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Larotrectinib (Lar) is an orally administered tropomyosin receptor kinase (Trk)
inhibitor with broad-spectrum antitumor activity that is available in clinical dosage
forms as capsules and oral solutions. Currently, corresponding research is focused
on developing new extended-release formulation systems for Lar. In this study, a
biocompatible Fe-based metal-organic framework (Fe-MOF) carrier was
synthesized by a solvent-based method, and a sustained-release drug delivery
system (Lar@Fe-MOF) was constructed by nanoprecipitation and Lar loading. Lar@
Fe-MOF was characterized by transmission electron microscopy (TEM),
differential scanning calorimetry (DSC), fourier transform infrared (FTIR)
spectroscopy, and thermogravimetric analysis (TGA), and its drug loading
capacity and drug release properties were measured by ultraviolet-visible
(UV—-vis) spectroscopy. Then, the toxicity and biocompatibility of the Fe-MOF
carriers were evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2,  5-
diphenyltetrazolium bromide (MTT) and hemocompatibility assays. Finally, the
anticancer potential of Lar@Fe-MOF was investigated. The TEM results showed
that Lar@Fe-MOF had a homogeneous fusiform nanostructural morphology. The
DSC and FTIR results showed that Fe-MOF carriers were successfully synthesized
and loaded with Lar, which was mainly in an amorphous form. Lar@Fe-MOF
showed a large drug loading capacity (-10%) and significant slow-release
properties in vitro. The MTT assay results showed that Lar@Fe-MOF had good
dose-dependent anticancer activity. The in vivo pharmacodynamic assay results
showed that Fe-MOF significantly increased the anticancer activity of Lar and was
biocompatible. In conclusion, the Lar@Fe-MOF system developed in this study is a
promising drug delivery platform because it is easy to manufacture, has high
biocompatibility and ideal drug release and accumulation, can effectively
eliminate tumors with improved safety and is expected to further expand
therapeutic applications.
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1 Introduction

The marketing of larotrectinib (Lar), a broad-spectrum
anticancer targeting agent that is effective in treating solid
tumors, such as melanoma, colorectal cancer, and breast cancer
tumors, for the treatment of adult and pediatric patients with locally
advanced or metastatic solid tumors with neurotrophic tyrosine
receptor kinase (NTRK) gene fusions was approved by the Food and
Drug Administration (FDA) on 26 November 2018 (Berger et al.,
2018; Bhangoo and Sigal, 2019).

Currently, Lar is available in two generic formulations, capsules and
oral solutions, with limited dosage form options and deficiencies, such as
poor stability and low bioavailability. The most significant advantage of
extended-release formulations compared with ordinary formulations is
the reduced frequency of drug administration. The smooth and slow
release of drugs through extended-release technology can prolong the
release time, thus constantly maintaining the drug concentration at the
effective blood concentration range for a certain period, which can ensure
the duration of drug action, reduce the number of doses, and significantly
increase patient compliance with the drug (Chaudhary et al, 2019;
Ahmed et al, 2020). Therefore, the search for new drug carriers to
increase the stability and improve the in vivo efficiency of Lar is of great
significance for expanding its clinical antitumor applications.

Metal-organic frameworks (MOFs) are novel porous metal-
organic hybrid functional materials that have many outstanding
advantages over conventional mesoporous materials (Freiberg and
Zhu, 2004; Sun et al., 2020), such as 1) high specific surface area and
porosity for high therapeutic drug loading; 2) easily modifiable
physical (e.g., pore size and shape); and chemical properties
through the modification of inorganic clusters and/or organic
ligands; 3) open spaces and pores that allow for the interaction
of diffusing substrates with binding molecules; 4) moderately strong
coordination bonds for biodegradability; and 5) well-defined
structures that facilitate the study of host-guest interactions. Due
to these unique properties, MOFs are considered one of the best
candidates for drug delivery and cancer therapy (Alves et al., 2022;
Nikam et al., 2022; Sasmal et al., 2022; Wang et al., 2023).

MOFs have unique properties, such as a highly ordered
structure, high specific surface area and large pore capacity, that
enable them to adsorb functional molecules onto their outer surface
or open channels and trap these molecules within their framework
(Shu et al.,, 2023). MOFs are an ideal class of carrier materials for
sustained drug release due to their high drug loading capacity, in
vivo degradability and ease of modification. These materials undergo
several stages of drug release, starting with the dissolution of a
portion of the drug on the surface of the material, followed by the
progressive diffusion of the drug within the material as the
concentration gradient shifts in the direction of the solution and
as the drug encapsulated within the material cavity is released by the
collapsing framework. In addition, some affinity may exist between a
portion of the drug and the material (hydrogen bonding, m-n
conjugation, electrostatic adsorption), thus this portion of the
drug is released last. As a result of several of these stages
occurring continuously, a continuous slow release of the drug is
eventually achieved (Freiberg and Zhu, 2004; Leng et al, 2018; Cai
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et al,, 2020). In addition, MOFs can achieve the slow or steady release of
loaded drug molecules and have been reported to deliver various
chemotherapeutic drugs (Li et al, 2017; Leng et al, 2018; Pettinari
et al, 2021). Therefore, MOFs are an excellent carrier material for
drug delivery.

In this study, Fe-based metal-organic framework (Fe-MOF) carriers
with good biocompatibility, biodegradability, and controlled drug release
were synthesized and loaded with Lar to construct a slow drug release
system (Lar@Fe-MOF). Lar@Fe-MOF was characterized by transmission
electron microscopy (TEM), differential scanning calorimetry (DSC), and
other techniques, and its drug loading and release characteristics were
evaluated. In addition, murine breast cancer cells and murine erythrocytes
were selected to assess the cytotoxicity and biocompatibility of Fe-MOF.
Finally, the anticancer potential and in vivo toxicity of Lar@Fe-MOF were
evaluated at the animal level. Thus, this study provides a new paradigm
for expanding Lar extended-release formulations for cancer therapy
applications.

2 Materials and methods
2.1 Materials

Larotrectinib sulfate (Lar), 2-aminoterephthalic acid (BDC-NH,),
(FeAc,), adipic acid dihydrazide (ADH),
N-hydroxysuccinimide ~ (NHS),  1-ethyl-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC), and N,N-dimethylformamide
(DMF) were purchased from Shanghai McLean Biochemical
Technology Co., Ltd., China. An MTT assay kit was purchased from
China Biyuntian Biotechnology Co., Ltd. Mice (three to four weeks old)
were obtained from the Animal Experiment Center of Jinzhou Medical

ferrous  acetate

University, China. The animal study protocol was approved by the
Animal Ethics Committee of the Jinzhou Medical University of
China. All water used for experimentation was double-distilled water.

2.2 Synthesis of Fe-MOF

BDC-NH, (045 g) was weighed precisely and dissolved in 15 mL of
DMF, then aqueous FeAc, solution (0.1 g/mL) was slowly added
dropwise to the mixture while stirring, and the reaction was carried
out at 65°C for 1-2h. The solution was cooled naturally at room
temperature. The supernatant was separated by centrifugation
(6,000 rpm, 30 min) and discarded, and the precipitate was washed
twice with DMF (centrifugation, 3,000 rpm, 15 min), followed by two
more washes with anhydrous ethanol (centrifugation, 3,000 rpm,
15 min). Finally, the solid precipitate was dried in a vacuum drying
oven, and Fe-MOF was obtained (Wan et al., 2019).

2.3 Preparation of larotrectinib-loaded
nanoparticles

Lar (75 mg) was mixed with 50 mg of Fe-MOF in a 25mL
beaker. The mixture was shaken (200 rpm) for 12 h (Lar@Fe-MOF).
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(A) Structural formulas of BDC-NH, and FeAc,, both ligated to form complexes; (B) 3D structure of the formed complex represented by a ball-and-

stick model.

The precipitated material was collected after centrifugation
(6,000 rpm, 15 min) and dried.

2.4 Drug loading of Lar@Fe-MOF

The Lar content was determined by ultraviolet-visible (UV—
vis) spectroscopy. Lar was accurately weighed and added to 3%
DMSO and anhydrous ethanol to obtain solutions of different
concentrations, which were then filtered through a 0.45 um
nanoporous membrane. The absorbance of different samples
was measured at 262 nm to calculate the Lar content and drug
loading of Lar@Fe-MOF, and each experiment was repeated
three times.

2.5 Transmission electron microscopy (TEM)
Observations

A small amount of Lar@Fe-MOF was weighed, added to

anhydrous ethanol, sonicated, and dispersed for 5 min. A small
amount of liquid was dropped onto a copper network, dried,
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observed by TEM, and imaged (Chen et al, 2020; Chen et al,
2021; Tan et al., 2022).

2.6 Differential scanning calorimetry (DSC)
analysis

The prepared Lar API, blank Fe-MOF carrier, a Lar and Fe-MOF
physical mixture, and Lar@Fe-MOF powder were subjected to DSC. The
operating conditions were as follows: an empty aluminum crucible was
used as the blank reference, and another crucible was used as the cuvette;
2-5mg of samples were placed into the cuvette at the corresponding
positions for the graphical scans; N, was used as the purge gas, and the
heating rate was 10 °C/min. The DSC thermal characteristic curves of
each sample were recorded and compared (Gaber et al,, 2022).

2.7 Fourier transform infrared (FTIR)
spectroscopy analysis
The samples (Lar API, blank Fe-MOF carrier, a Lar and Fe-MOF

physical mixture, and Lar@Fe-MOF) and an appropriate amount of
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FIGURE 2
Transmission electron micrographs of Lar@Fe-MOF.

potassium bromide were mixed in proportion and pressed into
tablets. The tablets were then scanned by an FTIR spectroscopy
instrument with a wavenumber range of 4,000-400 cm™ and a
resolution of 4 cm™ (Lin et al., 2023).

2.8 Thermal stability test of Lar@Fe-MOF

Small amounts of Lar API, blank Fe-MOF carrier, and Lar@Fe-
MOF samples were warmed up to 400°C under a protective N,
atmosphere with a warming rate of 10°C/min to determine their
weight loss curves.

2.9 Drug release properties

Lar release from Lar@Fe-MOF was studied by performing
dialysis in a constant-temperature shaker at 37°C and 100 rpm.
Phosphate-buffered saline (PBS, pH 7.4) was chosen as the dialysis
medium. Briefly, approximately 5mg of Lar@Fe-MOF and Lar
powder was placed in a dialysis bag, which were then soaked in
PBS (100 mL) and tightened at the end. Then, 1 mL aliquots of
release medium were removed at different time intervals, with the
addition of 1 mL of new release medium to maintain a constant
volume. Each group experiment was repeated 3 times. Drug release
properties were assessed by evaluating the absorbance of the aliquots
using UV—vis spectroscopy.

2.10 Cytotoxicity test of Fe-MOF

Murine breast cancer cells (4T1) were used to assess the
biosafety of Fe-MOF. Briefly, 4T1 cells were cultured in Roswell
Park Memorial Institute (RPMI) 1640 medium containing 10% fetal
bovine serum at 37 °C in a 5% CO, incubator. Cells were inoculated
into 96-well plates (density of 1x10*) and incubated for 24 h to
induce wall attachment. The 96-well plate medium was discarded,
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FIGURE 3
DSC curves of Fe-MOF and Lar@Fe-MOF.
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FIGURE 4
Fourier transforms infrared spectroscopy.

and the cells were washed twice with PBS. Media containing different
concentrations of Fe-MOF (0.5-50 pg/mL) were then added to each well
and incubated for 24 h. Cell viability was determined using the MTT
assay according to standard protocols (Javad Farhangi et al,, 2021; Liu
et al, 2021; Fang et al, 2022; Ji et al,, 2022).

2.11 Interaction with erythrocytes

The hemocompatibility of the synthesized Fe-MOF was
evaluated by analyzing the interaction of Fe-MOF with red blood
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FIGURE 5

Thermogravimetric curves of Fe-MOF and Lar@Fe-MOF.

cells according to a previously reported method (Nikam et al., 2022).
Blood was removed from the eyes of mice and placed in tubes
containing ethylenediaminetetraacetic acid (EDTA) solution. A
certain amount of sodium chloride solution was added to wash
the blood cells (centrifuged at 3,500 r/min for 10 min), and then the
supernatant was discarded; this procedure was repeated 3 times. The
obtained erythrocytes were prepared into a 2% (V/V) suspension
with sodium chloride solution and refrigerated at 4°C for further
experimentation. The specific experiments were as follows: 0.2 mL
of erythrocyte suspension was mixed with 0.8 mL of Fe-MOF
suspensions of different concentrations and then incubated at
37°C for 60 min. The supernatant was removed by centrifugation
at 3,500 r/min for 10 min. To induce the oxidation of hemoglobin,
the collected supernatant was left at room temperature for 10 min.
The optical density of oxyhemoglobin was measured at 540 nm, the
absorbance of the supernatant was measured, and the percentage of
hemolysis was calculated.

2.12 In vitro antitumor activity evaluation

Briefly, 4T1 cells were added to culture wells and incubated for
24h to assess the in vitro antitumor activity of Lar@Fe-MOF
(6.25-100 pg/mL). Follow up as in "2.10".

2.13 In vivo antitumor activity and toxicity
evaluation

The hair around the mammary pads of 3- to 4-week-old female
BALB/c mice was shaved off. A primary mammary cancer model
was established by implanting 4T1 cells into the hair removal site
(Yang et al, 2022). Lar@Fe-MOF preparation was administered
orally to environmentally adapted mice at a daily dose of 50 mg/kg
for 7 days, and the mice were weighed every other day. General
conditions, such as coat color, mental and locomotor abilities,
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FIGURE 6

Lar release behavior of Lar@Fe-MOF (n = 3).

feeding and drinking, as well as signs of intoxication and death,
were recorded. By measuring the length of the longest L) and
shortest W) axes of the tumor, the tumor volume could be
calculated by the formula "V = 1/2 (L x W?)". Tumor volumes
were monitored every other day. After the last administration, mice
in each group were sacrificed on day 8. Mammary tumors and major
organs (heart, liver, spleen, lungs, and kidneys) of mice were
dissected. The inhibitory effect and potential toxicity were
assessed in vivo by tumor weighing and hematoxylin and eosin
(HE) and terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) staining (Zou et al., 2022; Qu et al., 2023).

2.14 Statistical analysis

All statistical tests (mean, standard deviation, and p-value) were
performed in Excel software, and p < 0.05 was considered
significant.

3 Results and discussion

3.1 Construction and characterization of
Lar@Fe-MOF

MOFs are a class of highly ordered crystalline porous
(PCPs). MOFs are considered a
promising class of drug nanocarriers due to their obvious

coordination  polymers

structure, high specific surface area and porosity, tunable pore
size, and easy chemical functionalization. In recent years, there
has been much interest in the study of MOFs for biomedical
applications (Sun et al., 2020). A schematic diagram of Fe-MOF
synthesis is shown in Figure 1. At high temperatures, Fe** complexes
with  BDC-NH, organic ligands form complexes containing
multiple coordination bonds (CsH NO,4)nFe, which forms the
spatial structure of nanoparticles. Since the Fe** complexes have
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Hemolysis rate of Fe-MOF (n = 3)

multiple -COO- groups, a molecular arrangement with a regular pore
structure is formed, conferring porosity to the synthesized organic
framework.

3.1.1 Surface morphology and drug loading of Lar@

Fe-MOF
The TEM

homogeneous

Lar@Fe-MOF had a
morphology and an

that
fusiform  nanostructure

images showed
obvious crystal structure with dimensions of approximately
500 nm in length and 200 nm in width (Figure 2), indicating
successful synthesis. The MOF was a porous organic material
with good application advantages for drug encapsulation (Guo
et al,, 2022). The Lar drug loading of Fe-MOF was successfully
measured by UV-vis spectroscopy to be 10.3% = 0.8%. This shows
that the Fe-MOF synthesized in this project has significantly
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Inhibitory effects of Lar solution and Lar@Fe-MOF solution on
4T1 cells (n = 3).

improved drug loading capacity, which can effectively enhance
drug delivery efficiency and result in sound therapeutic effects
(Dhawan et al., 2023).

3.1.2 Differential scanning calorimetry (DSC)
results for Lar@Fe-MOF

Lar API, blank Fe-MOF carrier, a Lar and Fe-MOF physical
mixture, and Lar@Fe-MOF powder were subjected to DSC, and their
thermal behaviors are shown in Figure 3. The results showed that
Lar exhibited a prominent heat absorption peak at approximately
209°C, indicating that Lar API was crystalline in structure. The
physical mixture still had a heat absorption peak at approximately
211°C, indicating that Lar was mixed with the carrier material and
that its crystalline form was unaltered. Lar@Fe-MOF did not exhibit
a heat absorption peak, and its DSC curve was similar to that of the
blank Fe-MOF carrier, probably due to the complete dispersion of
the drug in the carrier and its presence in an amorphous form,
indicating that Fe-MOF successfully encapsulated Lar (Kujur et al.,
2022).

3.1.3 Fourier transform infrared (FTIR)
spectroscopy results for Lar@aFe-MOF

In this experiment, the surface chemical structure of the samples
was examined by FTIR spectroscopy. The FTIR spectroscopy results
for the blank Fe-MOF carrier, Lar API, the Lar and Fe-MOF physical
mixture, and Lar@Fe-MOF are shown in Figure 4. The results shown
in the figure indicated that the vibrational peak of the typical
carboxyl carbon—oxygen bond ~1678 cm’™!
disappeared, which proved that the BDC-NH, organic ligand

located at

underwent complete complexation with the Fe ions and
successfully formed the Fe-MOF structural framework. The
characteristic peaks of Lar API included a C=O stretching
vibration peak at ~1678 cm™ and C-H stretching vibration
peaks at ~2875cm™ and ~2992 cm™. The FTIR spectrum of
the Lar and Fe-MOF physical mixture was obtained by
superimposing the spectra of the two individual components.
While the positions of the characteristic absorption peaks of the
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Lar@Fe-MOF exhibited the strongest in vivo antitumor efficacy. (A) Treatment scheme of saline, Lar, and Lar@Fe-MOF. (B) Tumor growth curve with
different treatments (n = 5). (C) Tumor weights 7 days after the end of treatment (n = 5). (D) HE staining of tumors collected 7 days after the end of
treatment. (E) TUNEL staining of tumors collected 7 days after the end of treatment. Lar@Fe-MOF treatment resulted in the highest apoptotic ratio.

drug and the material in the drug-loaded nanoparticles (Lar@
Fe-MOF) remained the same, the kurtosis became slightly smaller,
indicating that the drug was successfully wrapped with or adsorbed
into the material (Du et al., 2023; Karimi et al., 2023).

3.1.4 Thermal stability of Lar@aFe-MOF

The TGA results for Lar@Fe-MOF are shown in Figure 5. As
shown in the figure, when the temperature was less than 200°C, the
mass loss of Fe-MOF and Lar@Fe-MOF decreased at a low rate of
approximately 8%. The difference was not significant, mainly
because the mass loss at this stage was primarily the loss of
water molecules from the surface and pore channels of the Fe-
MOF carrier. No macromolecular degradation occurred (Nikam
et al,, 2022; Qu et al,, 2023). When the temperature increased to
200°C-400°C, the mass loss of Fe-MOF and Lar@Fe-MOF increased,
with weight losses of approximately 21.8% and 25.4%, respectively,
because of the gradual decomposition of the Fe-MOF matrix. When
the temperature was 400°C, the residual masses of Fe-MOF and
Lar@Fe-MOF were 71.1% and 68.2%, respectively, mainly because
Lar in Lar@Fe-MOF also underwent thermal decomposition when
the temperature was higher than 200°C, resulting in a slightly higher
final weight loss for Lar@Fe-MOF than for Fe-MOF. In summary,
Lar@Fe-MOF exhibited good thermal stability.

Frontiers in Bioengineering and Biotechnology

3.2 In Vitro release studies

The in vitro release curves (Figure 6) showed that the cumulative
release of Lar was time dependent. The main release phase of the Lar
solution last for 6 h, with Lar releases of 85.23% at 6 h and 90.91% at
12 h. In contrast, the Lar release of Lar@Fe-MOF reached 59.66% at
6 h, and the cumulative Lar release rate at 12 h was only 71.02%,
indicating that Lar@Fe-MOF released Lar more slowly. Thus, the
Lar release of Lar@Fe-MOF was much slower, indicating a possible
slow-release effect in vivo. At present, slow-release controlled release
materials are mainly used for drugs that have a short half-life or a
low level of oral bioavailability, but which need to be used for a long
period of time. The advantage is that the drug can be released at a
certain rate over a few hours, weeks or months or even longer to
blood improve
bioavailability. Meanwhile, the number of drug administrations is
reduced and the toxic side effects of the drug are reduced (Lazar
et al.,, 2023; Shen et al,, 2023). Therefore, using Fe-MOF carriers to
protect drugs from gastric acid inactivation and to achieve uniform

maintain the effective concentration and

high-concentration drug distribution in various segments of the
gastrointestinal tract by prolonged retention and slow release of the
anticancer drug Lar through the gastrointestinal tract not only
increases patient compliance and improves treatment efficacy, but
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spleen (D), lung (E), and kidney (F).

(A) Mouse weight recorded every 2 days, and images of HE-stained major organ tissue sections after Lar@aFe-MOF treatment: heart (B), liver (C),

also reduces the total amount of drug required (Fukumori et al.,
2023; Yu et al., 2023).

3.3 In Vitro cytotoxicity

To assess the cytotoxicity of the blank Fe-MOF carrier, 4T1 cells
were incubated with Fe-MOF (0.5-50 pg/mL) for 24 h. The results
are shown in Figure 7. After 24 h, blank Fe-MOF showed no
cytotoxic effect and a negligible effect on cell viability. With
increasing Fe-MOF concentration, the cell viability gradually
decreased, but the cell viability was greater than 85%, indicating
that the resulting Fe-MOF carriers had good cytocompatibility
(Wang N. et al,, 2022; Nikam et al., 2022).

3.4 Interaction with erythrocytes

Studying the interaction between erythrocytes and
nanocarriers is essential for the in vivo application of
nanocarriers (Wang D. et al., 2022; Gong et al., 2022). If the
nanocarrier is toxic, it can cause the hemolysis of red blood
cells. The results showed that the morphology of erythrocytes
was not altered when Fe-MOF, within a mass concentration
range of 5-500 ug/mL, was incubated with erythrocytes, and the
percentage of hemolysis was less than 5% (Figure 8). Usually, a
nanocarrier concentration of no higher than 2mg/mL is
considered a critical safety value (Nikam et al., 2022), which
indicated that there was no interaction between the red blood
cells and the nanocarrier and that the Fe-MOF carrier had good

hemocompatibility and high biosafety.
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3.5 In Vitro antitumor activity evaluation

As shown in Figure 9, the cell survival rate of the Lar@Fe-MOF
group at 24 h was reduced compared with that of the Lar solution
group, indicating that Lar@Fe-MOF enhanced the inhibitory effect
of Lar on 4T1 cells. The half-inhibition concentration (IC50) curve
was fitted with Graph Pad Prism 7.0. The IC50 values of the Lar
solution group and Lar@Fe-MOF group were 14.98 pg/mL and
9.44 pug/mlL, respectively. The inhibitory effect of Lar@Fe-MOF
on the proliferation of 4T1 cells was stronger than that of the
Lar solution group after 24 h of treatment, and the inhibitory effect
of Lar@Fe-MOF on the proliferation of 4T1 cells showed a dose-
dependent effect, indicating that the cytotoxicity was enhanced by
the incorporation of Lar into the Fe-MOF nanoparticles. One reason
for this could be the enhanced uptake of the drug by the cells after
incorporation into the nanoparticles (Dong et al., 2022; Zhang et al.,
2022).

3.6 Antitumor effect in Vivo

The in vivo therapeutic effect of Lar@Fe-MOF was studied in a
mouse 4T1 in situ breast cancer model. When the tumor volume
reached =100 mm?® the mice were randomly divided into
3 treatment groups (n = 5) and treated with normal saline, Lar
solution, and Lar@Fe-MOF for 7 days (Figure 10A). A plot of tumor
growth showed that Lar@Fe-MOF resulted in the strongest tumor
inhibition (Figure 10B). At day 8, the mean tumor volumes in the
Lar and Lar@Fe-MOF groups were 67.5% and 52.1% of those in the
saline group, respectively (Figure 10C). Apparently, the tumors were
smaller in the Lar@Fe-MOF-treated mice. Cell proliferation in
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tumors was also significantly inhibited by Lar@Fe-MOF, as shown
by the histological results (Figure 10D). TUNEL analysis revealed
that Lar@Fe-MOF-treated tumors showed the highest percentage of
apoptotic cells (Figure 10E). Thus, Lar@Fe-MOF treatment resulted
in a significantly improved in vivo antitumor effect in tumor-bearing
mice (Chen et al., 2023; Yan et al., 2023).

3.7 Safety evaluation

We evaluated the biosafety of Lar@Fe-MOF as this property is a
crucial parameter for nanotherapeutic applications in cancer
treatment (Ajaz et al, 2022; Jin et al, 2022). After oral
administration of Lar@Fe-MOF, the mice showed no abnormal
signs of survival and no abnormalities in coat color, diet, water
intake, or urinary or fecal conditions. There was no significant
difference in the body weight of the mice compared with that in the
control group, which showed a normal growth trend (Figure 11A).
The mice were dissected after drug administration, and their main
organs were visually observed with the naked eye. The internal
organs of the mice in each experimental group, including the heart,
liver, spleen, lung, and kidney, did not show any apparent lesions.
Histopathological sections of the organs, as shown in Figures 11B-F,
also indicated that the cells of the tissues did not show noticeable
microscopic damage or apparent necrosis and had intact tissue
structures and that the organs could remain functionally intact at the
administered dose. The above results suggest that Lar@Fe-MOF
with excellent biocompatibility can be used as a highly effective
oncological treatment strategy with promising applications
(Gharehdaghi et al., 2023; Zhao et al., 2023).

4 Conclusion

This study investigated new dosage forms based on MOF
pharmaceutical carriers. A biocompatible Fe-based metal-organic
framework carrier (Fe-MOF) was synthesized by the solvent
method. Using larotrectinib (Lar), a broad-spectrum novel
anticancer drug, as a model drug, a novel drug delivery system
(Lar@Fe-MOF) was prepared. Lar@Fe-MOF was successfully
prepared with good stability, as demonstrated by TEM, DSC, and
FTIR spectroscopy. In vitro release experiments showed that the
formulation had prominent slow-release characteristics. In vitro
that Lar@Fe-MOF had good
hemocompatibility and low cytotoxicity. In vivo toxicity studies

toxicity  studies  showed
showed that mice did not show significant liver and kidney toxicity
at the administered dose. In vitro and in vivo pharmacodynamic
studies demonstrated the enhanced antitumor activity of Lar@Fe-
MOF. These results suggest that Fe-MOF is a promising new
biocompatible carrier that provides a new approach for the
sustained-release of Lar and can be used as a safe biomaterial for
in vivo drug delivery and further studies.
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