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Background: Cardiac output is essential for patient management in critically ill
patients. The state-of-the-art for cardiac output monitoring bears limitations that
pertain to the invasive nature of the method, high costs, and associated
complications. Hence, the determination of cardiac output in a non-invasive,
accurate, and reliable way remains an unmet need. The advent of wearable
technologies has directed research towards the exploitation of wearable-
sensed data to improve hemodynamical monitoring.

Methods: We developed an artificial neural networks (ANN)-enabled modelling
approach to estimate cardiac output from radial blood pressure waveform. In
silico data including a variety of arterial pulse waves and cardiovascular parameters
from 3,818 virtual subjects were used for the analysis. Of particular interest was to
investigate whether the uncalibrated, namely, normalized between 0 and 1, radial
blood pressure waveform contains sufficient information to derive cardiac output
accurately in an in silico population. Specifically, a training/testing pipeline was
adopted for the development of two artificial neural networks models using as
input: the calibrated radial blood pressure waveform (ANNcalradBP), or the
uncalibrated radial blood pressure waveform (ANNuncalradBP).

Results: Artificial neural networks models provided precise cardiac output
estimations across the extensive range of cardiovascular profiles, with accuracy
being higher for the ANNcalradBP. Pearson’s correlation coefficient and limits of
agreement were found to be equal to [0.98 and (−0.44, 0.53) L/min] and [0.95 and
(−0.84, 0.73) L/min] for ANNcalradBP and ANNuncalradBP, respectively. The method’s
sensitivity to major cardiovascular parameters, such as heart rate, aortic blood
pressure, and total arterial compliance was evaluated.

Discussion: The study findings indicate that the uncalibrated radial blood pressure
waveform provides sample information for accurately deriving cardiac output in
an in silico population of virtual subjects. Validation of our results using in vivo
human data will verify the clinical utility of the proposed model, while it will enable
research applications for the integration of the model in wearable sensing
systems, such as smartwatches or other consumer devices.
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Introduction

Cardiac output (CO) is defined as the volume of blood expelled
by the left ventricle per unit time. Critically ill patients generally have
abnormal oxygen demands as a result of the underlying diseases.
Thus, CO monitoring is essential for patient management in the
operating room and the intensive care unit (ICU) (Berkenstadt et al.,
2001; Lees et al., 2009). Direct methods for measuring CO include
invasive approaches, such as the Fick method and the
thermodilution method. Alternative approaches, such as pulse
contour analysis (Udy et al., 2012), have been put forth as less
invasive methods. However, pulse contour analysis necessitates the
placement of a pressure catheter at an arterial site (Jansen et al.,
2001; Udy et al., 2012; Ganter et al., 2016).

On the other hand, non-invasive methods for CO have been
introduced in order to overcome the complications and potential
risk of the invasive and minimally invasive techniques. Some non-
invasive methods are based on pulse wave analysis from the cross-
sectional area and blood velocity data (Segers et al., 2007) or directly
from MRI-derived aortic flow-time signals (Hickson et al., 2010).
Doppler ultrasound and MRI, while completely non-invasive and
reasonably accurate, require the allocation of expensive resources. It
is of interest to mention that a previous study (Zócalo et al., 2021)
investigated the impact of sex, age, heart rate, and anthropometric
characteristics on the estimation of stroke volume, CO, and cardiac
index in a large cohort of 1,449 healthy subjects covering a wide
range of age values (3–88 years). CO was non-invasively obtained
based on pulse contour analysis (PCA) on brachial BP acquired
using the Mobil-O-Graph device (Mobil-O-Graph; Germany).
Importantly, the study demonstrated that gender, age, heart rate,
and body surface area are independent factors that explain PCA-
derived CO values, suggesting that they should be taken into account
in CO monitoring applications. Moreover, impedance cardiography
(ICG) provides another rather clinically relevant alternative to
monitor stroke volume and CO, allowing for the assessment of
these parameters during both stress conditions and at rest (Liu et al.,
2021). Yet, none of the aforementioned methods are practical for
continuous bedside monitoring of a patient’s CO or routine
examination. As a result, the determination of CO in a non-
invasive, accurate, and reliable way remains an unmet need.

Recent advances in measuring sensors have spurred the
development of a gamut of methods to calculate CO from
arterial blood pressure (BP) signals, with many of them being
commercially available. The main aspects that have encouraged
this approach include: (i) the fact that arterial BP can be acquired in
a relatively easy, non-invasive (or minimally invasive), and cost-
effective manner; (ii) arterial BP is measured in clinical settings such
as ICUs on a routine basis; and (iii) the arterial BP is measured
continuously, allowing for continuous CO estimates. In addition, the
advent of wearable technologies has enabled research efforts towards
the exploitation of wearable-sensed data to improve hemodynamical

monitoring. Especially, smartwatches and fitness bands can provide
access to peripheral arterial pulse waves, which could be afterwards
further analyzed in order to provide major hemodynamic
parameters, such as arterial stiffness, cardiac output, etc.

In this study, we introduced a novel machine learning-enabled
method to estimate CO from radial BP waveform. Given that
simultaneous invasive radial BP and CO data are typically
difficult to acquire in vivo, we leveraged a previously generated in
silico dataset simulating 3,818 virtual subjects (Bikia et al., 2021). A
training/testing pipeline using artificial neural networks (ANN) was
adopted for the development of two ANN models using as an input
vector: (i) the calibrated radial BP waveform, or (ii) the uncalibrated
radial BP waveform. The performance of the resulted predictive
models was evaluated by comparing the model-derived values with
the reference CO data.

Materials and methods

In silico population

In this study, we used an in silico dataset from our previously
published work (Bikia et al., 2021). The data generation relied on a
previously developed, clinically validated one-dimensional
cardiovascular computer simulator (Reymond et al., 2009) and
intended to emulate the content of various hemodynamical
profiles. The cardiovascular model (Reymond et al., 2009) ran
using different combinations of input model parameters based on
publicly available literature data which were varied using a random
Gaussian distribution. The parameters of arterial distensibility,
terminal compliance, and peripheral resistance were altered in

FIGURE 1
Indicative uncalibrated (normalized between 0 and 1) radial blood
pressure waveform.

TABLE 1 Description of the artificial neural networks-based models.

Model Input Batch size Selected number of epochs

ANNcalradBP Calibrated radial blood pressure waveform 64 61

ANNuncalradBP Uncalibrated radial blood pressure waveform 64 71
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order to achieve the specific value in the selected ranges.
Furthermore, the length, inlet diameter, and outlet diameter of
every arterial segment was modified to simulate different body
types by adapting the length and the diameter of all arterial
vessels. The reader is referred to the original publication (Bikia

et al., 2021) for the detailed description of the data design and
generation.

The simulated radial BP waveform was derived from the virtual
left radial artery. In addition, in silico BP values, such as the mean
arterial pressure, systolic and diastolic BP, and pulse pressure at the
aortic root became available from the model-simulated aortic BP
waveform. CO was calculated as the product of heart rate and stroke
volume, which was calculated from the area under the curve of the
aortic blood flow rate. Values of total arterial compliance were
derived analytically by summing the incremental volume
compliance of all arterial segments. The data were organized in
input-output pairs for every virtual subject, namely, the radial BP
waveform and the respective CO value were assigned to every virtual
subject.

Data analysis

The input-output sets were subsequently divided into train,
validation, and test sets. The train/validation/test split was set to
be 60% (2,290 cases)/20% (764 cases)/20% (764 cases). The sampling
frequency was set to 128 Hz. This selection allowed us to ensure a
sampling frequency higher than the 100-Hz threshold suggested for
the pulse wave velocity techniques (Gaddum et al., 2013) (which
require substantially high temporal resolution). This value was
considered as a fair trade-off between computational time and
high signal fidelity. Normalization of the radial BP waveforms
was performed between 0 and 1 using the linear scaling

TABLE 2 Description of the cardiovascular parameters of the in silico data.

Parameter In silico population
n = 3,818

Min Max Mean ± SD

Aortic systolic BP (mmHg) 77 187 123 ± 24

Aortic diastolic BP (mmHg) 43 128 80 ± 21

Aortic pulse pressure (mmHg) 11 106 42 ± 19

Mean arterial pressure (mmHg) 66 155 101 ± 21

Radial systolic BP (mmHg) 85 193 133 ± 23

Radial diastolic BP (mmHg) 37 119 73 ± 21

Radial pulse pressure (mmHg) 21 124 60 ± 22

Heart cycle (s) 0.6 1 0.7 ± 0.1

Total peripheral resistance (mmHg·s/mL) 0.6 1.4 1 ± 0.2

Total arterial compliance (mL/mmHg) 0.3 2.9 1.1 ± 0.5

Cardiac output (L/min) 3.3 10.5 6 ± 1.2

FIGURE 2
Radial blood pressure data with added artificial random noise.
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formulation. An indicative example of an uncalibrated radial BP
waveform normalized between 0 and 1 is shown in Figure 1.

Artificial neural networks model

We used artificial neural networks (ANN) to estimate the
target variable of interest, namely, CO. For the ANN, a fixed one-
hidden layer structure was selected and the “Adam” optimizer
was used (Kingma and Jimmy, 2017). A training/testing pipeline
was adopted for the development of two ANN models using as an
input vector: (i) the calibrated radial BP waveform (ANNcalradBP),
or (ii) the uncalibrated radial BP waveform (ANNuncalradBP).
Subsequently, the performance of the trained predictive
models was evaluated by comparing the model-derived values
with the reference CO data.

To mitigate overfitting and to increase the generalization
capacity, machine learning models should be trained for optimal
hyperparameter values. For the ANN, the batch size (defines the
number of samples that will be propagated through the network)
was set to be equal to 64, whereas the number of epochs was
optimized. The number of epochs defines the number of times
that the learning algorithm works through the entire training
data set. For selecting the optimal value of epochs, we computed
the training loss and the validation loss for various values of
epochs. Loss values (using the mean squared error method) were

monitored by an early-stopping call-back function. When an
increment is observed in the loss values, training comes to an halt
and the respective value of epoch indicates the optimal selection.
Description of the ANN-based models and the selected number
of epochs that was computed are presented in Table 1.
Subsequently, the test set was fed into the trained models to
predict CO and the precision was evaluated. The training/testing
pipeline as well as the pre-analyses and post-analyses were
implemented using the Scikit-learn library (Pedregosa et al.,
2011) in a Python programming environment. The Pandas
and Numpy packages were used (Oliphant, 2006; McKinney,
2010).

In silico data cannot simulate different aspects that usually occur
with real data registries (e.g., imperfection of signals, over-damping,
etc.). In order to assess the performance of the proposed method on
input signals with errors or other imperfections, we tested the ANN
models (using the same model configuration) after artificially adding
randomnoise. Firstly, we selected amore brute-force scenariowhere the
error for each pressure data point was randomly drawn from the range
of ±5%. Each pressure data point was multiplied with a random noise
factor; for instance, for a randomly selected error of −3%, the respective
variable value wasmultiplied with a noise factor equal to 0.97. Secondly,
to simulate more realistic measurement errors, we added artificial
random noise assuming a Gaussian distribution with μ =
0.7 mmHg, and SD = 1 mmHg. Indicative examples of the noisy
data are shown in Figure 2.

FIGURE 3
Scatter plot and Bland-Altman analysis between the estimated and reference CO values for the ANNcalradBP (A) and ANNuncalradBP (B). The solid line of
the scatterplots represents equality. In Bland–Altman plots, the solid black line represents the bias and the two horizontal dashed lines define the limits of
agreement (LoA), within which 95% of errors are expected to lie.
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Statistical analysis

All data are presented as mean and standard deviation (SD).
The statistical analysis was performed in Python (Python
Software Foundation, Python Language Reference, version
3.6.8, available at http://www.python.org). The correlation and
precision between the estimations and the reference data were
evaluated using the Pearson’s correlation coefficient (r), and the
normalized root mean square error (nRMSE). The computed

nRMSE was based on the difference between the minimum and
maximum values of the dependent variable (y) and was computed
as RMSE/(ymax–ymin). Bias and limits of agreement (LoA) (where
the 95% of errors are expected to lie) were calculated using the
Bland-Altman analysis (Bland and Altman, 1986). Linear least-
squares regression was performed for the estimated and reference
data. The slope and the intercept of the regression line were
reported. Two-sided p-values for hypothesis tests were calculated
using Wald Tests with t-distribution of the test statistic. The null

TABLE 3 Accuracy, agreement, and correlation between ANN-predicted and reference CO data.

Model r MAE
(L/min)

nRMSE
(%)

Bias (LoA)
(L/min)

Reference CO
(L/min)

Estimated CO
(L/min)

Slope/Intercept

ANNcalradBP

(no noise)
0.98 0.19 3.7 0.05 (−0.44, 0.53) 6 ± 1.2 6 ± 1.2 0.95 (p < 0.0001)/

0.32 L/min

ANNcalradBP

(discrete)
0.95 0.28 5.7 −0.03 (−0.74, 0.68) 5.8 ± 1.2 5.8 ± 1.2 0.95 (p < 0.0001)/

0.25 L/min

ANNcalradBP

(Gaussian)
0.97 0.34 6 −0.28 (−0.84, 0.28) 6 ± 1.2 5.7 ± 1.1 0.91 (p < 0.0001)/

0.26 L/min

ANNuncalradBP

(no noise)
0.95 0.3 6 −0.06 (−0.84, 0.73) 6 ± 1.2 5.9 ± 1.1 0.85 (p < 0.0001)/

0.84 L/min

ANNuncalradBP

(discrete)
0.77 0.69 12.3 0.13 (−1.56, 1.83) 6.1 ± 1.3 6.2 ± 1.3 0.79 (p < 0.0001)/

1.39 L/min

ANNuncalradBP

(Gaussian)
0.88 0.45 8.6 −0.02 (−1.17, 1.12) 6 ± 1.2 5.9 ± 1.1 0.78 (p < 0.0001)/

1.29 L/min

r, Pearson’s correlation coefficient; MAE, mean absolute error; nRMSE, normalized root mean square error; LoA, limits of agreement.

FIGURE 4
Comparison of proportional error, calculated as COpredicted – COreference)/COreference, with reference CO (A), total arterial compliance (B), mean
aortic blood pressure (C), and heart rate (D).
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hypothesis was that the slope is zero. A p < 0.05 was considered
statistically significant.

Results

Table 2 aggregates the cardiovascular parameters of the in
silico data (n = 3,818). Comparison between the model-derived
predictions and the reference data was performed. Accuracy was
reported to be increased for the ANN model that used the
calibrated radial BP waveform as an input (r = 0.98). In both
models, LoA were narrow and biases were found to be close to
zero. The scatter plots and the Bland–Altman plots of the
estimated CO for the two ANN models against the ground
truth are shown in Figure 3. For the ANN models using the
noisy data as input, the accuracy was lower with increasing level
of assumed noise. The ANNcalradBP was found to be more robust
to the addition of random noise in comparison to the
ANNuncalradBP. Overall, correlation values between the
estimated and reference CO data remained at satisfactory
levels (≥0.77). In the case of ANNcalradBP, nRMSE values were
low (≤6 %). The nRMSE was essentially increased in
ANNuncalradBP, especially when discrete random noise was
added to the signals (nRMSE was doubled). All regression
metrics for the agreement, precision, and bias are presented
in Table 3.

For the ANNcalradBP, the proportional error (PE) with
respect to the reference CO values is shown in Figure 4. The

PE was calculated as (COpredicted – COreference)/COreference.The
maximum and minimum PE values were reported to be 14.4%
and −14.3%, respectively. In addition, the distribution of PE was
found to be equal to 0.9% ± 4.1%. The respective values for the
ANNuncalradBP were the following: PEmax = 22.6%,
PEmin = −25.6%, PEmean = −0.5%, and PESD = 6.3%
(Figure 5). The PE demonstrated an increasing trend with
increasing CO values. No correlation was reported for the PE
resulted from both ANNcalradBP and ANNuncalradBP models with
respect to heart rate, total arterial compliance, and mean aortic
blood pressure (Figures 3, 4).

Discussion

This article introduced an ANN-enabled method to estimate CO
from the radial BP waveform. In particular, we investigated the
concept of deriving CO from, firstly, the calibrated radial BP
waveform and, secondly, the morphology of the raw uncalibrated
radial BP wave using an in-silico-generated virtual population of
various hemodynamical profiles. The findings indicated that CO can
be precisely predicted by exploiting the radial (peripheral) BP pulse
wave. This method relies on the raw information hidden in the radial
pulse wave that can be deciphered via the predictive capacity of
neural networks with relatively simple structure. Ultimately,
potential use of such methods could include the expansion and
integration of a prediction algorithm to estimate CO using wearable
sensing technologies (such as smartwatches or fitness trackers),

FIGURE 5
Comparison of proportional error, calculated as COpredicted – COreference)/COreference, with reference CO (A), total arterial compliance (B), mean
aortic blood pressure (C), and heart rate (D).
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while eliminating the need for complex and expensive
echocardiographic or MRI procedures.

Cardiac output (CO) is a key parameter in assessing circulatory
function. Currently in clinical practice, the gold standard for CO
measurement is thermodilution CO (TCO), which involves the
insertion of a catheter into the pulmonary artery. Conducted
primarily in ICUs, TCO is usually measured intermittently, is
very invasive, and may cause severe complications. It would be a
tremendous asset to healthcare if one could determine CO
accurately, reliably, and continuously using less invasive, indirect
methods. Over the last decades, numerous methodologies have been
suggested and developed to estimate CO using peripheral arterial BP
data obtained either minimally invasively or non-invasively (Sun
et al., 2005; Litton and Morgan, 2012; Bikia et al., 2020a; Bikia et al.,
2020b; Bikia, 2021; Saugel et al., 2021). Some of these estimators rely
on elaborate models of the heart and vasculature while others use
artificial intelligence methods such as pattern matching and
classification trees. The majority of the published estimators has
not been extensively evaluated with a large set of clinical arterial
blood pressure data, hence their performance may need to be re-
evaluated. An additional issue to be considered with regards to the
validation of CO estimation techniques pertains to the establishment
of universal, well-defined thresholds of acceptable accuracy. In
contrast to the BP monitors, CO data from meta-analyses studies
are limited, with only few and not up-to-date works trying to
propose threshold of error values that could allow a newly
introduced method to be considered as reliable, repeatable, and
accurate (Critchley and Critchley, 1999; Critchley et al., 2014).

Typically, recording the calibrated radial BP waveform requires
calibration using a conventional cuff procedure. At large, cuff-based
devices have been widely used for non-invasive BP assessment and
their utility is critical for several medical conditions (Tzourio et al.,
2017). Nonetheless, there are various limitations in the use of
methods relying on cuff-based BP measurement, including: i) low
accuracy (Harris et al., 2016), ii) the measurement is usually
intermittent and does not capture all BP changes occurring
throughout the recording window, ii) and existing devices are
bulky, not portable and thus not practical for daily use (O’Brien
et al., 2013; Parati et al., 2014).

Many cuffless BP estimation methods have been proposed to
overcome these limitations, enabling continuous BP monitoring
(Kim et al., 2012; Kim et al., 2007; Baek, 2009), but not CO
derivation. The tremendous majority of such methods is based
on the pulse transit time (PTT) principle. PTT is the pulse wave
propagation time, which represents the time required for the wave to
travel between two arterial sites within the same cardiac cycle (Nye,
1964; Steptoe et al., 1976), and it is formally assessed in conjunction
with a continuous electrocardiogram (ECG) (Geddes et al., 1981).
The PTT indirectly depends on BP, as higher pressure results in a
faster PTT (Geddes et al., 1981). While these methodologies could
serve as a foundation for the development of similar CO estimation
methods, conventional cuffless PTT-based estimation methods are
still subject to cuff dependence as they necessitate at least one-time
calibration.

A cuff-free, portable device that can measure CO without
calibration would be valuable for continuous CO measurement,
but it does not currently exist. Our analysis indicated that, in an in
silico population generated from a numerical model of the

cardiovascular system, neural networks could enable the
estimation of CO with the elimination of the calibration process,
leading to a completely cuff-free solution. Such a solution will
ultimately permit the integration of predictive models in
wearable technologies. It is important to acknowledge that
currently, smartwatches and fitness bands are not optimized to
deliver precise and repeatable methods for recording pressure
signals. However, the future holds promise (Liao et al., 2019), as
sensing technologies continue to advance rapidly.

Undoubtedly, this study relies entirely on in silico data which,
despite the high complexity of the adopted numerical model and the
attentive design of the data generation, correspond to nearly perfect
conditions. It is possible that there will be circumstances in real
world clinical practice in which the in silico results may not be in line
with the in vivo findings. Nevertheless, this model has undergone
comprehensive validation in previous studies using in vivo data.
Therefore, it can serve as an excellent starting point for evaluating
the concept of cuff-free CO estimation, solely relying on the
uncalibrated radial BP waveform as input. As gold-standard CO
measurements require the use of invasive catheter-based procedures,
it is worth verifying that the initial hypothesis is evaluated and
validated in silico. Furthermore, we conducted tests on the proposed
method while considering artificially introduced errors. This
allowed us to assess its performance using data that could better
simulate realistic data registries. Positive results, as those produced
by this study, can now be the basis for extending the analysis on
human data and investigating the validity of this method in the
clinic. Of particular interest is to evaluate this method’s accuracy in
children’s populations, as childhood hemodynamics differ
inherently in comparison to adult hemodynamics [e.g., minimum
levels of aortic systolic blood pressure may be equal to 60 mmHg
(Zinoveev et al., 2019)]. Furthermore, as a next step, we intend to
assess the model’s performance in individuals performing low-,
moderate-, or high-intensity physical activity. Yet, based on the
sensitivity analysis of the prediction error, we demonstrated that the
estimation error is not correlated to the value of mean aortic blood
pressure and heart rate. Moreover, future work will include testing
the accuracy of the proposed methodology using clinical data from
both healthy subjects (controls) and patients with various forms of
cardiovascular disease (especially in cases where the presence of
extreme CO levels is possible). The latter will allow to evaluate the
method’s discrimination capacity and its utility for risk
stratification. Lastly, future modifications of the model relying on
the uncalibrated radial BP should be performed to overcome a
possible systematic error evidenced at higher CO values that are
often observed in athletes. This error might be attributed to the
limited number of higher CO values in the in silico population.

Conclusion

In this study, we described and validated an ANN-based
methodology that allows for the non-invasive estimation of CO
from a calibrated or uncalibrated radial BP waveform. This study
was motivated by the fact that such a model would be of great value
for easy and continuous CO monitoring in everyday life, optimizing
patient management. The evaluation of the hypothesis that the
uncalibrated radial BP waveform contains sufficient information
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for accurately deriving CO was found to be true in a large in silico
population of virtual subjects. We plan to investigate the validity of
our results using in vivo human data. The latter will verify the
clinical utility of the proposed model, while it will enable research
applications for the integration of the model in wearable sensing
systems, such as smartwatches or other consumer devices.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

VB conceived and designed the experiments. VB developed the
original algorithms, analyzed the data, ran the experiments, and
drafted the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

Open access funding by École Polytechnique Fédérale de
Lausanne.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Baek, H. J., Lee, H. B., Kim, J. S., Choi, J. M., Kim, K. K., and Haet, B. L. (2009).
“Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and
health state.” Telemedicine E-Health 15 (2): 182–189. doi:10.1089/tmj.2008.0090

Berkenstadt, H., Margalit, N., Hadani, M., Friedman, Z., Segal, E., Villa, Y.,
et al. (2001). Stroke volume variation as a predictor of fluid responsiveness in
patients undergoing brain surgery. Anesth. Analgesia 92 (4), 984–989. doi:10.
1097/00000539-200104000-00034

Bikia, V. (2021). Non-invasive monitoring of key hemodynamical and cardiac
parameters using physics-based modelling and artificial intelligence. doi:10.5075/
EPFL-THESIS-9179

Bikia, V., Pagoulatou, S., Trachet, B., Soulis, D., Protogerou, A. D., Papaioannou, T.
G., et al. (2020a). Noninvasive cardiac output and central systolic pressure from cuff-
pressure and pulse wave velocity. IEEE J. Biomed. Health Inf. 24 (7), 1968–1981. doi:10.
1109/JBHI.2019.2956604

Bikia, V., Papaioannou, T. G., Pagoulatou, S., Rovas, G., Oikonomou, E., Siasos, G.,
et al. (2020b). Noninvasive estimation of aortic hemodynamics and cardiac
contractility using machine learning. Sci. Rep. 10 (1), 15015. doi:10.1038/s41598-
020-72147-8

Bikia, V., Rovas, G., Pagoulatou, S., and Stergiopulos, N. (2021). Determination of
aortic characteristic impedance and total arterial compliance from regional pulse wave
velocities using machine learning: An in-silico study. Front. Bioeng. Biotechnol. 9 (5),
649866. doi:10.3389/fbioe.2021.649866

Bland, J. M., and Altman, D. G. (1986). Statistical methods for assessing agreement
between two methods of clinical measurement. Lancet (London, Engl. 1 (8476),
307–310. doi:10.1016/s0140-6736(86)90837-8

Critchley, L. A. H., and Critchley, J. A. J. H. (1999). A meta-analysis of studies using
bias and precision statistics to compare cardiac output measurement techniques. J. Clin.
Monit. Comput. 15 (2), 85–91. doi:10.1023/A:1009982611386

Critchley, L. A. H., Huang, L., and Zhang, J. (2014). Continuous cardiac output
monitoring: What do validation studies tell us? Curr. Anesthesiol. Rep. 4 (3), 242–250.
doi:10.1007/s40140-014-0062-9

Gaddum, N. R., Alastruey, J., Beerbaum, P., Chowienczyk, P., and Schaeffter, T.
(2013). A technical assessment of pulse wave velocity algorithms applied to non-
invasive arterial waveforms. Ann. Biomed. Eng. 41 (12), 2617–2629. doi:10.1007/
s10439-013-0854-y

Ganter, M. T., Alhashemi, J. A., Al-Shabasy, A. M., Schmid, U. M., Shalabi, S. A.,
Badri, A. M., et al. (2016). Continuous cardiac output measurement by un-calibrated
pulse wave analysis and pulmonary artery catheter in patients with septic shock. J. Clin.
Monit. Comput. 30 (1), 13–22. doi:10.1007/s10877-015-9672-0

Geddes, L. A., Voelz, M. H., Babbs, C. F., Bourland, J. D., and Tacker, W. A. (1981).
Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 18 (1),
71–74. doi:10.1111/j.1469-8986.1981.tb01545.x

Harris, K. C., Benoit, G., Dionne, J., Feber, J., Cloutier, L., Zarnke, K. B., et al. (2016).
Hypertension Canada’s 2016 Canadian hypertension education program guidelines for

blood pressure measurement, diagnosis, and assessment of risk of pediatric
hypertension. Can. J. Cardiol. 32 (5), 589–597. doi:10.1016/j.cjca.2016.02.075

Hickson, S. S., Butlin, M., Graves, M., Taviani, V., Alberto, P., McEniery, C. M., et al.
(2010). “The relationship of age with regional aortic stiffness and diameter.” JACC
Cardiovasc. Imaging 3 (12): 1247–1255. doi:10.1016/j.jcmg.2010.09.016

Jansen, J. R. C., Schreuder, J. J., Mulier, J. P., Smith, N. T., Settels, J. J., and Wesseling,
K. H. (2001). A comparison of cardiac output derived from the arterial pressure wave
against thermodilution in cardiac surgery patients. Br. J. Anaesth. 87 (2), 212–222.
doi:10.1093/bja/87.2.212

Kim, J., Park, J., Kim, K., Chee, Y., Lim, Y., and Park, K. (2007). Development of A
Nonintrusive blood pressure estimation system for computer users. Telemedicine
E-Health 13 (1), 57–64. doi:10.1089/tmj.2006.0034

Kim, S., Scalzo, F., Bergsneider, M., Vespa, P., Martin, N., and Hu, X. (2012).
Noninvasive intracranial pressure assessment based on a data-mining approach
using a nonlinear mapping function. IEEE Trans. Biomed. Eng. 59 (3), 619–626.
doi:10.1109/TBME.2010.2093897

Kingma, D. P., and Jimmy, B. (2017).Adam: Amethod for stochastic optimization. San
Diego: US. Available at: https://arxiv.org/pdf/1412.6980.pdf.

Lees, N., Hamilton, M., and Rhodes, A. (2009). Clinical review: Goal-directed therapy
in high risk surgical patients. Crit. Care 13 (5), 231. doi:10.1186/cc8039

Liao, Y., Thompson, C., Peterson, S.,Mandrola, J., andMuhammad, S. B. (2019). The future
of wearable technologies and remote monitoring in health care. Am. Soc. Clin. Oncol. Educ.
Book. Am. Soc. Clin. Oncol. 39 (1), 115–121. Annual Meeting. doi:10.1200/EDBK_238919

Litton, E., and Morgan, M. (2012). The PiCCO monitor: A review. Anaesth. Intensive
Care 40 (3), 393–408. doi:10.1177/0310057X1204000304

Liu, F., Tsang, R. C. C., Jones, A. Y. M., Zhou, M., Xue, K., Chen, M., et al. (2021).
Cardiodynamic variables measured by impedance cardiography during a 6-minute walk
test are reliable predictors of peak oxygen consumption in young healthy adults. PLOS
ONE 16 (5), e0252219. doi:10.1371/journal.pone.0252219

McKinney, W. (2010). “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference, 51–56. doi:10.25080/Majora-
92bf1922-00a

Nye, E. R. (1964). The effect of blood pressure alteration on the pulse wave velocity.
Heart 26 (2), 261–265. doi:10.1136/hrt.26.2.261

O’Brien, E., Parati, G., George, S., Roland, A., Beilin, L., Bilo, G., et al. (2013).
European society of hypertension position paper on ambulatory blood pressure
monitoring. J. Hypertens 31 (9), 1731–1768. doi:10.1097/HJH.0b013e328363e964

Oliphant, T. E. (2006). A guide to NumPy. Trelgol Publishing USA. Available at:
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=
kUTSKZwAAAAJ&citation_for_view=kUTSKZwAAAAJ:qjMakFHDy7sC.

Parati, G., George, S., O’Brien, E., Roland, A., Lawrence, B., Bilo, G., et al. (2014).
European society of hypertension practice guidelines for ambulatory blood pressure
monitoring. J. Hypertens. 32 (7), 1359–1366. doi:10.1097/HJH.0000000000000221

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Bikia et al. 10.3389/fbioe.2023.1199726

https://doi.org/10.1089/tmj.2008.0090
https://doi.org/10.1097/00000539-200104000-00034
https://doi.org/10.1097/00000539-200104000-00034
https://doi.org/10.5075/EPFL-THESIS-9179
https://doi.org/10.5075/EPFL-THESIS-9179
https://doi.org/10.1109/JBHI.2019.2956604
https://doi.org/10.1109/JBHI.2019.2956604
https://doi.org/10.1038/s41598-020-72147-8
https://doi.org/10.1038/s41598-020-72147-8
https://doi.org/10.3389/fbioe.2021.649866
https://doi.org/10.1016/s0140-6736(86)90837-8
https://doi.org/10.1023/A:1009982611386
https://doi.org/10.1007/s40140-014-0062-9
https://doi.org/10.1007/s10439-013-0854-y
https://doi.org/10.1007/s10439-013-0854-y
https://doi.org/10.1007/s10877-015-9672-0
https://doi.org/10.1111/j.1469-8986.1981.tb01545.x
https://doi.org/10.1016/j.cjca.2016.02.075
https://doi.org/10.1016/j.jcmg.2010.09.016
https://doi.org/10.1093/bja/87.2.212
https://doi.org/10.1089/tmj.2006.0034
https://doi.org/10.1109/TBME.2010.2093897
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1186/cc8039
https://doi.org/10.1200/EDBK_238919
https://doi.org/10.1177/0310057X1204000304
https://doi.org/10.1371/journal.pone.0252219
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1136/hrt.26.2.261
https://doi.org/10.1097/HJH.0b013e328363e964
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=kUTSKZwAAAAJ&citation_for_view=kUTSKZwAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=kUTSKZwAAAAJ&citation_for_view=kUTSKZwAAAAJ:qjMakFHDy7sC
https://doi.org/10.1097/HJH.0000000000000221
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1199726


Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-Learn: Machine learning in Python” 12: 2825–30.

Reymond, P., Merenda, F., Perren, F., Rüfenacht, D., and Stergiopulos, N. (2009).
Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiology
Heart Circulatory Physiology 297 (1), H208–H222. doi:10.1152/ajpheart.00037.2009

Saugel, B., Kouz, K., Scheeren, T. W. L., Greiwe, G., Hoppe, P., Romagnoli, S., et al.
(2021). Cardiac output estimation using pulse wave analysis—physiology, algorithms,
and technologies: A narrative review. Br. J. Anaesth. 126 (1), 67–76. doi:10.1016/j.bja.
2020.09.049

Segers, P., Rietzschel, E. R., MarcDe Buyzere, L., Vermeersch, S. J., Dirk De BacquerVan
Bortel, L. M., De Backer, G., et al. (2007). Noninvasive (input) impedance, pulse wave
velocity, and wave reflection in healthymiddle-agedmen and women.Hypertension 49 (6),
1248–1255. doi:10.1161/HYPERTENSIONAHA.106.085480

Steptoe, A., Smulyan, H., and Gribbin, B. (1976). Pulse wave velocity and blood
pressure change: Calibration and applications. Psychophysiology 13 (5), 488–493. doi:10.
1111/j.1469-8986.1976.tb00866.x

Sun, J. X., Reisner, A. T., Saeed, M., and Mark, R. G. (2005). “Estimating cardiac
output from arterial blood pressurewaveforms: A critical evaluation using the mimic II

database.” In Computers in cardiology, 295–298. Lyon, France: IEEE. doi:10.1109/CIC.
2005.1588095

Tzourio, C., Olivier, H., Godin, O., Soumaré, A., and Dufouil, C. (2017). Impact of home
blood pressure monitoring on blood pressure control in older individuals: A French
randomized study. J. Hypertens. 35 (3), 612–620. doi:10.1097/HJH.0000000000001191

Udy, A. A., Altukroni, M., Jarett, P., Roberts, J. A., and Lipman, J. (2012). A
comparison of pulse contour wave analysis and ultrasonic cardiac output
monitoring in the critically ill. Anaesth. Intensive Care 40 (4), 631–637. doi:10.1177/
0310057x1204000408

Zinoveev, A., Castro, J. M., García-Espinosa, V., Marin, M., Chiesa, P., Bia, D., et al.
(2019). Aortic pressure and forward and backward wave components in children,
adolescents and young-adults: Agreement between brachial oscillometry, radial and
carotid tonometry data and analysis of factors associated with their differences. PLOS
ONE 14 (12), e0226709. doi:10.1371/journal.pone.0226709

Zócalo, Y., Yanina, V., García-Espinosa, V., Castro, J. M., Zinoveev, A., Marin, M., et al.
(2021). Stroke volume and cardiac output non-invasive monitoring based on brachial
oscillometry-derived pulse contour analysis: Explanatory variables and reference intervals
throughout life (3–88 Years). Cardiol. J. 28 (6), 864–878. doi:10.5603/CJ.a2020.0031

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Bikia et al. 10.3389/fbioe.2023.1199726

https://doi.org/10.1152/ajpheart.00037.2009
https://doi.org/10.1016/j.bja.2020.09.049
https://doi.org/10.1016/j.bja.2020.09.049
https://doi.org/10.1161/HYPERTENSIONAHA.106.085480
https://doi.org/10.1111/j.1469-8986.1976.tb00866.x
https://doi.org/10.1111/j.1469-8986.1976.tb00866.x
https://doi.org/10.1109/CIC.2005.1588095
https://doi.org/10.1109/CIC.2005.1588095
https://doi.org/10.1097/HJH.0000000000001191
https://doi.org/10.1177/0310057x1204000408
https://doi.org/10.1177/0310057x1204000408
https://doi.org/10.1371/journal.pone.0226709
https://doi.org/10.5603/CJ.a2020.0031
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1199726

	Cardiac output estimated from an uncalibrated radial blood pressure waveform: validation in an in-silico-generated population
	Introduction
	Materials and methods
	In silico population
	Data analysis
	Artificial neural networks model
	Statistical analysis

	Results
	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


