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Parkinson’s disease (PD), as the secondmost common neurodegenerative disease
after Alzheimer’s, has become intractable with the increasing aging global
population. The exploration of nanomedicine has broadened the opportunities
for developing novel neuroprotective therapies. In particular, polymetallic
functional nanomaterials have been widely used in the biomedicine field in
recent years, exhibiting flexible and diversified functions and controllable
properties. In this study, a tri-element nanozyme (PtCuSe nanozyme) has been
developed with desirable CAT- and SOD-like activities for the cascade scavenging
of reactive oxygen species (ROS). In particular, the nanozyme is suitable for
relieving nerve cell damage by removing reactive oxygen species in cells and
mitigating the behavioral and pathological symptoms in animal models of
Parkinson’s disease. Therefore, this ingenious tri-element nanozyme may have
potential in the treatment of Parkinson’s disease and other neurodegenerative
diseases.
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1 Introduction

Reactive oxygen species (ROS), which are generated in the oxygen metabolism process,
contain various species, including hydroxyl radical (OH.), monomorphic oxygen (1O2),
hydrogen peroxide radical (LOO.), hydrogen peroxide lipid (LOOH), nitroperoxyl
(ONOO−), hypochlorous acid (HOCl), and ozone (O3), (Han et al., 2022; Zhang et al.,
2022). Although a moderate amount of ROS can promote cell growth and energy
metabolisms, excessive ROS would damage cell structures like mitochondria and DNA,
causing cell death or apoptosis. It is generally believed that the pathophysiological processes
of many neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and
amyotrophic lateral sclerosis, are also closely related with ROS (Li et al., 2022a; Emin et al.,
2022).

Parkinson’s disease (PD), as one of the most common neurodegenerative diseases
worldwide, affects approximately 2% of people over 60 years of age (He et al., 2022a; Yuan
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et al., 2022). It is characterized by a wide spectrum of motor and
non-motor symptoms, including resting tremors, bradykinesia,
rigidity, cognitive impairments, and sleep disorders (Dilliard and
Siegwart, 2023). It is believed that PD is caused by genetic and
environmental factors, and the major neuropathological hallmark of
PD is dopaminergic neuronal loss in the substantia nigra pars
compacta (SNpc) (Wu et al., 2021; Cheng et al., 2022). However,
recent studies have found that the occurrence and development of
PD are closely related to oxidative stress and free radical generation.
Patients with PD have high dopamine oxidation during metabolism
to produce a large number of ROS, such as H2O2 and ultra-oxygen
anion in the substantia nigra Fe2+catalytic, to further generate
hydroxyl free radicals with higher toxicity (Xiong et al., 2020;
Olson et al., 2021). Therefore, solving the problem of
accumulation of excess free radicals to reduce the intracellular
ROS level and alleviate neuronal degeneration damage is
expected to be an effective strategy for treating the symptoms
and root causes of PD based on an antioxidant system (Bengoa-
Vergniory et al., 2020).

As a promising natural enzyme substitute, nanozymes possess
both enzymatic activities and the characteristics of nanomaterials (Li
et al., 2021; He et al., 2022b). PtCu bimetallic nanoalloys (PtCu NAs)
are a new kind of bimetallic alloy nanozyme. Compared with
traditional metal nanozymes, the noble metal has stable surface
properties and adjustable size, which is supposed to artificially
control the active structure of the nanozymes, giving them higher
biocompatibility and cell uptake rate. PtCu NAs have been proven to
have a variety of enzymatic activities, including superoxide
dismutase, and the ability to remove intracellular reactive oxygen
species and reduce intracellular oxidative stress (Li et al., 2022b; Gao
et al., 2023; Yang et al., 2023). Previous studies have shown that PtCu
NAs play a decisive role in blocking the prion-like spreading of nerve
cells, and this mechanism has been reported in Alzheimer’s disease

studies (Liu et al., 2021; Chen et al., 2022; Zhu et al., 2022).
Obviously, in the future, PtCu NAs will play an irreplaceable role
in more fields. Selenium is a constituent of glutathione peroxidase
(GSH-Px) (Niu et al., 2021). Every mole of GSH-PX contains 4 g of
selenium. Selenium is an important cofactor in GSH-PX and plays
an unmatched role in catalyzing the redox reaction of reducing
glutathione (GSH) with peroxide (Dringen et al., 2015; Peter et al.,
2015; Sun et al., 2016). Therefore, it is an important cellular free
radical scavenger in introducing selenium into PtCu nanozymes,
which can improve biocompatibility and reduce biological toxicity
(Huang et al., 2017; Hu et al., 2022). Therefore, PtCuSe shows great
potential in catalyzing the generation of oxygen from over-produced
hydrogen peroxide in cells, which reduces the damage caused by
hydrogen peroxide to tissues and cells, solves the problem of
accumulation of excess free radicals in order to reduce the
intracellular ROS level and alleviate neuronal degeneration
damage, and solves the problem of apoptosis in neurons in PD
to a large extent (Ding et al., 2021; Xue et al., 2022; Yu et al., 2022).

Herein, the tri-element nanozyme PtCuSe was constructed
as an ingenious cascade catalytic machine for the amelioration
of Parkinson’s disease-like symptoms. This catalytic machine
was employed as the ROS scavenger both in in vitro and in vivo,
effectively relieving oxidative damage and inflammatory
reaction of nerve cells and significantly mitigating the
behavioral and pathological symptoms of a PD mouse model
(Scheme 1).

2 Results and discussion

PtCuSe nanozyme is a successful conversion based on PtCu
nanoparticles, which not only retains the original advantages of
low cytotoxicity but also has higher biological activity.

SCHEME 1
Schematic illustration of the application of the tri-element nanozyme PtCuSe as the cascade catalytic machine for PD symptom relief by ROS
depletion.
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Observation under an electron microscope showed that the
structure of PtCuSe is regular and well-dispersed, and its
surface character is of obvious consistency (Figure 1). The
antioxidant capacity of PtCuSe is reflected in its catalytic
activity for hydrogen peroxide reduction (CAT-like),
superoxide dismutase (SOD-like), and free radical scavenging.
PtCuSe predominantly achieves antioxidant function through
the following two aspects: first, it encourages the decomposition
of H2O2, which is a CAT-like activity and well reflected through
the detection of the dissolved oxygen level. The dissolved oxygen
content demonstrated a positive correlation with time and
increased gradually. At the beginning of the recording, the

dissolved oxygen content was 0, and when the reaction
progresses, the dissolved oxygen approached 6 mg/L at
10 min. This exciting curve confirmed that PtCuSe is stable,
strongly efficient, and extremely durable, and even if the
concentration is very low, it still reaches a high level of
enzyme activity. According to calculations, the catalytic
capacity of H2O2 decomposition into H2O and O2 per mg of
PtCuSe is almost identical to 320 U CAT. This result is amazing
because such a high biological enzyme equivalent is considerably
beyond expectations, which indicates that PtCuSe has substantial
biological activity and broad research value (Figures 2A, B,
respectively).

FIGURE 1
Transmission electron microscope (TEM) images of PtCuSe nanozymes.

FIGURE 2
Enzymatic-like activity characterization of PtCuSe nanozyme. (A,B) CAT-like activity and (C,D) SOD-like activity of PtCuSe nanozyme.
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The rate of superoxide anion reduction is strongly associated
with the activity of xanthine oxidase which is inhibited by SOD.
Therefore, SOD-like activity is normally reflected by detecting the
degree of inhibition of xanthine oxidase. The inhibition rate
gradually increases with the increase in concentration and
reaches 100% when the concentration of PtCuSe is 0.1 mg/mL.
According to the inhibition curve, the SOD activity in the sample
was calculated, and the activity of PtCuSe nanozyme per
milligram was more than 40,000 U SOD. In conclusion,
PtCuSe not only obtains an extremely high CAT-like activity
but also possesses a potent superoxide dismutase activity, which
prevents intracellular oxygen overload and reactive oxygen
retention in numerous ways, plays a highly efficient
antioxidant role, and blocks the pathological process believed
to lead to PD (Figures 2C, D).

MTT assay was then employed to detect the cytotoxicity of
PtCuSe in in vitro culture with different PtCuSe concentration
gradients, and the appropriate concentration was determined by
cell viability. When the concentration was less than 120 μg/mL, the
cytotoxicity was negligible, so we concluded that this was an
adequate dosing concentration for experimental requirements
(Figure 3A). MTT assay also suggested that the cell viability was
significantly reduced after treatment with MPP+. However, when we
incubated these cells with a range of concentrations of PtCuSe
(40–120 μg/mL) in advance, a dose-dependent increase in cell
viability could be observed (Figure 3B). Afterward, PtCuSe was
again labeled with FITC to form FITC–PtCuSe composites and
administered into cultured cells in vitro. A bright green fluorescence
was observed under the laser confocal microscope, and after

adjusting the field of view, it was found with great satisfaction
that these fluorescence signals were located in the cell interior. The
reason why there was high fluorescence in cells is that the unique
nanometer scale of PtCuSe is satisfactory for cell endocytosis, so it is
competent to have an extremely high cellular uptake rate, and it is
this excellent cellular uptake rate that is the premise of PtCuSe to
play an efficient role in the cell (Figure 3C).

Based on these successful data, we attempt to investigate the
scavenging capability of PtCuSe for intracellular ROS. 1-Methyl-
4-phenylpyridinium (MPP+) was selected as a neurotoxin to
generate neuronal cell damage phenotypes, which can lead to
the increase in intracellular reactive oxygen species concentration
and induce apoptosis of human neuroblastoma SH-SY5Y. A
measure of 2 mM MPP+ was added to the cell culture medium
and co-incubated with the cells. As shown in the figure, the cell
death was clearly evident. However, if the cells were treated with
PtCuSe in advance and then co-incubated with MPP+, the cell
survival rate was substantially increased, which verified that
PtCuSe had an excellent anti-neurotoxin MPP+ effect. Then, 2-
7-dichlorodihydrofluorescein diacetic acid (DCFH-DA) was
added to monitor the oxidation status of cells to reflect the
ROS content and to investigate the role of ROS in cell death
induced by neurotoxin MPP+ and the protection of cells by
PtCuSe. The high content of ROS in MPP+-treated SH-SY5Y
cells occurred during cell death corresponding to SH-SY5Y
incubated with PtCuSe composites. The content of ROS
significantly diminished, which was comparable to the result of
MPP+, and confirmed the capability of PtCuSe composites to clear
ROS (Figure 4A). Caspase-3 is an apoptotic protein, which plays

FIGURE 3
In vitro studies showing the neuron protection and cell uptake ability of PtCuSe. (A)Cell viability of SH-SY5Y cells under PtCuSe treatments of various
concentrations. (B) Cell viability of SH-SY5Y cells under different treatment strategies and various concentrations. (C) Cell uptake of PtCuSe detected by
fluorescent staining. The scale bar is 50 μm.
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an irreplaceable role in the occurrence and regulation of cell
apoptosis. Detection of its expression variation is capable of
demonstrating the defensive effect of PtCuSe on MPP+. As
shown in the diagram, caspase-3 expression was significantly
increased in SH-SY5Y cells treated with MPP+ alone and
markedly lower in PtCuSe-treated cells (Figure 4B). In
conclusion, MPP+ neurotoxin increased the content of
intracellular ROS and caspase-3 and induced cell apoptosis,
but PtCuSe promoted the decomposition of ROS to decrease
intracellular ROS, prevented the expression of caspase-3, and
diminished cell apoptosis.

BBB plays an important role in maintaining the healthy
physiological state of the brain. However, BBB also influences
or even prohibits the availability of PD therapeutic drugs by the
brain. Thus, we then examined the BBB traverse ability of the
nanosystem by detecting the biodistribution of PtCuSe in the
brain and other organs. PD mouse models were established, and
inductively coupled plasma mass spectrometry (ICP-MS)
analysis was performed after i.v. administration of
nanoparticles and obtaining major organs. As shown in

Figure 5A, PtCuSe had desirable normalized dosage
accumulation. Notably, most of the injected PtCuSe
accumulated in the liver and kidney, which might attribute to
the renal and hepatic uptake due to its nano-sized hydrophilicity
diameter. In addition, bio-TEM also showed that the PtCuSe
nanoparticles with high contrast inside the brain, indicating the
desirable brain targeting capability of PtCuSe (Figure 5B).

Subsequently, the PD mouse model was established by MPTP
stimulation, and PD-associated behaviors were assessed by the
Morris water maze and open field test after treatment. These
animals were divided into three groups: healthy mice (Sham
group), MPTP-induced PD mice (MPTP), and PD mice i.v.
injected with PtCuSe nanozymes (PtCuSe). PD mice exhibited
random and disordered motor pathways and could not find the
platform timely (Figure 6A). In contrast, the PtCuSe-treated mice
reached the platform in a spatially oriented manner. Furthermore,
the PtCuSe-treated mice showed improved mean speed (Figure 6B)
and target of occupancy (Figure 6C) after treatment, indicating that
PtCuSe significantly rescued motor impairments and memory loss
in PD mice.

FIGURE 4
ROS clearance and protective ability against cell apoptosis after treatment with PtCuSe. (A) Intracellular ROS levels stained by DCFH-DA and
detected using a laser scanning confocal microscope. The scale bar is 50 μm. (B) Caspase-3 activity in SH-SY5Y cells after various treatments.

FIGURE 5
Biological distribution and brain enrichment effects after intravenous injection of PtCuSe nanoparticles. (A) Biodistribution of PtCuSe nanoparticles
in major organs and brain detected by ICP-MS. (B) Bio-TEM images of the ultrathin section of brain lesion areas. The red arrows show the distribution of
PtCuSe nanoparticles in the brain.
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To explore the therapeutic efficacy of PtCuSe, the PD mouse
model was established via intraperitoneal injection of MPTP. The
loss of dopaminergic neurons is the most immediate characteristic of
PD, which is reflected by the reduction of TH-positive neurons in
SNpc. In addition, the severity of PD can also be reflected by α-syn
accumulation as the result of its close relationship with the loss of
TH-positive neurons. Therefore, we evaluated the TH and α-syn
levels in the SNpc and ST of different groups by co-

immunofluorescence. Immunofluorescence in the SNpc suggested
that the MPTP-treated mice showed reduced TH+ neurons but
elevated α-syn levels, while the contents were reversed after PtCuSe
treatment to an extent similar to those of healthy mice (Figure 7A).
In addition, ROS and malondialdehyde (MDA) levels were also
detected. It suggested that MPTP significantly elevated the
peroxidation levels in the lesion site of the brain, which was
reversed by the treatment of PtCuSe nanozymes (Figures 7B, C).

FIGURE 6
Behavioral assessment of PD mice after treatment with different formulations. The Morris water maze test was used to investigate the athletic and
memory ability of PD mice. (A) Representative path tracing of mice, (B) mean time spent on the target quadrant, (C) and the relative time spent on the
target quadrant.

FIGURE 7
Pathological evaluation of PD mice after treatment with different formulations. (A) Co-immunoreactivity analysis after staining the brain sections
with an anti-α-syn antibody and anti-TH antibody. The scale bar is 50 μm. (B) ROS levels in the SNpc. (C) MDA levels in the SNpc region.
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3 Conclusion

In conclusion, we successfully synthesized PtCuSe nanozymes with
SOD- andCAT-like activities, which can be applied as an excellent cascade
catalytic machine for the depletion of ROS in the lesion site of PD. The
PtCuSenanozymehas efficient cellular uptake in neurons, consistently and
stably removing intracellular ROS and substantially enhancing cell
viability. In addition, in vivo studies suggest that the PtCuSe nanozyme
has satisfactory brain enrichment, thus alleviating both behavioral and
pathological symptoms in PD mice after intravenous administration.
Therefore, it is believed that PtCuSe provides a novel approach to the
treatment and research of PD and opens up avenues for the application of
a three-element nanozyme in the treatment of PD and other
neurodegenerative diseases. In the future, PtCuSe is expected to be
used in the treatment of early Parkinson’s disease by injection to
achieve the therapeutic goal of early treatment, early prevention, and
early rehabilitation.

4 Materials and methods

4.1 Materials

DMEM and FBS were purchased from Gibco. Thiazolyl blue
tetrazolium bromide (MTT) was purchased from Sigma-Aldrich.
SH-SY5Y cells were purchased from Wuhan Pricella Life
Technology Co., Ltd. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) hydrochloride and 2′,7’-dichlorodihydrofluorescein diacetate
(DCFH-DA) were purchased from Sigma-Aldrich.

4.2 ROS detection

SH-SY5Y cells were treated with drugs at optimized
concentrations for 6 h, followed by incubation with MPP+ for
another 4 h, and then stained with 3 μM DCFH-DA for 60 min
at 37°C. Afterward, the ROS content in the cells was evaluated using
a confocal laser scanning microscope (FV1200, Olympus, Japan).

4.3 Cell viability assay

SH-SY5Y cells were seeded into 96-well plates at a density of
8,000 cells/well overnight. Drugs were added to the cells for 6 h,
and then, 2 mMMPP+ was subsequently added and incubated for
another 24 h. A measure of 20 μL of MTT solution (5 mg/mL)
was added into each well and incubated at 37°C for another 4 h.
Finally, dimethyl sulfoxide (DMSO) was used to dissolve the
formed formazan crystal, and the absorbance at 492 nm was
measured using a GF-M3000 microplate reader (Caihong,
Shandong, China).

4.4 Construction and treatment of the
Parkinson’s disease (PD) model

All animal experiments were approved by the Institution
Animal Ethics Committee of Zhengzhou University. Six week

old C57BL/6 mice (Sipeifu Biotechnology Co., Ltd., Beijing,
China) were fed in cages with controlled temperature and
humidity. Before the investigation, the mice were subjected to
rotarod performance on the rotation rod, and the mice which
exhibited behavioral consistency were selected for subsequent
studies. The mice were subjected to intraperitoneal MPTP
injection (35 mg/kg/day for 5 consecutive days) to induce a
PD-like phenotype.

4.5 Brain tissue distribution

PD-like phenotype mice were injected with PtCuSe
(8 mg/kg) through the tail vein. Afterward, the mice in each
group were euthanized, and the main organs were collected
24 h after injection. Then, the tissues were weighed and
homogenized to calculate the percentage of injected dose per
gram of tissue (%ID g−1) by ICP-MS (Agilent 7800, China).
Three mice from each group were euthanized for brain tissue
collection.

4.6 Immunofluorescence analysis

The brains of the treated mice were collected and
fixed with 4% paraformaldehyde for 72 h. Then, the SNpc
tissues were embedded, and paraffin sections of 10 μm
thickness were obtained. The block process was performed
after antigen retrieval, in which the slides were incubated in
10% rabbit serum for 30 min at room temperature. Then,
primary antibodies for TH (GB12181, Servicebio, China)
and α-syn (ab212184, Abcam, China) were applied, and then
the slices were washed and incubated with secondary
antibodies. After counterstaining with DAPI for 10 min and
sealing, the slides were observed using a panoramic section
scanner.

4.7 Statistical analysis

GraphPad Prism 8.0.2 was utilized for all statistical analyses.
The outcomes were compared via Student’s t-tests. The
significance was measured as *p < 0.01, **p < 0.005, ***p <
0.001, and ****p < 0.0001.
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