3-oxidation pathways, in the Intermediate Chain Elongators
group if they had low percentage of genes detected in the bifid shunt
or phosphoketolase pathways and high percentage of genes detected
in the lactic acid utilization and reverse 3-oxidation pathways, and
in the Carbohydrate Chain Elongators group if they had low
percentage of genes detected in the bifid shunt, phosphoketolase,
and lactic acid utilization pathways but high percentage of genes
detected in the reverse 3-oxidation pathway (Supplementary Table
S2). The script, files used, and results of this analysis are available on
GitHub (GitHub page: https://github.com/GLBRC/agroindustrial
residuefmetagenomics).

3 Results

3.1 Analysis of the non-redundant MAG
dataset

For this study we used MAGs assembled from 10 different
bioreactors that were fed various agroindustrial residues (Figure 1).
The microbial communities that were enriched in these bioreactors
originated from the same inoculum source, an acid-phase anaerobic
digester used in the solids handling treatment train at the local
wastewater treatment plant (Madison, WI, United States). In
addition to the type of agroindustrial residue used as the
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feedstock, parameters such as temperature and pH were also
different in some bioreactor experiments (Table 1). Bioreactor
performance has been described elsewhere for a bioreactor fed
xylose-rich thin stillage from cellulosic ethanol production
(Scarborough et al, 2018b), one fed a carbohydrate-rich
hydrolysate created from chemical pretreatment of dairy manure
(Ingle et al,, 2021), five bioreactors fed thin stillage from starch
ethanol biorefining (Fortney et al., 2021), and one bioreactor fed
lactose-rich ultra-filtered milk permeate (Walters et al., 2023). Two
additional bioreactors complete the set of 10 bioreactors used in this
study; one fed a xylose-rich synthetic medium and a second one
operated with ultra-filtered milk permeate as the feedstock. The
MAGs assembled from all of the bioreactors have been reported and
are publicly available (Scarborough et al., 2018a; Fortney et al., 2022;
Ingle et al., 2022; Scarborough et al., 2022; Walters et al., 2022). The
main fermentation products that accumulated in the medium of
these bioreactors include lactic and succinic acids, ethanol, as well as
the short chain fatty acids (SCFAs) acetic and propionic acids and
the MCFAs butyric, hexanoic, and octanoic acids (Figure 2).
Combined, there are a total of 240 MAGs across these
bioreactors (Figure 1B; Supplementary Table S1). Given the
similarities in the inoculum source and in the accumulated
hypothesized that the MAGs
assembled from these microbial communities would have a high

fermentation products, we

degree of similarity. However, when the program dRep (Olm et al.,
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Summary of extracellular fermentation products that
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2017) was used to identify MAGs with at least 99% average
nucleotide identity (ANI), only 23 MAGs were highly similar
among the 240 MAGs (Figure 1B; Table S1). This dereplication
analysis resulted in a library of 217 non-redundant MAGs that we
used to further evaluate the microbial communities in the
bioreactors (Supplementary Table S2).

10.3389/fbioe.2023.1197175

This collection of 217 non-redundant MAGs represented
median relative abundances ranging from 63.5% to 90.3% in
the bioreactor samples, but a median relative abundance of
only 11.6% for the inoculum (Table 2). The low percentage for
the inoculum indicates that most of the 217 MAGs in the
library represented microbial community members that
were not abundant in the acid-phase digester inoculum,
but were instead enriched during the operation of the
bioreactors.

A non-metric multidimensional scaling (NMDS) analysis of the
relative abundance of MAGs in the analyzed samples reveals
divergence in the microorganisms that were enriched during
growth in the different agroindustrial residues (Figure 3). The
lack of overlap of the abundant MAGs among agroindustrial
residue media used indicates that the media played a large role
in shaping the microbial communities in these bioreactors. The
dataset includes samples collected from bioreactors operated with
the same agroindustrial residue but different operational conditions.
In these cases, the NDMS plot suggests that agroindustrial residue
used had a larger impact in shaping the microbial community
compared to the operational condition. For example, several
bioreactors were operated using starch ethanol thin stillage
(Fortney et al., 2021), and in the NDMS plot (Figure 3) the
samples from these bioreactors clustered together and separate
from the samples from bioreactors that used other agroindustrial
residues (adjusted p-value <0.05). The dataset also includes samples
collected from bioreactors operated under identical conditions but
receiving different agroindustrial residues. This is the case for the
Milk Permeate 1, Xylose, and the Starch-EtOH 1 experiments
(Figure 3). Although they were all operated under identical
conditions, there is no overlap of the abundant MAGs from
these reactors in the NDMS plot (adjusted p-value <0.05),
supporting the argument that the agroindustrial residue used had
a larger impact in the microbial communities than the operational
conditions used.

TABLE 2 Relative abundance of all 217 non-redundant MAGs across all experiments.

Experiment Number of MAGs detected as Min-max relative abundance Median relative

present® range® (%) abundance (%)
Inoculum 21 10.3-13.0 11.6
Manure Hydrolysate 99 68.9-77.9 74.7
Milk Permeate 1 148 9.3-91.1 74.6
Milk Permeate 2 139 7.9-80.1 69.2
Cellulosic EtOH Thin 75 33.0-87.3 86.6

Stillage

Xylose 21 88.0-88.5 88.5
Starch-EtOH 1 100 8.5-87.0 635
SR-Starch-EtOH 2 55 87.9-92.6 90.3
SR-Starch-EtOH 3 52 80.8-88.8 852
SR-Starch-EtOH 4 53 84.6-89.7 86.1
SR-Starch-EtOH 5 24 74.9—77.4 76.4

“A MAG was defined to be present in a sample if the relative abundance was greater than 0%.

"Minimum and maximum relative abundances represented by the non-redundant MAG dataset among all the samples from each bioreactor experiment and from the inoculum samples.
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TABLE 3 General information on the 217 MAGs.

Characteristic Value

Phyla Identified 8

Families Identified 12

Genera Identified 24
Illumina Total (contig range) 149 (1-558)
PacBio Total (contig range) 68 (1-44)
Completion Minimum 75%
Contamination Maximum 7.5%

The set of non-redundant MAGs has a diverse composition
(Table 3; Supplementary Table S3), with MAGs belonging to
eight phyla and 12 families within these phyla. 24 MAGs were
classified to the genus level based on the coverage in the
metagenomic data sets. In addition, this non-redundant set
includes MAGs assembled with short-read Illumina
(149 MAGs) and long-read PacBio technologies (68 MAGs).
Estimates of completion and contamination in this dataset are
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greater than 75% and less than 7.5%, respectively. The MAGs
resulting from Illumina sequencing had assemblies with
1-558 contigs, whereas the MAGs obtained from PacBio
in (Table 3;

sequencing were assembled 1-44 contigs

Supplementary Table S2).

3.2 Enzymes in metabolic pathways
identified in the non-redundant MAG
dataset

We sought to make predictions on the role of different
in the
bioreactors and to evaluate the microbial ecology model for

members of the microbial communities enriched
MCFA production that hypothesizes the presence of some
community members that produce MCFA directly from
(Carbohydrate  Chain other

community members that produce MCFA from lactic acid or

carbohydrates Elongators),
ethanol as intermediate fermentation products (Intermediate
Chain Elongators), and other community members that produce
these intermediate products but do not perform chain elongation
(Ferment to Intermediates) (Scarborough et al., 2018a). To this
end, we queried the MAGs for the presence of homologs of
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MCFA production (purple).

individual proteins present in different fermentation pathways
(Figure 4; Supplementary Table S5) (Walters et al., 2023). This
allowed categorization of MAGs by association of similar patterns
of the presence of homologous proteins from each metabolic
pathway examined. Using the hierarchical clustering of the
MAGs based on the percentage of homologs present per
pathway, we categorized the MAGs into the functional groups.
Based on this analysis, 79 MAGs are predicted to ferment
carbohydrates to intermediate products (Ferment to
Intermediates), 59 MAGs are predicted to produce MCFA from
the intermediate products (Intermediate Chain Elongators), and
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13 MAGs are predicted to produce MCFA from carbohydrates
(Carbohydrate Chain Elongators, Figure 4; Supplementary
Table S2).

3.3 Machine learning-based classification

We also wanted to test if we could use multiclass classification
machine learning to generate similar predictions, as a way to
evaluate large MAG datasets quickly and to remove any bias in
functional assignments based on enzyme assignments. For this
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evaluation, we constructed a training set of isolated organisms
predicted to perform the three specific functions in the model,
plus organisms not known or likely to participate in these activities
(Supplementary Table S6). As input to the machine learning
algorithm, we used the information gathered about detection of
protein homologs in the metabolic pathways relevant to the
ecological model (Supplementary Table S5). The training set was
then used to investigate a number of possible multiclass
classification machine learning algorithms, with the LightGBM
algorithm (Zhang et al, 2017) producing the best results of
binning the genomes into the correct functional groups based on
multiple methods of evaluation (logloss comparison to baseline, PR
curve, and ROC curve).

To evaluate the machine learning multiclass classifications, a
subset of the most abundant MAGs was selected for further analysis.
The 217 non-redundant MAGs across the experiments were filtered
to include only MAGs with at least 1% relative abundance in at least
one experiment sample (Figure 1B; Supplementary Table S4). The
resultant 131 high-abundance MAGs include ones assembled from
short read Illumina technology (74 MAGs) and long read PacBio

Frontiers in Bioengineering and Biotechnology

technology (57 MAGs) and were categorized into one of four
functional groups using the trained multiclass machine learning
model. Overall, 63 MAGs were predicted as being able to ferment
carbohydrates to intermediate products (Ferment to Intermediates),
17 MAGs were predicted as being able to convert intermediate
products to MCFAs (Intermediate Chain Elongators), 12 MAGs
were categorized as being able to ferment carbohydrates to MCFAs
(Carbohydrate Chain Elongators), and 39 MAGs were predicted not
to be involved in MCFA production (Figure 5A; Supplementary
Table S4). The MAGs in each category were derived from several
different agroindustrial residue experiments (Figure 5B), showing
that similar functions occurred with the different agroindustrial
residues.

Comparison of the MAGs classified into the functional groups
by the machine learning algorithm to classification by hierarchical
pathway clustering reveals differences based on the approaches
(Figures 5C-E). The Ferment to Intermediates group shows a
large amount of overlap between the two methods (Figure 5C).
The hierarchical pathway clustering method identified more MAGs
than the machine learning algorithm for the Intermediate Chain
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Elongators group while there was little overlap among the methods
for the Carbohydrate Chain Elongators group (Figures 5D, E).
Focusing on the machine learning classification, and to further
investigate the MAGs present in functional groups responsible
MCFA  production,
comparing the genomes used in the training set and the MAGs

phylogenetic trees were constructed
classified into each functional group (Figures 6-8). The MAGs were
taxonomically classified using GTDB-Tk (Chaumeil et al., 2019). For
each functional group examined, we found multiple taxonomic
groups across taxonomic levels, ranging from phyla to family
(Figures 6-8). Indeed, a subset of the MAGs in groups share no
overlap at the class or family level with genomes in the training set,
suggesting the machine learning algorithm is identifying new

taxonomic groups that may perform the specific biological function.
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3.4 MAGs predicted to participate in
fermentation to intermediate products

The majority of the MAGs predicted in the Ferment to
the
Bifidobacteriaceae, and Atopobiaceae families (Figure 6). In

Intermediates  group  belonged to Lactobacillaceae,
general, the MAGs in Bifidobacteriaceae and Lactobacillaceae
clustered with the genomes from the same taxonomic group used
in the training set. Further, the machine learning algorithm classified
MAGs of the Atopobiaceae family into this group, despite no
member of this family being present in the training set. A small
subset of the MAGs in this functional group belonged to other
taxonomic groups: class Bacilli (3 MAGs)

Proteobacteria (3 MAGs) (Figure 6).

and phylum
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3.5 MAGs predicted to participate in chain
elongation from intermediate products

The majority of the MAGs in the Intermediate Chain Elongators
group, predicted to convert fermentation intermediates into
MCFAs, predicted  to families:
Megasphaemceae, Acidaminococcaceae,
Anaerovoracaceae, and Eubacteriaceae (Figure 7). This included a
MAG (UW_SG_EUBI, Ca. Pseudoramibacter fermentans) that was
studied at the transcriptomic level and predicted to ferment
intermediates into MCFAs (Scarborough et al., 2020). The MAGs
in four of the five families were clustered with genomes in the same

belong to five
Clostridiaceae,

were

families used in the training set. However, there were no genomes in
the training set that belonged to the family Acidaminococcaceae,
Lachnospiraceae, or Oscillospiraceae. Two MAGs belonged to
phylum Bacteroidota (order Bacteroidales).

3.6 MAGs predicted to participate in chain
elongation from carbohydrates
The MAGs predicted to belong to the Carbohydrate Chain

Elongators group, ones which convert carbohydrates directly to
MCFAs, belonged primarily to two families: Lachnospiraceae and

Frontiers in Bioengineering and Biotechnology

Acutalibacteraceae (Figure 8). Included in this group is a MAG
(UW_SG_LCO1, Ca. Weimeria bifida) previously studied in-depth
and suggested to perform chain elongation from carbohydrate
substrates (Scarborough et al., 2020). Seven of the MAGs present
in the Carbohydrate Chain Elongators group belonged to other
taxonomic groups: class Bacilli, class Clostridia as well as phyla
Proteobacteria and Spirochaetota (Figure 8).

4 Discussion

We have used a dataset of over 200 MAGs from 10 previously
published bioreactor experiments to evaluate the prevalence of the
emerging microbial ecological model for chain elongation
microbiomes. In this model, MCFAs can be produced either
from intermediates, such as lactic acid, or directly from
carbohydrates. Using machine learning and protein homology
predictions, we find that this ecology model is conserved across
various microbial communities from bioreactors fed various
carbohydrate rich agroindustrial residues. While the MAGs
assembled from each microbial community were not found to be
identical in terms of sequence similarity, the biological functions of
the microbial communities are predicted to be maintained in MAGs
from various taxonomic groups with different relative abundances
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(Figure 9). Below we discuss observations about the organisms
classified into each group.

4.1 A taxonomically diverse set of MAGs is
predicted to ferment carbohydrates to
intermediates

The Ferment to Intermediates functional group was
classified the phylum
acid Dbacteria, which
associated with carbohydrate fermentation to lactic acid and
other intermediates (Garde et al., 2002; Ganzle and Follador,
2012; Ginzle, 2015; Zhang and Vadlani, 2015). Indeed,
Firmicutes, specifically those in the family Lactobacillaceae,

comprised of many MAGs in

Firmicutes, specifically lactic are

make up a large portion of the microbial community in most
of the bioreactors analyzed when using cumulative relative
genomic abundance as a measure (Figure 9), suggesting
MAGs in this phylum may play a key role in fermentation to
intermediates across the agroindustrial residues examined.
classified this
group. MAGs from both family Atopobiaceae and family

There were other taxonomic groups in

Bifidobacteriaceae (phylum Actinobacteriota) were found to
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be fairly abundant in a subset of the experiments, specifically
Milk Permeate 1 and 2, as well as Cellulosic Ethanol Thin
Stillage and Xylose (Figure 9), which supports previous
observations of the relationship between these two families
(Scarborough et al., 2018a; Carvajal-Arroyo et al., 2019;
Walters et al., 2023). Three MAGs in the class Bacilli but not
part of the Lactobacillaceae family as well as three MAGs in the
phylum Proteobacteria were both categorized as being in this
functional group (Figure 9) and were found to be of high
abundance in two Starch-EtOH experiments that were
conducted at a higher temperature and did not result in
accumulation of MCFA chain elongation products (Figure 2;
Table 1) (Fortney et al., 2021).

From a metabolic potential perspective, fermentation to
intermediates can be accomplished as homolactic fermentation
wherein only lactic acid is produced, or heterolactic fermentation,
either by the phosphoketolase pathway or the bifid shunt pathway,
wherein lactic acid and other products (ethanol or acetate) are
produced (Pokusaeva et al., 2011; Génzle, 2015). The percentage of
detected gene homologs that encode enzymes unique to each
fermentative pathway can be used to evaluate which fermentative
pathways may be present in each MAG (Supplementary Figure
S1A). In the majority of MAGs, greater than 60% of the unique
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Cumulative relative abundances for taxa within each group reveal common biological functions across agroindustrial residues. Cumulative relative
abundances for each taxa across the 10 experiments for MAGs classified in the Ferment to Intermediates group, the Intermediate Chain Elongators group,
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proteins in the homolactic and the heterolactic bifid shunt pathways
were detected, suggesting these are the primary sources of lactic acid
across the microbial communities. This included the MAGs in the
phylum Proteobacteria and the non-Lactobacillaceae MAGs in the
class Bacilli, suggesting this is a key reason these MAGs from
unexpected taxonomic groups this
functional group (Supplementary Figure SI1A). No MAGs

were categorized into
contained more than 60% of the unique proteins in the
heterolactic phosphoketolase fermentation pathway, with the
majority containing less than 40% of the unique enzymes
(Supplementary Figure S1A), suggesting this is a not a key
pathway in abundant members of the communities that are
found when using these agroindustrial residues. Nearly all the
MAGs in the family Bifidobacteriaceae have over 80% of the
unique enzymes in the heterolactic bifid shunt fermentative
pathway, which is to be expected for members of this family
(Supplementary Figure S1A) (Pokusaeva et al, 2011). Future
research can explore the proposal that these MAGs that perform
lactic acid fermentation and do so using the homolactic
fermentation pathway or heterolactic bifid shunt fermentation
pathway.
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4.2 MAGs from several taxonomic groups
are predicted to use intermediates for chain
elongation

The Intermediate Chain Elongators functional group was
comprised of MAGs from a variety of taxonomic classifications
(Figure 7). While nearly all the MAGs were part of the phyla
Firmicutes_A or Firmicutes_C, the lower taxonomic levels were
more differentiated (Figures 7, 9), suggesting a variety of
microorganisms capable of performing this transformation in
these microbial communities. Several of these MAGs belonged to
families included in the training set, supporting the functional
classification—Anaerovoracaceae, Clostridiaceae, Eubacteriaceae,
and Megasphaeraceae—and were the MAGs with the highest
relative level of genomic abundance in the experimental
microbial communities (Figure 9). This suggests that these MAGs
may play a key role in converting intermediates to MCFAs.
Interestingly, the machine learning approach predicted MAGs
from other families may also perform this biological function.
These included MAGs from the phylum Bacteroidia and the
Lachnospiraceae, and

families Acidaminococcaceae,
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Oscillospiraceae (Figure 7). A member of the family Oscillospiraceae,
Caproicibacterium lactatifermentans, was shown to utilize lactic
acid, a function unique from other members of this family
(Wang et al., 2022), and the Oscillospiraceae MAG has homologs
of the key proteins for conversion of lactic acid to MCFAs
(Supplementary Figure SIB). MAGs that belong to family
Lachnospiraceae have been shown to convert carbohydrates
directly to MCFAs (Scarborough et al., 2018a; Scarborough et al.,
2020), but our analysis suggests they may also convert fermentation
intermediates into these products. Indeed, UW_MP_LCO2_
1 contains all three proteins key for conversion of lactic acid to
MCFAs, supporting a possible alternative role of the MAG from this
family (Supplementary Figure S1B).

However, neither the Lachnospiraceae MAG nor the
Oscillospiraceae MAG were highly abundant in any of the
datasets analyzed (Figure 9), suggesting they may not play a large
role, even if they do generate MCFAs from intermediates.
Interestingly, the Acidaminococcaceae and Bacteroidia MAGs
the Milk Permeate
1 experiment (Figure 9), raising the possibility that the unique

have relatively high abundance in

conditions of that experiment (Walters et al., 2023) may lead to
of these MAGs
intermediates to MCFAs. However, the two MAGs belonging to

the enrichment to convert fermentation
phylum Bacteroidota are the only two MAGs for which a majority of
genes encoding for lactic acid utilization and reverse 3-oxidation
were not detected (Supplementary Figure S1B). This raises the
possibility that these MAGs were misclassified, but their
future

phylogenetically related organisms have recently been associated

metabolic ~ potential ~ deserves exploration  since
with SCFA production in microbial communities (Watanabe et al.,

2021; Ho et al, 2021; Liu et al., 2022).

4.3 MAGs from various taxonomic groups
are predicted to use carbohydrates for chain
elongation

A majority of the MAGs classified in the Carbohydrate Chain
Elongators group by the machine learning algorithm we used belong to
the phylum Firmicutes and specifically five families: Lachnospiraceae,
Acutalibacteraceae, Bacillaceae, Sporolactobacillaceae, and
Clostridiaceae (Figure 9). Of these MAGs, Lachnospiraceae has been
shown to produce MCFAs from carbohydrates in other microbial
communities (Scarborough et al.,, 2018a; Scarborough et al., 2020).
Indeed, the Lachnospiraceae MAGs are the most abundant across the
largest number of reactor experiments, suggesting they are key players
in MCFA synthesis from carbohydrate (Figure 9). Interestingly, for two
of these MAGs we were not able to identify homologs to three of the
four enzymes involved in chain elongation (Supplementary Figure
S1C). While this may indicate mis-classification, it also raises the
possibility that other enzymes may perform these processes in these
organisms or that the enzymes have diverged enough in these MAGs so
the homologs were below our thresholds. Additional research into these
MAGs will be required to examine these hypotheses.

Most of the MAGs in this group contain homologs for the chain
the

Lachnospiraceae family also contain at least one homolog of the

elongation genes, although many of them outside

lactic acid utilization genes (Supplementary Figure S1C). These

Frontiers in Bioengineering and Biotechnology

14

10.3389/fbioe.2023.1197175

results suggest that these MAGs may be able to convert both
carbohydrates as well as lactic acid into MCFAs. This has been
other
lactatifermentans (family Acutalibacteraceae) (Wang et al., 2022)

observed in microbes including Caproicibacterium
and Megasphaera hexanoica (family Megasphaeraceae) (Jeon et al.,
2017; Kang et al., 2022). Interestingly, MAGs within the same family
(Acutalibacteraceae) differ in the presence of lactic acid utilization
homologs (Supplementary Figure S1C), suggesting this difference
may be on the genus or species level. Recent results suggest members
of this family can produce MCFAs from lactic acid (Wang et al.,
2022) as well as carbohydrates (Van Nguyen et al., 2023). Further
research into these MAGs and related isolated organisms will be
valuable to evaluate this new hypothesis.

Of the two MAGs in the class Bacilli that are classified as
Carbohydrate Chain Elongators, UW_MP_SPOR1_1 (family
Sporolactobacillaceae) lacked homologs to the electron bifurcating
acyl-CoA dehydrogenase and the acetyl-CoA C-acetyltransfase
enzymes while UW_TS_BAC2_1 (family Bacillaceae) contained
homologs for all examined enzymes (Supplementary Figure S1C).
Members of the family Sporolactobacillaceae are known to produce
lactic acid (Chang et al., 2008; Tolieng et al., 2017), so our findings
raise the possibility that some members of class Bacilli may be able to
produce MCFAs as well. Similarly, the MAG in the family
Clostridiaceae contained homologs for all enzymes examined,
including the lactic acid utilization proteins, suggesting that this
MAG may produce MCFAs from lactic acid as well as
of the Spirochaetota
Proteobacteria are not known to perform chain elongation, but

carbohydrates. Members phyla and
the MAGs contain at least some of the genes encoding enzymes
important for chain elongation, raising the possibility of an
expanded functional role of MAGs from these taxonomic groups
(Supplementary Figure S1C). Taken together, the results from the
machine learning analysis both support previous research and
suggest potential new groups of organisms that may be able to

perform the specific biological function.

4.4 Phylogenetic analysis of EtfB homologs
can differentiate between lactic acid
utilization and chain elongation

The electron flavoprotein (EtfAB) can form a complex with both
electron confurcating lactate dehydrogenase (ecLDH, involved in
lactic acid utilization) and acyl-CoA dehydrogenase (ACD, involved
in chain elongation) (Garcia Costas et al., 2017; Detman et al., 2019)
and phylogenetic analysis of the beta subunit (EtfB) can be used to
differentiate between the ability to use lactic acid and to perform
chain elongation (Walters et al., 2023). This analysis suggests that
three MAGs in the Intermediate Chain Elongators group contain
multiple copies of EtfB, one associated with ecLDH and one
associated with ACD (Figure 10; Supplementary Figure S2),
supporting the functional classification that these MAGs use
lactic acid to perform chain elongation. Three MAGs in the
Carbohydrate Chain Elongators group contain a single copy of
EtfB associated with ACD (Figure 10; Supplementary Figure S2),
supporting the classification that these MAGs can produce MCFAs
but not utilize lactic acid. However, a majority of the MAGs in both
functional groups contain EtfB homologs for which the phylogenetic
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FIGURE 10

Association of EtfB homologs with lactic acid utilization, chain elongation, or other functions. Summary of the phylogenetic analysis (Supplementary
Figure S2) examining EtfB homologs in the MAGs from the Intermediate Chain Elongators group (A) and the Carbohydrate Chain Elongators group (B).
MAGs with an EtfB homolog that the phylogenetic analysis suggests is associated with lactic acid utilization have a blue box in the first column while MAGs
with an EtfB homolog that the phylogenetic analysis suggests is associated with chain elongation have a blue box in the second column. A blue box

in the Other column indicates that a MAG has an EtfB homolog for which the phylogenetic analysis cannot indicate a clear function.

analysis cannot predict a metabolic function. Additional research
into the metabolism of microorganisms represented by these MAGs
will be required to elucidate the function of these EtfB homologs.

4.5 Additional data needed to better
understand and predict operation of these
microbial communities

All of the analyses in this study were performed using
metagenomic data for the MAGs across the 10 experiments.
Importantly, metagenomics data can inform what genes are
present in a microbial community, and thus we can use this
presence to classify MAGs using machine learning. However,
presence of a gene does not indicate how much that gene is
expressed and thus how important the protein is to the microbial
community. Previous work has shown a dramatic disconnect in
MAG abundance when calculated using metagenomics (DNA)
data or metatranscriptomics (RNA) data (Jewell et al., 2016;
Lawson et al., 2017; Beach et al., 2021; Watanabe et al., 2021).
The addition of metatranscriptomics to study this ecological
microbial model would not only indicate the expression level
of the genes in each MAG, but would also provide more
information about the functional abundance of each MAG
within each functional group.

For the machine learning analysis, we selected isolated bacteria
that had been shown to perform the biological function for each
group. This meant we were limited in how many organisms were
available to use to build our training set. One key example is the lack
of isolated organisms shown to convert ethanol to MCFAs. The only
isolated organism we were able to find supported evidence for this
biological process was the well-studied species Clostridium kluyveri
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(Seedorf et al., 2008; Han et al., 2018). Due to the limited available
genomes that represent isolated organisms known to produce
MCFA from ethanol by chain elongation, we did not attempt to
predict this as a separate functional group. As more bacteria are
isolated and studied for this biological process, it is likely the
machine learning model can be updated to distinguish
between MAGs that using ethanol and those that use lactic acid

to produce MCFAs, adding more value to this type of classification

procedure.

This study suggests that the ecological microbial model of
different functional —groups (Ferment to Intermediates,
Intermediate Chain Elongators, and Carbohydrate Chain

Elongators) is common among microbial communities enriched
in carbohydrate-rich agroindustrial residues seeded with anaerobic
digester sludge from the wastewater treatment plant. Examination of
a microbial community enriched in food waste, a carbohydrate-rich
liquid medium, and an inoculum of anaerobic digester sludge from a
wastewater treatment plant suggested a similar ecological model
(Crognale et al., 2021). A key question that remains is how
widespread this ecological model is when applied to other
microbial communities, especially in terms of different inocula
and feedstock used. Additional research into the composition and
genomic make up of other microbial communities would be
fascinating and reveal how universal this model is among
microbial communities performing chain elongation to produce
MCFAs.

4.6 Concluding remarks

Examining the 240 MAGs across 10 experiments provided us
an opportunity to develop new tools to better understand the
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microbial communities present across the bioreactors. Specifically,
the large data set enabled the use of multiclass classification
machine learning to categorize the MAGs into distinct
functional groups in an unbiased manner. These tools can be
adapted to evaluate other microbial ecology models by changing or
expanding the functional groups included in the models. Thus, this
analysis not only further explained the core functional groups for
MCFA production in carbohydrate rich agroindustrial residues but
also demonstrated a new way to quickly examine and explore
microbial communities. Such knowledge will help generate
hypotheses about microbial community members that could be
experimentally tested, helping in the development of better
strategies to manage microbiomes to produce desired products,
as well as to better characterize microbial functions in a wide
variety of microbiomes.
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