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Since breast cancer is a heterogeneous disease, there are currently a variety of
treatment methods available, including chemotherapy, endocrine therapy,
molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast
cancer recurrence and metastasis, despite many treatment modalities,
constitute a considerable threat to patients’ survival time and pose a clinical
challenge that is difficult to tackle precisely. Exosomes have a very special and
crucial role in the treatment of drug resistance in breast cancer as a carrier of
intercellular communication in the tumor microenvironment. Exosomes and
breast cancer treatment resistance have been linked in a growing number of
clinical investigations in recent years. This paper covers the status of research on
exosomes in the treatment of breast cancer drug resistance and offers theoretical
guidance for investigating new strategies to treat breast cancer drug resistance.
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1 Introduction

Breast cancer (BC) accounts for more than half of all cancer-related deaths in women
globally and is the most often diagnosed kind of the disease (F et al., 2018). In addition to
causing a serious blow to patients’ quality of life and economic burden, BC is also a
significant public health risk due to an increased prevalence and incidence of BC mortality
among women. The global BC epidemic has been estimated at 1.6 million new cases per year
with more than 50% of these being newly diagnosed. BC accounts for approximately 30% of
all cancers diagnosed in developed countries and 40% in developing countries, including
India, China, Brazil, South Africa, and Mexico (Sung et al., 2021). In the actual clinical
setting, the primary therapies for BC consist of endocrine therapy, targeted medication
therapy, chemotherapy, surgical resection, and so forth (Jayaraj et al., 2019). Some studies
have found that several immunotherapy drugs have shown good efficacy in clinical trials, but
they are not widely used in clinical practice (Schmid et al., 2018). Nevertheless, medication
resistance and a dearth of biomarkers for monitoring therapeutic response could
occasionally make therapies less effective. Therefore, it is essential to understand the
potential biological mechanisms underlying pharmaceutical resistance and to hunt for
reliable biomarkers to predict and monitor therapy response.

Extracellular vesicles (EVs) are tiny membrane vesicles that exist outside of the cell
formed by cells that transport a range of functional nucleic acids, proteins, and lipid cargos
required for intercellular communication. (Sedgwick and D’Souza-Schorey, 2018; Maacha
et al., 2019; Sedgwick and D’Souza-Schorey, 2018; Mao and Jin, 2019). The dual invagination
of the plasma membrane and the development of intracellular multivesicular bodies (MVBs)
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that contain intraluminal vesicles (ILVs) result in the production of
these exosomes. ILVs are finally discharged as exosomes through
exocytosis and MVB fusion to the plasma membrane, with sizes
varying from around 40–160 nm. The classification of EVs is in a
constant state of flux, but they are generally split into two major
collectives: ectosomes and exosomes. The former includes the EVs,
which can be found in the plasma membrane; and intracellular
vesicles, which may contain proteins that can bind to receptors on
cells, such as adhesion molecules or cytokines. The latter include
endoplasmic reticulum-bound proteins, including cytochrome
oxidase, proteases, enzymes involved in glycolysis and other
metabolic reactions, and cell surface markers (Cocucci and
Meldolesi, 2015). Ectosomes are vesicles with dimensions ranging
from ~50 nm to 1 μm that are produced when the plasmamembrane
buddes straight outward, creating microvesicles, microparticles, and
large vesicles. Conversely, though, exosomes originate from
endosomes and are in a size range of ~40–160 nm in diameter
(100 nm on average) (Kalluri and LeBleu, 2020). Schematic
representation of the exosome production process has shown
in Figure 1.

Increasing evidence has pointed to a newly identified
mechanism that causes medicine resistance called exosome-
mediated cell communication (Maacha et al., 2019; Goh et al.,
2020). Exosomes directly export drugs, cause inactivation of
drugs, and transfer functional proteins and noncoding RNAs, all
of which contribute to resistance to BC. However, the role of
exosomal drug transport mechanisms in resistance to BC has not
yet been elucidated (Giallombardo et al., 2016; Ender et al., 2019).
Different sources of exosomes enter recipient cells through
endocytosis. This process has three different mechanisms (Kalluri
and LeBleu, 2020): 1). The ‘cargo’ of the exosomes is discharged into
the cytoplasm and reformed into multivesicular bodies after they

enter the recipient cells. 2). Exosomes ‘cargo’ is released into the
cytoplasm but fuses in conjunction with the plasma membrane. 3).
Exosomes can transport ‘cargo’ into the cell by endocytosis when
their ligands attach to certain receptors on the receptor
cell membrane.

2 Drug resistance status of BC

The capacity of infiltration and migration in BC is one of their
traits that influences tumor patient survival and may even result in
mortality. Breast tumor cells can spread to different places in the
body using a variety of molecular mechanisms and pathways
(Rashid et al., 2021; Tan et al., 2021; Wang et al., 2021b). BC
metastasis is caused in various ways. For instance, the BC drug has-
circ-0068631 engages EIF4A3 and causes c-Myc signaling to
increase BC metastasis (Wang et al., 2021a). There are elements
that prevent BC migration and invasion. CST6 peptides and protein
inhibit CTSB activity to prevent BC from encroaching into bone (Li
et al., 2021b). In clinical courses, focusing on variables related to BC
metastasis has proven helpful (Hou et al., 2021). It has been
demonstrated that extracellular Hsp90α promotes lymph node
invasion in BCers and that cancer metastasis can be inhibited by
employing the appropriate antibody (Hou et al., 2021).
NFE2L3 downregulation (Dai et al., 2021). It has been proposed
that overexpressing MTA1 increases BC metastasis. FOXP3 inhibits
MTA1 expression to decrease the spread of BC (Liu et al., 2021).
Consequently, a number of molecular mechanisms influence the
regulation of BC metastasis (Guo et al., 2021; Li et al., 2021a; Yang et
al., 2021b; Zuo et al., 2021). Some strategies have been used in
impairing BC invasion. For example, element nano-emulsions
reduce the spread of breast carcinoma cells by inducing reactive

FIGURE 1
Schematic representation of the exosome production process. Small vesicles are produced by endocytosis, which fuse to form early nuclear
endosomes and gradually becomes late nuclear endosomes. With the entry of some ‘cargo ’ such asmiRNA, enzymemolecules, and heat shock proteins
in the cytoplasm,many small vesicles are produced in the late nucleus and gradually evolve intomultivesicular bodies. Subsequently, these vesicles will be
released extracellularly to form exosomes. Created with BioRender.com.
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oxygen species (ROS) scavenging (Han et al., 2021). Anti-cancer
agents such as alkaloid derivative ION-31a (Ni et al., 2021) and
adducing formula (Yang et al., 2021a) can suppress BCmetastasis by
affecting autophagy and Hsp90α. The mechanisms behind the
epithelial-to-mesenchymal transition (EMT) and how they
impact the growth of breast tumor cells are the subject of the
following sections.

In cancer, up to 90% of deaths are due to drug resistance in
humans, and the number is still increasing It has reached a level
where there will be no cure for cancer at this moment (Łukasiewicz
et al., 2021). Chemotherapeutic medications are less effective when
there is multi-drug resistance (MDR), which frequently results in
metastasis and relapse. About half of individuals who are resistant to
drugs have either acquired or innate resistance (Wang et al., 2019b).
The development of new therapies which can overcome these
resistance mechanisms is crucial to achieving a cure for cancer.
Three factors can cause intrinsic resistance to emerge before therapy
does: genetic alterations, the expansion of pre-existing insensitive
fractions (such cancer stem cells), and the natural defense against
dangerous external substances (Holohan et al., 2013). Alternatively,
acquired resistance may result from activation of proto-oncogenes,
changes in gene expression due to mutations or epigenetic marks as
well as changes in the tumor microenvironment following treatment
(Holohan et al., 2013). There are several mechanisms of resistance in
BC, which includes increased drug efflux, enhanced DNA repair,
senescence escape, epigenetic modifications, tumor heterogeneity,
tumor microenvironment (TME), and EMT (Holohan et al., 2013;
Cosentino et al., 2021; He et al., 2021). Exosomes play a significant
and particular role in the management of BC resistance. More details
are as follows.

3 Exosome and chemotherapy drug
resistance in BC

Chemotherapy is one of the most common treatments for
invasive BC, especially triple-negative breast cancer (TNBC). To
avoid cell death brought on by chemotherapeutic medicines, BC
cells can, nevertheless, use several strategies. These processes mostly
involve drug efflux and inactivation (Dallavalle et al., 2020),
activation of bypass signaling or pro-survival pathways,
enhancement of DNA damage repair (Battista et al., 2020), and
induction of EMT (Navas et al., 2020) and stem-like property. In
terms of tumors, tumor-derived exosomes (TDEs) are involved in
regulating tumor growth, invasion, drug resistance, angiogenesis,
immune evasion, and remodeling of the tumor microenvironment
(Wan et al., 2020). Furthermore, a great deal of research has shown
that the cell stress brought on by anticancer therapy altered the
makeup of exosomes secreted by tumor cells. Treatment resistance
may arise from drug-resistant phenotypes spreading throughout BC
tumor cells (Lv et al., 2014a).

3.1 Exosomes-mediated drug efflux and
inactivation

Cytotoxic medications must accumulate sufficiently within
cancer cells to be effective in treating cancer. However, increased

drug efflux could lead to chemoresistance. In cancer cell lines, EV
shedding-related gene and treatment resistance were found to be
positively correlated as early as 2003 (Shedden et al., 2003). They
discovered that the chemotherapy agent doxorubicin (DOX) could
be exported by BC cells into the extracellular media by vesicle
formation (Shedden et al., 2003). One pathway for resistance to
therapy in cancer cells was the transfer of membrane-enclosed drug
efflux pumps via exosomes to susceptible cancer cells. A schematic
diagram of the exosome-mediated BC chemotherapy resistance
mechanism has been shown in Figure 2. These pumps export a
variety of contaminants, especially anticancer medicines with
different structures and functions, using ATP, such as the ATP
binding cassette transporter (ABC) (Locher, 2016; Nedeljković and
Damjanović, 2019). According to some research, P-gp can travel by
exosomes from drug-resistant tumor cells to susceptible cells,
resulting in the development of drug resistance (Lv et al., 2014b).
This transfer resulted in the acquisition of drug resistance in vitro
and in vitro (Levchenko et al., 2005; Bebawy et al., 2009; Sousa et al.,
2015). The other approach involved the modification of P-gp
expression by the transfer of useful proteins and miRNAs via
exosomes. In drug-resistant BC cells, P-gp was upregulated
primarily by transient receptor potential channels (TRPCs) (Ma
et al., 2012). P-gp and UCH-L1 protein abundance was greater in
ADM-resistant MCF-7 exosomes. LDN-57444 reduced medication
resistance in sensitive MCF-7 cells caused by exosomes from ADM-
resistant MCF-7 cells internalizing, a UCH-L1-specific inhibitor
(Ning et al., 2017). These findings imply that the
chemoresistance of BC to chemotherapy was greatly influenced
by both the direct export of chemotherapeutic medicines as well
as the control of the transfer of or modulation of the drug efflux
pump via exosomes. However, exosomes also could deliver the
enzymes necessary for drug metabolization, which leads to drug
inactivation. Yang et al. (Yang et al., 2017) found that the exosomes
of ADM-resistant cells had significantly greater GSTP1 mRNA
expression. Exosome-exposed sensitive cells displayed a
phenotypic that was resistant to drugs.

Exosomes have also demonstrated outstanding effectiveness in
combating medication resistance in various malignant cancers.
Some researchers, for example, have created a multifunctional
nanoplatform based on hybrid-shelled hydroxychloroquine-
loaded hollow ZnS spheres for photodynamic therapy/
chemotherapy of glioblastoma (Liu et al., 2023b). Additionally, it
has been discovered that DARS-AS1 siRNA can be delivered via
EXOs-CL4 and utilized as a novel treatment approach for DOX-
resistant TNBC. Meanwhile, EXOs-CL4 can be used as an effective
drug delivery system for targeted TNBC treatment (Liu
et al., 2023b).

3.2 Exosomes mediate the transport of
bioactive substances

Exosomes carry bioactive cargo and stimulate unchecked cell
cycle progression and pro-survival signaling, which is a feature that
aids in the growth and development of malignant tumors. For
example, exosomes from several cancer types contain the pro-
survival protein (Khan et al., 2011; Ender et al., 2019). According
to Kreger et al.’s findings, paclitaxel (PTX) therapy caused MDA-
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MB-231 cells to secrete survivor-enriched exosomes, which greatly
aided fibroblast and SK-BR-3 cell survival after being served with
PTX (Kreger et al., 2016). In an exosomal miR-423-5p dependent
way, exosomes derived from cisplatin-resistant TNBC cells (231/
DDP) modified the susceptibility of other BC cells to DDP (Wang
et al., 2019a). By increasing cell proliferation, metastasis, and anti-
apoptotic signaling, they were able to impart cisplatin-resistant
phenotypes to recipient cells. According to Wang et al. (Wang
et al., 2020), the abundance of exosomal long non-coding RNA
(lncRNA)-H19 caused BC cells to develop DOX resistance. The
resistance to DOX was considerably lowered when lncRNAH19 was
inhibited. This rule demonstrated proinflammatory cytokine-
suppresses rent for functional proteins, such as including non-
coding RNA was one of mechanism underlying chemoresistance.

Numerous large-scale studies have identified the expression
patterns of exosomal proteins and miRNAs in BC after
chemotherapy (Zhong et al., 2016; Kavanagh et al., 2017; Chen
et al., 2018b; Chen et al., 2019; Ozawa et al., 2018). It has been
determined that the proteins caveolin-1 (CAV1) and enascin C
(TNC) found in EVs produced from BC cells promote the
development of BC (Campos et al., 2023). These findings imply
that tumor-derived exosomes could significantly contribute to
chemotherapy resistance in BC.

4 Exosome and hormonal resistance
in BC

Targeting the estrogen receptor (ER), which is present in large
quantities in roughly 70% of BC patients, is an available hormone
therapy (Muluhngwi and Klinge, 2017; Brufsky and Dickler, 2018).
Endocrine therapy has increased the number of ER-positive BC
patients who survive without developing a disease, however, the
clinical problem of BC metastasis or recurrence brought on by

endocrine resistance has not yet been resolved. There have been
several research on the mechanisms of endocrine medication
resistance, mostly concentrating on somatic cell alterations,
epigenetics, and tumor microenvironment, but the precise
mechanisms are still not completely understood. The mechanism
of endocrine resistance is generally understood to be quite complex.
Many ER-blocking medications are currently on the market and are
often utilized in the therapeutic treatment of individuals with ER +
BC. One such drug is tamoxifen (TAM), which can successfully shut
down ER activation and downregulate the growth of ER + tumors
(Early Breast Cancer Trialists’Collaborative Group EBCTCG, 2011).
However, the growth of cancers that gain hormonal resistance after
prolonged treatment frequently renders hormone therapy in BC
ineffective in BC (Osborne and Schiff, 2011; Rani et al., 2019). The
mechanism of hormone resistance is the subject of extensive
research. The resistance to hormones primarily arises from
dysregulation of estrogen receptors, the activation of several
pathways and an imbalance between activators and inhibitors
(Osborne and Schiff, 2011; Scherbakov et al., 2012; Muluhngwi
and Klinge, 2017; Semina et al., 2018). The ER plays a crucial role in
regulating several physiological processes, such as immune system
responses (including autoimmune response), metabolism,
reproduction, cell proliferation, and many other functions. In
short, exosomes could transfer the acquired hormone resistance
of BC cells primarily through the following mechanisms: activation
of hormone-independent pathways and ER dysregulation caused by
exosomal miRNA and protein. Only a handful of studies have
demonstrated the transfer of hormone resistance between BC
cells. Therefore, more investigation is needed to examine the
proteome and non-coding RNA profiles of exosomes released by
hormone-resistant BC, as well as to identify the critical elements for
the exosome-mediated transmission of the hormone-resistant
phenotype. Treatment resistance and exosomes in British
Columbia for human epidermal growth factor receptor 2 (HER2)

FIGURE 2
Exosome-mediated pathways of BC chemoresistance. When chemotherapeutic medications are enclosed in exosomes, they secrete. To increase
drug efflux, exosomes help membrane-embedded drug efflux pumps spread horizontally to cancer cells that are vulnerable to them. Additionally,
exosomes deliver advantageous proteins and miRNAs that boost P-gp expression in cancer cells that are susceptible. Bioactive payloads carried by
exosomes promote the growth, survival, drug resistance, repair of DNA damage, EMT, and stem-like characteristics of cancer cells. Created with
BioRender.com.
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overexpression of HER2 was associated with a poor prognosis for BC
(Cortesi et al., 2015). When used in clinical practice, HER2-targeted
treatment effectively treats HER2+ BC (Tagliabue et al., 2010). The
first monoclonal HER-2 antibody approved for the treatment of
HER2+ BC is trastuzumab (Cameron et al., 2017), which
dramatically prolongs patients’ lives. Trastuzumab is safe and
effective in multiple trials with good safety profiles. However,
there are several potential adverse events associated with
trastuzumab, such as severe nausea, vomiting, rash, and diarrhea.
These side effects may not occur when used together with other anti-
HER2 drugs or therapies that affect the immune system. Within a
year of finishing treatment, the majority of patients become resistant
to HER2-targeted medications, despite the fact that BC patients
initially respond well to these treatments (Ahmad, 2019). Figure 3
depicts an illustration of the membrane transport pathway involved
in the creation and release of multivesicular endosomes, as well as
the resistance mechanism of HER2 targeted therapy.

According to certain research, Antibody-based drugs are
neutralized by exosomes, which results in BC trastuzumab
resistance (Dong et al., 2020). HER2-targeted medication
resistance is tightly correlated with levels of programmed death
ligand 1 (PD-L1) and transforming growth factor β1 (TGF-1)
(Devan et al., 2022). According to Martinez et al. (Martinez
et al., 2017), they discovered that these chemicals are transferred
by EVs to cause drug-sensitive cells to exhibit the traits of their
source cells. Trastuzumab resistance could also be a result of non-
coding RNA dysregulation. RNA-binding protein heterogeneous
nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was discovered to
be crucial for lncRNA AGAP2-AS1 loading into exosomes (Alarcón
et al., 2015). Additionally, by examining the Gene Expression
Omnibus database’s publicly accessible BC miRNA expression
profiling data, Han et al. (Han et al., 2020) discovered that

trastuzumab resistance resulted in a downregulation of miR-567
expression. They then found that trastuzumab resistance was caused
by miR-567 suppression, but exosomal miR-567 reversed
trastuzumab resistance by inhibiting autophagy-related (Lappano
et al., 2020). Therefore, these observations highlight the special role
that exosomes play in promoting resistance to targeted therapy,
either through direct interactions between HER-2 overexpressed
exosomes and targeted agents, or through exosome-mediated
transcription changes that promotes cell survival through the
HER2-independent pathway.

5 Exosome and immunotherapeutic
resistance in BC

A new chapter in the treatment of cancer has begun with the
recent success of innovative anti-cancer immunotherapies (Zhang
and Zhang, 2020). Previously, it was thought that bladder cancer,
melanoma, and lung cancer were more immunogenic than BCs
(Sugie, 2018). According to recent research, TNBC tumors are more
immunogenic than other BC subtypes, with higher levels of
lymphocyte filtrating and PD-L1 expression (Barroso-Sousa et al.,
2020). Which significantly lengthens patients’ lives. Multiple trials
with positive safety profiles have demonstrated the efficacy and
safety of trastuzumab. However, Trastuzumab has several possible
side effects, including severe nausea, vomiting, rash, and diarrhea.
When combined with other anti-HER2 medications or immune
system-affecting therapy, these side effects might not manifest.
(Michel et al., 2020). On 8 March 2019, the FDA granted
accelerated clearance for the anti-PD-L1 medication atezolizumab
plus nab-paclitaxel for unresectable locally advanced or metastatic
TNBC with PD-L1 expression, based on the findings of the

FIGURE 3
A simple schematic description of the resistance mechanism of HER2 targeted therapy. In developing endocytic vesicles that join with early
endosomes, plasma membrane components are grouped. Sorted early endosome materials develop into intraluminal vesicles (ILV)-containing
multivesicular bodies (MVBs). The endosomal sorting complex needed for transport (ESCRT) proteins cause ubiquitinated HER2 to collect into patches in
the membrane during ILV formation. The majority of MVBs release exosomes to the extracellular space through lysosomal fusion, which destroys
their cargo. Created with BioRender.com.
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IMpassion 130 trial. However, there is still much work to be done in
order to achieve the best effect of BC immunotherapy. In addition, it
is urgent to discover and apply new biomarkers to predict the
response to immunotherapy. Exosomes are crucial for changing
the tumor immunological microenvironment. According to reports,
tumor cells could have PD-L1, and exosomal PD-L1 prevents T-cell
activation, which could help cancer cells avoid antitumor immunity
(Chen et al., 2018a). Furthermore, it appears that anti-PD-
L1 antibodies cannot completely inhibit exosomal PD-L1. In
Poggio et al. study, has shown that the exosome PD-L1 was
expressed in cells of human lung epithelium and mediates cell
migration through a mechanism similar to the mechanisms of
the proteasome, which might lead to increased expression of PD-
L1 (Poggio et al., 2019). However, PD-L1 expression varies and
changes over time in various BCs. It is known that among the many
BC subtypes, basal-like BC cells express the greatest PD-L (Soliman
et al., 2014). According to Moneypenny et al. (Monypenny et al.,
2018), in BC cells, the endosomal sorting complex required for the
transport-related protein ALIX controls the activation of the PD-
L1’s surface expression and the epidermal growth factor receptor.
This finding suggested that MSCs were a promising model for
studying the mechanisms underlying BC and its complications. A
recent study has shown that the expression of CD56 on B cells is
down. They found that PD-L1, which confered a more
immunosuppressive characteristic on BC cells, was more
prevalent on the surface of ALIX-depleted cells. Additionally,
Wen et al.’s research (Wen et al., 2016) has shown which
exosomes are obtained directly from BC cells that have spread
far reduced NK activity and T cell proliferation, possibly limiting
the anticancer immune response in pre-metastatic organs.
Additionally, another study has shown that TGF--mediated
inhibition of T cell proliferation by exosomes derived from BC
cells (RONG et al., 2016). However, the development of cancer and
the resistance to immunotherapy are both significantly influenced
by tumor-associated macrophages. Exosomes produced by
mesenchymal stem cells (MSC) were found by Biswas et al.
(Biswas et al., 2019)to hasten the course of BC. As a result, type
2 macrophages polarize myeloid-derived monocyte-suppressive
cells into highly immunosuppressive macrophages near the
tumor bed. This finding suggested that MSCs were a promising
model for studying the mechanisms underlying BC and its
complications.

These findings have significant ramifications for our
comprehension of the fundamental mechanisms driving
immunosuppression in BC’s TME. To sum up, exosomes transport
immunosuppressive chemicals that have been widely investigated in
various cancers and are known to impact immune cell activities in a
variety of ways. Since the majority of immunotherapy research for BC
is still being done at the time of the clinical trial, exosome-mediated
immunosuppression is currently being examined, and it needs more
research. Exosomes could be used as a prognostic biomarker that may
eventually be employed as a non-invasive method to track the
effectiveness of immunotherapy in malignancies. Recent studies
have shown that EV release characteristics were generally
associated with cellular phenotypic modification, such as EMT.
Exosomes regulate EMT, cancer stem cell (CSC), and TME in the
drug resistance of BC (Fujiwara et al., 2018b; Fujiwara et al., 2018a)
and CSC (Eguchi et al., 2018; Hu et al., 2019). EMT and stemness

encourage cells to release EVs, and tumor-derived EVs mayactivate
EMT and stemness in tumor cells (Eguchi et al., 2020). As a result, the
EMT and CSC characteristics are anticipated to favor both exosome-
mediated tumor progression and the development of treatment
resistance.

Numerous research over the past few decades have shown that
the TME had a significant role in determining both treatment
resistance and tumor growth, progression, and metastasis (Brown
and Giaccia, 1998; Matei et al., 2017; Taube et al., 2018; Vasan et al.,
2019; Lappano et al., 2020). EMT is a biological process in which
epithelial features are lost and a mesenchymal phenotype is acquired
(Bill and Christofori, 2015). During the course of EMT, some
biochemical changes occur in cells, including loss of strong cell-
cell adhesion and development of invasive, migratory, and
antiapoptotic properties. The major effector molecules are the
transcription factors that regulate gene expression (i.e., genes
involved in apoptosis or DNA damage). Exosomes are a crucial
part of the EMT process that results in a more aggressive phenotype
for cancer cells. A growing body of research suggests that exosomes
may be capable of delivering pro-EMT factors to recipient cells,
promoting the development of BC, chemoresistance, invasion,
metastasis, and anti-apoptosis, among others (Qin et al., 2016;
Donnarumma et al., 2017; Santos et al., 2018; BIGAGLI et al.,
2019). According to Liu et al. (Liu et al., 2015), the miR-155 is
an essential EMT regulator and CSCs. Santos et al. (Santos et al.,
2018) has reported that the upregulation of EMT was linked to miR-
155 in DOX- and PTX-resistant cells. In addition to these effects,
transfected miR-155 cells also drive EMT. Some authors reported
that miR-155 expression was increased in the presence of DOX and
PTX, suggesting a direct role for miR-155 in tumor progression.

Furthermore, immune cells, including myeloid-derived
suppressor cells, mast cells, neutrophils, lymphocytes, and
macrophages, DCs, and NK cells have been demonstrated to be
permeable in the TME (Whiteside, 2016). Exosomes, which carry
tumor-associated antigens, interfere with anti-tumor
immunotherapy. Exosomes are produced by these cells to transmit
information regarding immunosuppression or activation. On the
basis of the research reported above, exosomes could be produced
by TME cells in response to anticancer therapies and promote TME-
to-BC cell interaction that leads to the transmission of drug resistance.
Exosomes could be as tumor biomarkers that reflect TME alterations
and predict therapeutic response, according to all of these studies.
Drug resistance directionally transferred between TME and BC cells
through exosomes has shown in Figure 4. The researchers believed
that the use of exosomes could help identify new targets for treatment
and develop new cancer therapies.

6 The potential use of exosomes in
treating BC medication resistance

6.1 Exosomes as indicators for treatment
response prediction

In BC drug resistance management, exosomes could play an
important role, for example, using exosomes as markers to predict
BC response to treatment. Exosomes are small organelles which
have been shown to play an important role in cellular processes
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including cell growth, differentiation, and survival. It is necessary to
make it more routine to dynamically evaluate specific molecular
markers and to monitor treatment response and progression with
blood-based liquid biopsy analysis (Braden et al., 2014). Dynamic
evaluation of particular molecular markers, and blood-based liquid
biopsy analysis to monitor treatment response and progression
becomes more routine (Bardelli and Pantel, 2017; Campos-
Carrillo et al., 2019). However, current methods are not sensitive
enough to assess clinical outcomes in patients with solid tumors
treated with immunotherapy drugs or other therapies.

Due to its unique characteristics, studies on exosomes in early
disease development and as a potential indicator of therapeutic
response or resistance are limited. For example, they have relatively
stable structures, are found in nearly all biological fluids, carry facial
markers, transport payloads that accurately depict the physiological
condition of the original cell, and have these characteristics (O’Neill
et al., 2019; Nazri et al., 2020; Vanhie et al., 2020). These elements
make it easy to understand why a protein or molecule is expressed in
a cell only occasionally and not in other areas of the cell, such as
when the cell undergoes DNA sequence changes, when the cell
suffers damage (such as cancer), or when the cell undergoes during
stressful times (such as pregnancy). Exosomes do have certain
benefits over other liquid biopsy analysis techniques. Exosomes
protect their cargo from spoilage and contain chemicals from
their parent cells.

Exosome proteins are not present on the surface of cells, making
exosomes a better source for biomarkers than cell surfaces. Thus, in
contrast to circulating tumor DNA (ctDNA) or vesicle-free circulating
tumor RNA, exosome nucleic acid analysis may be more informative

and repeatable. Secondly, exosomes offer the chance to gather
information at the DNA, RNA, and protein levels and they are
more prevalent than cell-free DNA. Exosome and ctDNA data
combined may provide more accurate results or data for tracking
the course of BC and forecasting response to BC therapy. The
combination of exosomes with ctDNA was not currently available.
However, the current study suggested that exosomal protein levels
ware significantly elevated in patients receiving BC therapy. In
addition, the studies which comparing exosome concentrations in
different populations remain largely unexplored.

Exosome-related biomarkers have been studied in several recent
investigations in chemotherapy patients. According to Wang et al.
(Wang et al., 2017), the amount of TRPC5 expressed in BC tissues and
the effectiveness of chemotherapy were substantially connected with
the levels of circulating exosomes carrying TRPC5. In addition, higher
levels of circulating exosomes expressing TRPC5 after chemotherapy
indicated the development of acquired chemotherapy resistance and
cancer progression. Therefore, real-time monitoring of chemotherapy
resistance can be done by looking for TRPC5-positive exosomes.
Another study discovered that cancer patients’ serum levels of the
lncRNA HOTAIR were much greater than those of healthy people
(Tang et al., 2019). Notably, all patients experienced a significant drop
in exosomal lncRNAHOTAIR 3 months following surgery, indicating
that the source of serum HOTAIR is tumor tissue and that its level is
correlated with the degree of disease invasiveness and tumor burden.
It has been shown that the expression of long noncoding RNAs
influences cell motility, proliferation, apoptosis, and differentiation.
The present study suggested that the expression of lncRNA HotaIR
could serve as an indicator for tumor progression and metastasis.

FIGURE 4
Drug resistance is directionally transferred between TME and BC cells through exosomes. In developing endocytic vesicles that join with early
endosomes, plasma membrane components are grouped. Sorted early endosome materials develop into intraluminal vesicles (ILV)-containing
multivesicular bodies (MVBs). The endosomal sorting complex needed for transport (ESCRT) proteins cause ubiquitinated HER2 to collect into patches in
the membrane during ILV formation. The majority of MVBs release exosomes to the extracellular space through lysosomal fusion, which destroys
their cargo. Created with BioRender.com.
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Furthermore, a poorer response to neoadjuvant chemotherapy and
treatment with TAMs was linked to a high level of serum exosomal
HOTAIR expression (Tang et al., 2019). In HER2+ BC and TNBC
exosomes, several miRNAs were selectively enriched, as demonstrated
by Stevic et al. (Stevic et al., 2018).

TNBC is recognized to be particularly poorly treated due to the
lack of specific targeted therapies. However, some researchers (Chen
et al., 2017) have used the film method to fabricate curcumin-loaded
POCA4C6 micelles (CPM), which are monolayer structure with an
average particle size of 3.86 nm. Based on liquid chromatography-
tandem mass spectrometry, the micelles exhibited great curcumin
encapsulation efficiency and loading. Additionally, in vitro
investigations revealed that POCA4C6 and curcumin work
together synergistically to kill CD44 + CD133 + breast cancer stem
cells (BCSCs), and CPM could reduce the self-renewal and
aggressiveness of TNBC. These studies not only highlighted the
potential of CPM as an effective treatment for TNBC but also
demonstrated the novelty and effectiveness of novel nanomaterials
in changing drug delivery and anticancer methods, providing us with
new ideas for the treatment of cancer stem cells. Drug delivery
targeting BCSCs has made extensive use of a range of nanocarriers
in recent years, including liposomes, inorganic and polymeric
nanoparticles, micelles, and nano-gels. These delivery systems
successfully increased medication stability and allowed for the
carefully timed delivery of large amounts of multicomponent cargo
to BCSCs and/or breast carcinoma cells (He et al., 2016).

Large-scale exosomal biomarker validation studies could
provide important information for tumor treatment monitoring.
There are still certain restrictions, for instance, there is not any
consistent procedure for gathering, processing, and separating
exosome samples. Ultracentrifugation is one of the current
separation methods, although it takes a lot of time and cannot
separate highly pure materials. Based on size separation,
immunoaffinity trapping, and exosome precipitation, some
alternative techniques have been devised. Due to overlapping
properties, these techniques often produce complex mixtures of
EVs and other extracellular space components and fail to extract
high-purity exosomes (Doyle and Wang, 2019). Additionally,
certain microfluidic techniques, such nanofabricated exosome
technology, which relies on surface plasmon resonance for label-
free detection of exosomes, are not routinely used (Garcia-Cordero
and Maerkl, 2020). Exosome enrichment was currently being
refined, and each step might be tailored for a particular cargo,
like protein, DNA, or RNA (Meldolesi, 2018; LeBleu and Kalluri,
2020). Exosomes are difficult to utilize as biomarkers because they
are intermingled with exosomes from normal cells in circulation,
making it difficult to distinguish between them and conduct a
thorough analysis of tumor-derived exosomes. Using a proteome
study of 426 human samples, Hoshino et al. (Hoshino et al., 2020)
recently discovered and defined tumor-derived EV markers in
human tissue and plasma that differ from normal controls.

6.2 Exosomes as novel therapeutic
interventions in BC drug resistance

As previously discussed, exosomes, which carry certain proteins
or RNAs, mediate the induction of drug resistance. Restricting the

release of exosomes from specific cell types may help mitigate the
contribution of exosomes to the development of drug resistance in
BC, such as BC and stromal cells (Datta et al., 2018; Sun et al., 2018),
as well as by preventing the drug carrier’s integration into exosomes,
which could lead to re-distribution and accumulation of the drug in
BC cells (Kong et al., 2015; Koch et al., 2016) (Figure 5). The goal of
this study was to assess the effects of exosome depletion on tumor
cell proliferation, migration, and metastasis after treatment with
platinum-based chemotherapy or combination therapy for
advanced pancreatic adenocarcinoma (PAA). This method has
been used successfully in patients with multiple sclerosis, and it
was found to be effective in reducing the risk of relapse after
chemotherapy or radiotherapy. In addition, their role in
immunotherapeutic therapies, exosomes may also play an
important role in cancer therapy. It is a secure and efficient
natural carrier for therapy or targeted medication administration
based on a particular exosome component. Li et al. (Li et al., 2020)
created a poly (lactic-co-glycolic acid) nano platform coated with
macrophage-derived exosomes for TNBC-targeted chemotherapy.
Similar to this, To decrease the expression of miR-1423p and miR-
150 in 4T1 and TUBO BC cell lines, Naseri et al. (Naseri et al., 2018)
employed exosomes that were isolated from bone marrow-derived
MSCs to transfer anti-miR-142-3p oligonucleotides that had been
LNA (locked nucleic acid)-modified. Aqil et al. (Aqil et al., 2017)
demonstrated that curcumin could be successfully delivered via
milk-derived exosomes. In the present study which has shown
that curcumin can also be delivered through exosome-derived
extracellular vesicles (EVVs). These EVVs are a key part of cell
membranes and play a significant part in cell functions, such as
communication with other cells, differentiation of cells, regulation of
gene expression, or migration. Oral delivery of exosomal curcumin
showed superior anti-proliferative, anti-inflammatory, and anti-
cancer activities against a variety of cancer cell lines including
BC when compared to free curcumin. Exosomes can be loaded
with a variety of peptides, non-coding RNAs, or chemotherapeutic
medicines. They are an effective carrier to improve anticancer
therapy and overcome drug resistance. In addition, their
potential use in clinical trials, exosomes may also serve as new
therapeutic targets for many other cancers and disorders such as BC,
lung cancer, colon cancer, pancreatic cancer, prostate cancer,
melanoma, and others (Zhong et al., 2016).

The transfer of tumor-associated antigens and major
histocompatibility complex class I molecules to DC via tumor-
derived exosomes has been demonstrated to activate the T cell-
mediated immune system against tumor cells (Wolfers et al., 2001).
Several researchers (Li et al., 2018) presented an alternative therapy
option for BC patients who are resistant to trastuzumab and have a
HER2-specific autoimmune tolerance.

6.3 Exosomes provide a new method for
treating BC

Exosomes are effective therapeutic carriers due to their
nanoscale size, immune compatibility, low toxicity, and relative
durability. Exosomes from various cells can be loaded with a
variety of non-coding RNAs, peptides, or chemotherapy
medicines using a variety of techniques. To achieve the goal of
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treatment, researchers have developed the use of macrophage-
derived exosomes as a drug delivery platform to transport
platinum nanoparticles for specific use in BC and lung metastatic
tumor cells, while activating cell apoptosis and inhibiting cell
proliferation to inhibit the metastasis of BC (Xiong et al., 2019).
Yang et al. (Yang et al., 2021) found that exosomes derived from
CAR-T cells could effectively target mesothelial positive TNBC cells
by secreting perforin and granzyme B, and the research data showed
good killing efficiency and safety. Milano et al. (Milano et al., 2020)
showed that ADM/trastuzumab encapsulated in mesenchymal
progenitor cell-derived exosomes could significantly improve its
cardiotoxicity and enhance its cytotoxic effect on BC cells in a rat
model. Researchers have also discovered that PD-1 produced as
exosomes in TNBC could prevent PD-L1-induced anti-tumor
immunological dysfunction and increase the cytotoxic efficacy of
effector T cells against tumor cells (Qiu et al., 2021). Therefore, More
research is needed on the origin, production, and biological purpose
of exosomes to support their clinical translation and application.
Nanomaterials have a variety of roles in treatment, not only in BC
but also in other cancers. For instance, Liu et al. (Liu et al., 2023a)
developed a hybrid exosome-coated nanoplatforms based on zinc
sulfide for the targeted treatment of in situ mouse glioblastoma
models, demonstrating that HCQ @ ZnS @ eRGD stands out as a
potent and all-encompassing therapeutic compound. A new
therapeutic avenue for the treatment of glioblastoma is made
possible by HCQ @ ZnS @ eRGD.

Based on the discussion above, future researches could be
conducted in the treatment of BC drug resistance from multiple
angles, primarily including: using exosomes as a drug delivery
system; finding new drug targets; altering the tumor
microenvironment; monitoring the recurrence and metastasis of

BC cells; and taking part in the epithelial-mesenchymal transition.
Exosomes as the transport medium could prevent the excessive loss
of medications and obtain the maximum tumor cure rate by altering
the conventional method of drug delivery and transportation.
Additionally, it can play a role in DNA repair. Combining
chemotherapy with the suppression of repair mechanisms could
make cancer cells more responsive to the treatment and enhance the
therapeutic outcome. Secondly, it may alter the medication targets.
Exosomes have unique physiological properties, thus more basic
researches on protein-related targets in exosomes are needed, and
more theoretical support is needed for the clinical development of
new drugs. Monitoring the systemic recurrence andmetastasis of BC
cells, searching for specific biomarkers that can detect recurrence
and metastasis in time, and achieve early treatment of BC resistance
to a certain extent. Exosomes could alter the current tumor
microenvironment and reduce tumor medication resistance,
recurrence, and metastasis in certain circumstances. Exosomes
have been reported as a regulator of the immune response of
tumor cells and as a new kind of tumor vaccination (Liu et al.,
2022). Based on the exosome-mediated mechanism, exosomes have
a wide range of potential applications in the prevention and
treatment of BC resistance. The potential treatment strategies of
BC drug resistance are summarized in Figure 6.

Exosomes have proven to be potential nanocarriers that can be
employed to reverse tumor treatment resistance, according to the
research that is currently accessible. For example, Wang et al. (Wang
et al., 2018b) sensitized cisplatin-resistant gastric cancer cells by
directly delivering anti-miRNA-214 to the recipient cells through
exosomes. Rapamycin and U18666A interfere with MVB
production and cholesterol uptake into cell membranes, which
can block exosome release and make B lymphoma cells more

FIGURE 5
Roles of exosomes between BC cells and other stromal cells. Exosomes transferred from BC cells into macrophages may activate NF-κB, release
cytokines and stimulate autoimmune regulation (Wang et al., 2018a). Exosomes from BC cells also play a role in mesenchymal stem cells (MSCs), thus
promoting the differentiation into fibroblasts (Ochieng et al., 2009). Conversely, exosomes derived from MSCs can also act on BC cells, leading to the
dormancy of BC cells (Ono et al., 2014). Created with BioRender.com.
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FIGURE 6
A summary of the exosome-mediated mechanism-based prospective treatment approaches for BC medication resistance. Exosomes-mediated
drug delivery; finding new drug targets; altering the tumor microenvironment; keeping track of the recurrence and metastasis of BC cells; taking part in
the epithelial-mesenchymal transition process; and other potential therapeutic strategies are based on the exosomes-mediated mechanism. Created
with BioRender.com.

FIGURE 7
The role of exosomes in tumor drug resistance. It can be seen from the figure that exosomes, as a function of intercellular communication, can play
an important role in anti-BC drug resistance. Created with BioRender.com.
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sensitive to rituximab. Researchers have discovered that b-element
can modify the production of resistance-related miRNAs in
exosomes by acting on certain genes in BC cell lines. This
reduces the amount of resistance transmission through exosomes
and increases the sensitivity to chemotherapy (Zhang et al., 2015).
The role of exosomes in tumor drug resistance, has simply
summarized in Figure 7.

7 Challenges and future perspectives

Exosomes is a “double-edged sword” in the treatment of BC
drug resistance. The most common characteristics of malignant
tumors are invasion and metastasis. Invasion and metastasis are
multi-step processes that involve “crosstalk” between tumor cells
and normal cells around the tumor at each stage. Exosomes, as one
of the intercellular communication carriers, can directly transfer
messenger RNA, miRNA, and proteins into cells and activate
related signaling pathways, boosting tumor invasion and
metastasis. To summarize, on the one hand, exosomes can
induce drug resistance in BC; on the other hand, exosomes
constitute a significant breakthrough in the treatment of BC
drug resistance.

Exosomes have many application scenarios in the treatment of
BC drug resistance. Firstly, exosomes are a type of EV that exist in
the circulation system. Exosomes exist in all biological fluids and
are secreted by all cells. They could be applied to the dynamic
measurement of a variety of biological components related to
tumor drug resistance, and have the unique potential to
monitor the dynamic complexity of cancer. The biogenesis of
exosomes can capture complex extracellular and intracellular
molecules and can be used for comprehensive, multiparametric
diagnostic assays. The surface proteins of exosomes also contribute
to their immune capture and enrichment. Secondly, exosomes also
have the potential to serve as candidate biomarkers for predicting
and monitoring treatment effects in BC patients. Thirdly, the
property of exosomes to deliver functional substances to
diseased cells facilitates their use as therapeutic vehicles and as
potential targets or transporters for reversing drug resistance. As a
drug carrier, liposomes are a new type of targeted preparation that
has been clinically applied earlier and is the most mature.
Compared with liposomes, exosomes have a lower immune
clearance rate. In addition, exosomes have been proven to be
well tolerated and have no obvious side effects, opening up a
new way to treat BC. Currently, exosomes have good prospects in
treating BC drug resistance and treating drug resistance in other
tumors, but there are also some difficulties. First, although there
are many sources of exosomes, traditional extraction methods are
insufficient to identify specific exosomes (Akagi et al., 2015). In
this regard, it is necessary to find efficient, fast, and economical
methods to clarify the source of exosomes, and more clinical
studies are needed to verify the effectiveness and safety of
current strategies for exosomes to deal with drug resistance in
BC. At present, there are few clinical research reports on BC
exosomes. In recent years, people have paid more and more
attention to the function of exosome genes, but the relevant
mechanisms have not been fully elucidated. Since conventional

drugs are unavailable in many cases or patients develop an
immune response to tumor cells after surgery, molecular
targeted therapy may be an effective option for unstable cancer
cells. Molecular targeted therapy can achieve cure by inducing the
body’s own production of anti-exosome antibodies. However,
there is no complete definition yet because this technology has
some limitations: first, the method requires a long time and a lot of
effort and high cost; secondly, exosomes may enhance the side
effects of drugs and tumor cells of drug resistance. In addition, in
most cases, exosomes must be controlled by specific gene
expression products to function. However, currently, there are
no systematic reports on the expression and metastasis of exocrine
hormone receptor-binding proteins in tumors.

In summary, the study of exosomes is an active area of research
and additional studies in the future may yield valuable information
on their heterogeneity and biological functions and enhance the
ability to exploit their therapeutic and diagnostic potential, Provide
more ways and ideas for clinical treatment of BC drug resistance and
other research fields. I believe that soon, it will bring good news to
many cancer patients.
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