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Droplet microfluidics has gained widespread attention in recent years due to its
advantages of high throughput, high integration, high sensitivity and low power
consumption in droplet-based micro-reaction. Meanwhile, with the rapid
development of computer technology over the past decade, deep learning
architectures have been able to process vast amounts of data from various
research fields. Nowadays, interdisciplinarity plays an increasingly important
role in modern research, and deep learning has contributed greatly to the
advancement of many professions. Consequently, intelligent microfluidics has
emerged as the times require, and possesses broad prospects in the development
of automated and intelligent devices for integrating the merits of microfluidic
technology and artificial intelligence. In this article, we provide a general review of
the evolution of intelligent microfluidics and some applications related to deep
learning, mainly in droplet generation, control, and analysis. We also present the
challenges and emerging opportunities in this field.

KEYWORDS
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1 Introduction
1.1 Droplet microfluidic technology

Microfluidics is a system capable of processing or manipulating small quantities of
fluids (ranging from 107 to 107'® L) in a microscale structure (Wang et al., 2020). The
system can precisely control liquids at the micrometer or nanometer level, and the fluids
produce totally different effects from macro-fluids, such as large laminar flow and high
heat transfer efficiency (Yang et al., 2020). Due to these features, microfluidic technology
has rapidly evolved in recent decades, bringing a new perspective to many traditional
disciplines and showing great potential in fields such as biology, chemistry, medicine,
energy, and materials (Sun et al., 2015; Chowdhury et al., 2019; Zhang et al., 2019; Jia
et al., 2020; Li et al., 2021a; Zheng et al., 2021). Additionally, microfluidic systems offer
the advantages of high throughput, high sensitivity and low power consumption (Sun
et al,, 2022). Moreover, they are capable of generating large amounts of data, including
size, shape, composition, and other parameters (Isozaki et al., 2020). Therefore,
microfluidics has become an interdisciplinary discipline involving engineering,
physics and micro-processing.
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Droplet microfluidics is a subfield of microfluidics that focuses
on the manipulation and control of droplets in micro-scale channels.
It involves the precise handling of droplets to perform various
chemical and biological assays, as well as the development of
methods to generate, merge, and split droplets (Postek and
Garstecki, 2022). The basic principles of droplet microfluidics
include the use of microfluidic channels and small quantities of
fluids to create, manipulate, and analyze droplets (Elvira et al., 2022).
Typically, droplets are produced by fragmenting a continual fluid
stream into small, uniform droplets employing a diverse array of
techniques. The function of generating and operating microdroplets
can be achieved by exploiting the different physical and chemical
characteristics of multiphase fluids as they flow through
microchannels and microstructures in microfluidic chips (Sun
2020). Each microdroplet can be considered an
independent reaction unit, as the droplets are separated and do
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not merge with each other, thereby avoiding cross-contamination
(Yu et al., 2022).

Due to its outstanding advantages, droplet microfluidics is
widely used in various fields, particularly in the fields of chemical
analysis and life sciences. It enables single-cell manipulation and
highly controlled dynamic monitoring (Chen et al., 2019). Novel
droplet-based molecular biology techniques have been developed to
detect cellular matter, including DNA, RNA, proteins and other
metabolites (Contreras-Naranjo et al., 2017). Droplet microfluidic
technology has also revolutionized many standard molecular
biology techniques, providing new technology platforms for
polymerase chain reaction (PCR), reverse transcription PCR (RT-
PCR), enzyme-linked immunosorbent assays (ELISA), and more
(Moon et al., 2018; Li et al., 2019). Furthermore, it has a wide range
of applications in high-throughput drug screening, microcapsule
synthesis, and single-molecule analysis (Kobayashi et al., 2019). In
addition, droplet microfluidics is useful for environmental analysis
with
unprecedented characteristics that are difficult to obtain using
traditional synthesis methods (Hou et al.,, 2017; Kung et al.,, 2019).

and may potentially produce functional materials

1.2 Microfluidics integrated with machine
learning and deep learning

Machine learning is a class of artificial intelligence (AI)-based
methods that direct computers to learn rules from data and then
use the experience to improve their performance without explicit
programming. It was first proposed as a research area at the
Dartmouth Conference in 1956 (Haenlein and Kaplan, 2019).
However, research interests in AI were limited at that time due to
the low capability of computers in information storage and
processing. Then, data-driven machine learning came back to
life and gradually became the major application of Al in the late
20th century, making great contributions to the development of
computer science (Fradkov, 2020). At the turn of the 21st
century, with the improvement of computing power as well as
the abundance of available data, academic research related to
machine learning became unprecedentedly active and the range
of applications via various learning methods constantly expanded
(Molnar et al., 2020). Although traditional machine learning has
long provided strong assistance for data processing tasks, the
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emergence of deep learning methods greatly enhances
computers’ ability in dealing with huge and complicated
datesets (Paullada et al., 2021).

Deep learning is a subset of machine learning proposed in the
2010s (Wang and Raj, 2017). It was introduced in order to help
people get closer to artificial intelligence and has received
enormous attention in a wide range of applications due to its
powerful learning ability (Alzubaidi et al., 2021). Deep learning
realizes the feature extraction of input data from low-level to
high-level by establishing and simulating the neural structure of
the human brain for information processing. This allows the
machine to understand and learn from the data, and then obtain
information (Jogin et al., 2018). Since the Alexnet (Krizhevsky
et al, 2017) achieved amazing results in the ImageNet
competition, a large amount of research has been done to
improve the performance of different networks such as
convolutional neural networks (CNN) and recurrent neural
network (RNN) (Yu et al,, 2019; Dhillon and Verma, 2020).
With the rapid development in the past decade, deep learning
architectures can now handle structured data obtained from
great

achievements in the analysis of data in different domains,

various research fields. It has recently made
including images (Wu et al., 2020; Minaee et al, 2021a),
sound (Raza et al., 2019; Grumiaux et al, 2021), natural
language (Otter et al, 2020; Feghali et al., 2022) and text
documents (Minaee et al., 2021b; Long et al., 2021). On the
other hand, these achievements have also been contributed to by
the increasing computing ability of GPUs and the popularity of
open-source frameworks such as TensorFlow (Abadi et al., 2016)
and PyTorch (Paszke et al., 2019).

The high throughput of microfluidics enables the generation
of massive and detailed data. Compared to traditional methods
of data analysis that rely more on human intervention, deep
learning utilizes large amounts of data for feature extraction,
requiring less manual intervention to improve the performance
of computer-aided tasks such as classification and prediction of
data from microfluidic systems (Sun et al., 2023a). Microfluidics
and deep learning-based data analysis are combined to provide
a great deal of new ideas for related research. Intelligent
microfluidics has shown its ability to solve problems that are
hard or next to impossible for traditional methods, such as
label-free biomedical detection (Kobayashi et al., 2017) and
exploration of optimum conditions for specific reactions (Zhou
et al, 2017). In addition, microfluidic systems and the
introduced AI models can provide feedback to each other,
which is conducive to the optimization of both sides and
significant for achieving the automation and intelligence of
microfluidic systems (de Almeida et al,, 2019; Uddin et al.,
2019). Therefore, there will be very broad space for the
development and application of microfluidics integrated with
AT in the future. Figure 1 shows the evolution of intelligent
microfluidics. In this section, we provided an overview of the
evolution of intelligent microfluidics. Subsequently, we
elaborated on the utilization of intelligent microfluidics,
focusing on droplet generation, control, and analysis. Lastly,
we outlined the hurdles and fresh prospects confronting this
field, with the aspiration of inspiring novel research notions for
researchers.
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FIGURE 1
Timeline of the development of intelligent microfluidics.

2 Applications in microfluidics with
deep learning

2.1 Droplet generation and chip design

The advent of droplet-based microfluidic devices has paved the
way for the application of lab-on-a-chip (LoC) concept. As an
of LoC
microdroplets forms the basis for the extensive use of droplet

essential  part experiments, the generation of
microfluidic technology (Hettiarachchi et al., 2021). However, the
droplets differ significantly in characteristics such as droplet shape
and size, depending on the structure of the microchannels (Lei et al.,
2021). In single-cell analysis, precise cell encapsulation and minimal
cross-contamination of droplets are necessary to ensure the accurate
identification of individual cells (Chen et al., 2021). Similarly, in
digital PCR, specific droplet features such as uniform size and high
encapsulation efficiency are essential for accurate and reliable
measurements (Park et al., 2021). Since specific droplet features
are required for research and applications in different fields
integrated with microfluidics, the design of chips has become a
time-consuming and laborious matter. With the progress in artificial
intelligence, such works can now be accomplished more efficiently
with the aid of computers (Lashkaripour et al., 2019).

To predict the dimensionless length of water-infused droplets
in microfluidic systems, Mahdi and Daoud (2017) employed an
artificial neural network (ANN), considering factors like flow
rate, viscosity, and microchannel diameter as inputs. The
network was trained using the average length of droplets
measured from 150 images, and showed a high level of
accuracy when compared to the experimental data.
Lashkaripour et al. (2018) developed ANFIS (adaptive neural-
fuzzy inference system) to predict droplet size in a microfluidic
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flow-focusing junction based on geometry, flow, and fluid
properties. Six parameters including orifice width and surface
tension were considered during the training of the model, and a
significant accuracy of 96% was achieved. Similarly, Mottaghi
et al. (2020) conducted a study exploring the impact of four
dimensionless parameters on droplet size, namely, Ca, Re, flow
rate ratio, and viscosity ratio.

Furthermore, targeting at achieving design automation of fiow-
focusing droplet generators, Lashkaripour et al. (2021) exploited
machine learning to develop a tool named DAFD (Design
Automation of Fluid Dynamics) (Figure 2A). A total of
43 droplet generators were analyzed to investigate the impact of
various orthogonal dimensions and flow rates on droplet size and
generation frequency. The generated dataset of 998 data points was
utilized to train a neural network model, which could accurately
predict channel designs based on user-defined performance criteria.
This approach allowed for the estimation of droplet diameter and
generation rate with errors within 10 um and 20 Hz, respectively.
Zhang et al. (2022a) utilized machine learning techniques and
interpolation algorithms to design the inlet configuration capable
of generating a customized concentration gradient of arbitrary
nature. These methods provide assistance for further precise
control over the concentration distribution. The introduction of
machine learning has revolutionized droplet generator design,
making it accessible to a broader audience and reducing the need
for extensive expertise and design iterations in microfluidics. This
development holds the potential to significantly reduce labor and
experimentation costs. To achieve a desired droplet generation rate
and size, Siemenn et al. (2022) combined Bayesian optimization with
computer vision to automate the identification of stable droplet
formation areas (Figure 2B). The deep learning loop effectively
converged towards the user-defined performance using a total of
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(A) The workflow of DAFD for flow-focusing droplet generators. The algorithms covert user-defined droplet diameter and generation rate into
specific channel design and flow rates (Lashkaripour et al., 2021). Reproduced with permission from Springer Nature Publishing Copyright 2021. (B)
Control feedback loop of the hardware—algorithm interface used for droplet optimization. The user captures an initial set of images of droplets generated
by the device while varying experimental control parameters. The optimization software examines the data and generates a fresh set of control
parameters for device usage, and this cycle is repeated iteratively (Siemenn et al,, 2022). Reproduced with permission from ACS Publications Copyright

2022.

60 samples, and optimization procedure was completed within 2.3 h.
This streamlined process significantly enhances the efficiency and
precision in droplet behavior optimization. Raymond et al. (2020)
used a DNN to design channel geometries capable of producing
specific acoustic fields. This approach enables the precise
manipulation and arrangement of microparticles and cells,
allowing for targeted encapsulation and facilitating advanced
studies in the field.

The “flow sculpting” technique involves using the pillar
structure to shape the fluid into various geometric forms
(Amini et al., 2013). Different arrangements of each pillar
cause flow variations of the fluids, making the implementation
of obtaining the structure sequence from microfluids a complex
mapping relationship (Lee et al., 2019). Stoecklein et al. (2017)
exploited the strong feature mapping ability of deep learning to
establish a CNN. By inputting the fluid’s flow diagram into the
network, the appropriate pillar type among 32 options can be
the
concentration gradient more effectively, Hong et al. (2020)

automatically determined. In order to customize
introduced a deep neural network (DNN)-based inverse
design approach. This method aimed to establish a mapping
between channel geometry and concentration gradient, where
the simulated value of the concentration gradient was considered

as the input, while the inlet pressure and sample concentration
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were chosen as the output variables. These works highlight the
data the
performance of deep learning models and suggest that similar

potential of intelligent sampling to enhance
approaches could be beneficial in tackling inverse problems in
microfluidics.

In deep learning-aided droplet generation, fluid parameters (e.g.,
flow rate, viscosity, and surface tension), channel geometry
(e.g, width, height,
parameters (e.g., pressure and vibration frequency) collectively
affect the predictions of droplet size (Hettiarachchi et al., 2021;
Venkateshwarlu and Bharti, 2021). Training data limitations and

parameters and angle), and driving

model complexity can also impact the performance. When
designing chip channel, important parameters include channel
geometry, fluid characteristics, flow conditions (e.g., flow rate,
pressure gradient, and inlet velocity distribution), and parameters
related to focusing and mixing regions (e.g., blockage regions and
mixer structures). These parameters determine the overall droplet
generation performance (Huang et al., 2021; Prakash et al., 2022). It
is important to note that while deep learning models provide
valuable predictions and optimizations, their validation and
optimization require expertise in physics, chemistry, and fluid
dynamics. Additionally, high-quality and diverse data are crucial
for accurate and generalizable models. Therefore, comprehensive
data collection, rigorous training, and thorough validation are
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(A) The closed loop for autonomous flow control. The camera is employed to monitor the size of droplets, while reinforcement learning algorithms

are developed to calculate errors and adjust the flow rates accordingly (Dressler et al., 2018). Reproduced with permission from ACS Publications
Copyright 2018. (B) The experimental setup consists of an automated pump transport system, an online high-speed camera monitoring system, and a
pattern recognition system based on CNNs. Two piston pumps were utilized to transport the organic and aqueous phases into the microchannel,
which was connected to the outlet of a micromixer (Shen et al.,, 2020). Reproduced with permission from AIChE Copyright 2020.

essential for reliable and effective results in both prediction and
design tasks.

2.2 Droplet control

Different applications of microfluidics require unique processes,
and microfluidic devices require design and optimization based on
each study, which involves a variety of droplet manipulation and
post-processing  functions, thus
technology is needed for the conduct of correlational research.

To detect and track droplets in dense microfluidic emulsions,
Durve et al. (2021) introduced an algorithm using deep learning
techniques. The automated program integrated YOLO and

advanced droplet control

DeepSORT deep learning models for droplet detection and
tracking. The YOLOv5 model detected droplets in simulated
simulations  were

images generated by Lattice Boltzmann

employed to generate images for model training. The combined
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models demonstrate efficient detection and tracking of droplets even
in the presence of significant deformations. Aiming at on-chip cell
tracking and closed-loop feedback control for chip parameter
(2021) adaptive
microfluidic system that integrated electrical sensors. Deep

modulation, Wang et al developed an
learning algorithms were employed to interpret real-time cell
flow speed measurements from multiple locations. And a
programmable pressure pump was also adjusted to maintain
desired flow speeds. This system illustrate fast convergence even
in the presence of external disturbances and has the potential to be
used as a standardized biomedical test at the point of care, providing
valuable information about the tested sample.

Achieving laminar flow control and droplet size control are
essential tasks in microfluidics, involving the precise positioning of
the interface between miscible flows and the dynamic management
of oil-infused droplet sizes in the segmented stream, respectively
(Carreras and Wang, 2017). Corresponding to the two tasks,
Dressler et al. (2018) employed a reinforcement algorithm based

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1208648

Sun et al.

on deep Q network (DQN) and a model-free episodic controller
(MFEC) to automate the control of volume flow in microfluidics
(Figure 3A). These approaches realize automatic monitoring of flow
rate and droplet size, and allow the detection of the error between
the current and desired droplet size, thus enabling corresponding
adjustment to the pumps to correct the flow rate. Shen et al. (2020)
integrated a flow-pattern recognition model with online camera
monitoring and automatic pump feeding systems (Figure 3B). The
built CNN model enables the system to achieve real-time regulation
of flow rates and generate desired patterns. Digital microfluidic
biochips (DMFBs) possess the ability of manipulating discrete fluid
droplets, but electrodes in the chips may degrade with the passage of
time (Huang et al., 2020). Droplet transportation and operations
associated with the degraded electrodes would fail, thereby affecting
the integrity of the bioassay results. Liang et al. (2020) utilized deep
reinforcement learning to achieve droplet routing on DMFBs. The
devised model is able to detect electrode degradation and establish
dependable routes for droplet operations in digital microfluidics. By
avoiding droplets from contacting with degraded electrodes, the
deep learning assisted droplet router has the potential to extend the
lifespan of biochips, minimize the loss of valuable samples and
reagents, and contribute to cost reduction in microfluidic
experiments.

Simulating blood cells as elastic objects in the flow of blood
plasma is a valuable approach for optimizing microfluidic devices
for blood sample analysis. Bachraty et al. (2020) developed a neural
network to predict the movement of red blood cells. The network
learned from simulation data and provided comparable results to
predictions based on fluid streamlines in simple box geometries.
This system shows potential as a comparative tool for different
modeled situations and can be valuable for analyzing videos of
microfluidic flows in the future. In practice, achieving the expected
Poisson distribution for encapsulation statistics can be challenging
due to limited control over experimental variables and conditions.
Gardner et al. (2022) employed YOLO (You Only Look Once) CNN
architectures to develop an automated detector capable of
identifying both whole droplets and individual cells within
droplets. This automated detector enables the implementation of
a process control feedback system to adjust experimental conditions
effectively. Nevertheless, over prolonged periods, a notable decrease
in the ratio of encapsulated cells was observed. This can be attributed
to factors such as cell sedimentation or aggregation in the syringe.

In droplet control tasks involving flow regulation, fluid
parameters, channel geometry parameters, and driving
parameters remain crucial (Mehraji and Saadatmand, 2021).
When assisted by droplet detection and tracking, image
processing parameters like image size and resolution, as well as
deep learning model parameters including network structure, layers,
convolution kernel size, and activation functions, significantly
influence detection and tracking accuracy (Li et al., 2021b). In
droplet routing control, besides droplet motion parameters,
routing rule parameters such as target position and path selection
strategy are vital for achieving controlled droplet trajectories and
velocities, thus ensuring stable and reliable microdroplet routing
(Jiang et al.,, 2022). Therefore, when applying deep learning for
droplet control, it is necessary to consider droplet driving
mechanisms, chip channel characteristics, and make rational
choices for model parameters. Adjustments and optimizations
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should be performed based on different experimental conditions
to achieve precise and dependable droplet motion. Meanwhile,
droplet typically
responsiveness and real-time performance. The training and

microfluidic control requires  rapid
inference of models in deep learning often take a considerable
amount of time, which can lead to delays in real-time tasks.
Additionally, deep learning requires a large amount of training
data to train a model. However, in the field of microfluidic
droplet control, obtaining a large-scale training dataset can be
challenging due to the expensive equipment and intricate
operations involved in microfluidic experiments. This limitation
has resulted in many models being tested only in simpler simulated
scenarios, and their capabilities still need to be validated in more

complex non-simulated environments.

2.3 Droplet analysis

In some studies, it is necessary to analyze the reactions within
the droplets, as well as the concentration of the droplet contents and
the droplet status for more abundant information. The employment
of deep learning makes the effective prediction of these features
possible, which is conducive to improving the efficiency and
performance of droplet based microfluidic experiments.

In order to monitor the mixing within droplets, Hadikhani et al.
(2019) trained DNNs using a large dataset of images recorded under
various conditions to monitor the mixing within droplets
(Figure 4A). This approach enables accurate measurement of the
concentration of each component and the flow rate of the mixture.
In a similar work, Aijun et al. (2020) successfully detected and
classified mixed droplets using trained deep neural networks
(Figure 4B). The droplets were categorized into low mixing,
intermediate mixing, and high mixing based on pattern
recognition. A large dataset was created by generating binary
droplets that could passively coalesce in specific microchannel
geometries. The deep neural networks showed high precision in
detecting and classifying the droplets, regardless of variations in
fluid color, dye properties, and volume ratio.

To distinguish individual droplets in a microfluidic system,
Bartunik et al. (2020) designed a low-cost and portable detector
equipped with an infrared and a color sensor. The employed
machine learning model realizes the distinction between different
ink concentrations and characterization of droplets based on color
and size. Zhang et al. (2022b) developed an advanced method for
accurately measuring the size of microdroplets. The method utilized
deep learning techniques for instance segmentation and boundary
fitting, resulting in highly precise size distribution curves with a
diameter measurement error as small as 0.75 pm. This approach also
enabled the detection and measurement of overlapped droplets and
small satellite droplets, which was not achievable with previous
methods. From another point, Khor et al. (2019) created a
convolutional autoencoder model to determine if droplets would
break during injection. Using approximately 0.5 million images,
they generated an 8-dimensional feature representation that
describes the shape of droplets in a concentrated emulsion,
achieving the prediction of droplet stability. Using a combination
of a deep neural network (DNN)-based semantic segmentation
model and circle Hough transform (CHT), Song et al. (2023)
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(A) The two-phase pattern of the droplet generation in a microfluidic device contains information about the fluid and the flow properties (Hadikhani
et al,, 2019). Reproduced with permission from Springer Nature Publishing Copyright 2019. (B) Sequence of images shows merging of droplets in a
diverging channel using the "relative mixing index” method (Aijun et al., 2020). Reproduced with permission from AIP Publishing Copyright 2020. (C)
Overview of the combined microfuidic deep learning approach consists of three main parts: a schematic representation of the microfluidic device
employed for seeding lung cancer cell lines, cellimaging performed using IX-81 and IX-71 Olympus microscopes, and the classification of cellimages into
healthy cells or cancer cells using deep learning methodologies (Hashemzadeh et al.,, 2021). Reproduced with permission from Springer Nature

Publishing Copyright 2021.

detected and quantified fluorescent droplets with a wide range of
sizes. Accurate measurement was achieved even in cases of low
fluorescence intensity and when the images were unfocused. This
approach has potential applications in digital polymerase chain
reaction (dPCR) analysis for absolute quantification of nucleic
acid molecules.

The combination of droplet analysis and deep learning is also
extensively utilized in research pertaining to cells. Sesen and Whyte
(2020) introduced a flexible and programmable microfluidic system
sorting. With
algorithms, droplets containing a single red blood cell can be

for single-cell supervised machine learning
differentiated from clusters by their distinct size and circularity
characteristics. The system offers a valuable complementary
approach for analyzing small cell populations or situations where
labeling is undesired. Hashemzadeh et al. (2021) developed a
computer-aided diagnosis system to distinguish between
cancerous and healthy cells (Figure 4C). Lung cancer cell lines
were grown in a microfluidic chip and stained for analysis. By
utilizing deep learning algorithm, lung cancer cell line images were

classified into different categories, achieving an impressive
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classification accuracy of 98.37%. Moreover, Ao et al. (2022)
developed high-
throughput analysis (Figure 5A). By utilizing deep learning and

an automated microfluidic platform for
clinical data, this platform allows simultaneous monitoring of T cell
infiltration and cytotoxicity dynamics in 3D tumor cultures, and
could assess treatment efficacy as well.

In order to improve the accuracy and efficiency of single cell
sequencing, Lamanna et al. (2020) developed DISCO (Digital
microfluidic Isolation of Single Cells for -Omics). The platform
integrated digital microfluidics, laser cell lysis, and Al-driven
image processing to capture individual cells from diverse
populations. Genomic and transcriptomic analysis of the
captured cells carried out via
sequencing. The platform provides a highly effective method
for sequencing and can identify features at the single nucleotide

variation level, comparable to state-of-the-art techniques. Also,

were next-generation

using microdroplet technology, Fleming et al. (2019) employed a
semi-supervised deep generation model for background removal
in RNA sequencing to ensure the accuracy of counting. Li et al.
(2020) introduced DESC, an unsupervised deep embedding
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(A) Schematics of the automated screening platform for cancer immunotherapy screening, consisting of a deep learning TIL score analyzer that
processes images and scores T cell infiltration patterns. These patterns are compared to TIL patterns observed in images from patient groups with high or
low survival rates (Ao et al,, 2022). Reproduced under Creative Commons license CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/.
(B) Overview of the DESC framework. It begins by initializing parameters and using a stacked autoencoder to pretrain and create a condensed
representation of the gene expression matrix. This encoder is then incorporated into the iterative clustering neural network to cluster cells in an
iterative manner. The final output consists of cluster assignments, probabilities for each cell's cluster assignment, and the low-dimensional
representation of the data (Li et al., 2020). Reproduced with permission from Springer Nature Publishing Copyright 2020.

algorithm that clustered scRNA-seq data by

optimizing a clustering objective function (Figure 5B). DESC

iteratively

utilized iterative self-learning to gradually eliminate batch
effects, as long as technical variations across batches were
smaller than genuine biological variations.

In addition to image processing and model parameters, various
droplet characteristics, such as size, shape, concentration, and data
acquisition parameters, including droplet collection frequency and
time intervals, are essential for effectively monitoring mixing and
reactions inside droplets (Ghazimirsaeed et al., 2021). Different
algorithms can be the
experimental scenario, such as pixel count-based calculations or

measurement applied based on
physical property-based measurements. In droplet or encapsulated
cell classification, a diverse dataset containing different droplet types
and appropriate data preprocessing are crucial (LaBelle et al., 2021).
Using data augmentation and optimized training strategies can also
droplet classification performance. In
sequencing, parameters for droplet image acquisition, such as
resolution, exposure time, and focus,

improve single-cell

significantly impact
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subsequent processes (Petegrosso et al., 2020). Further, accurate
droplet segmentation, extraction of single-cell images, and possibly
dataset annotation are vital for precise sequencing of single cells
within droplets. Overall, integrating deep learning into droplet
analysis various microfluidic

covers aspects

role of different

of intelligent

research. The parameters varies across
experimental scenarios, and extensive exploration is needed to
achieve accurate, automated, and high-throughput analysis and

experiments.

3 Problems and prospects

3.1 Raised problems in microfluidics
integrated with deep learning

Microfluidics has the ability to intersect with different research
fields, offering the opportunity to generate a wide variety of datasets
for deep learning models. Conversely, deep learning can process the
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generated data to yield innovative and optimized solutions for
microfluidics. Despite a wide range of promising applications of
intelligent microfluidics, several under-developed and unsolved
issues remain to be explored. Firstly, components in microfluidics
can vary significantly from lab to lab, creating inconsistencies across
the field that limit generalization. Deep learning model performance
is only as good as the data the models are trained on, thus large batch
variability limits the building of high-quality cross-institutional
datasets. By training on a single lab’s data, the models are at a
high risk of overfitting: building a dataset across a narrow
distribution, models may perform well within the developer’s
fabrication and operational workflow but poorly in others
(Riordon et al., 2019). Secondly, deep learning techniques require
representative data to build effective deep learning model for specific
applications, therefore, acquired images need to be at satisfactory
quality and quantity to build training datasets. Current research still
heavily relies on high-precision and high-resolution image
acquisition instruments in a laboratory environment. While it is
possible to construct a more extensive and comprehensive dataset by
making as many changes as possible to the environmental
conditions under which the images were collected, this is not
addressed in most studies (Mclntyre et al, 2022). Thirdly, the
high-performance capabilities often require high-quality deep
learning models trained on massive amounts of data. As such,
though deploying DNNs in high-performance and miniaturized
hardware possesses additional benefits, it is still challenging
(Srikanth et al,, 2021). Lastly, extensive implementation of deep
learning in microfluidics can require increased technical expertise
for adopters. While tools with sophisticated GUIs are available,
limitations in academic software maintenance can quickly render
such tools obsolete before users are able to update the software for
their own purposes (Pradhan et al., 2020).

3.2 The outlook for intelligent microfluidics

The proportion of scientists adopting machine intelligence into
their laboratories will increase with the emergence of highly
generalizable artificial neural networks that can be implemented
without extensive retraining. Progress in cloud computing and the
growth of computational power will also be significant contributors
(Galan et al.,, 2020). Microfluidics leveraging machine-intelligence
algorithms is thus expected to provide chemists with user-friendly
platforms for high-throughput experimentation. The platforms can
be implemented without demanding great expertise in deep learning
to extract meaningful results (Dong et al., 2021). In the big data
environment nowadays, data generated from low-cost pathogen-
detecting paper microfiuidic devices by millions of globally
distributed users could be paired with deep learning algorithms
to track, predict, and ultimately contain disease outbreaks (Sun et al.,
2023b). In addition to the detection of infectious disease and
predicting rapidly evolving outbreaks, microfluidics may also play
a role in a targeted distributed response. For example, microfiuidic
systems could be applied to test and monitor food quality and safety
throughout the food production chain, providing data-hungry deep
learning strategies to contain and ultimately prevent contamination
(Fu et al,, 2021). Additionally, in supply chain, microfiuidics and
deep learning are expected to be further combined with cloud-based
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distributed ledger systems, commonly known as blockchain (Guo
etal., 2021). The combination would lay the foundation for building
more powerful and intelligent blockchain applications, and is
expected to have significant impacts in fields such as supply
chain management and healthcare.

4 Conclusion

The application of deep learning in microfluidic systems has
shown a strong trend of development, presenting significant
advantages and practical effects in target detection, correlation
prediction and result classification. With the rapid progress of big
data, Internet of Things (IoT), blockchain, cloud computing and
edge computing, artificial intelligence technology will gradually
cover the microfluidic systems in data processing, status
assessment, and automatic

intelligent  decision-making

optimization. Despite the presence of some unexplored
obstacles that require attention for continued advancement,
the improvement of intelligent level in microfluidic systems is
unstoppable. And intelligent microfluidics will find more
extensive and significant applications in fields such as
chemistry, biology, medicine, material science, and particularly
provide assistance for the smart and high-precision analysis of
biological samples.
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