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Silver tungstate (α-Ag2WO4), silver molybdate (β-Ag2MoO4), and silver vanadate
(α-AgVO3) microcrystals have shown interesting antimicrobial properties.
However, their biocompatibility is not yet fully understood. Cytotoxicity and
the inflammatory response of silver-containing microcrystals were analyzed in
THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™
assay, flow cytometry, confocal microscopy, and ELISA. The present investigation
also evaluated redox signaling and the production of cytokines (TNFα, IL-1β, IL-6,
and IL-8) and matrix metalloproteinases (MMP-8 and -9). The results showed that
α-AgVO3 (3.9 μg/mL) did not affect cell viability (p > 0.05). α-Ag2WO4 (7.81 μg/mL),
β-Ag2MoO4 (15.62 μg/mL), and α-AgVO3 (15.62 μg/mL) slightly decreased cell
viability (p ≤ 0.003). All silver-containing microcrystals induced the production of
O2

− and this effect wasmitigated by ReactiveOxygen Species (ROS) scavenger and
N-acetylcysteine (NAC). TNFα, IL-6 and IL-1β were not detected in THP-1 cells,
while their production was either lower (p ≤ 0.0321) or similar to the control group
(p ≥ 0.1048) for macrophage-like cells. The production of IL-8 by both cellular
phenotypes was similar to the control group (p ≥ 0.3570). The release of MMP-8
was not detected in any condition in THP-1 cells. Although MMP-9 was released
by THP-1 cells exposed to α-AgVO3 (3.9 μg/mL), no significant difference was
found with control (p = 0.7). Regarding macrophage-like cells, the release of
MMP-8 and -9 decreased in the presence of all microcrystals (p ≤ 0.010). Overall,
the present work shows a promising biocompatibility profile of, α-Ag2WO4, β-
Ag2MoO4, and α-AgVO3 microcrystals.
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1 Introduction

In recent years, several studies have evaluated the antimicrobial properties of medical
materials functionalized with nanoparticles or antibiotics to improve their properties and
prevent infections (Tran andWebster, 2013; Castro et al., 2014; Zhu et al., 2014; Castro et al.,
2016a; Castro et al., 2016b; Hogan et al., 2019; Rangel et al., 2020; Verza et al., 2021). Silver
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has been used for centuries to treat infections and the use of silver
and silver-containing particles has increased in the past few years
(Politano et al., 2013). The literature shows that this metal has
antimicrobial properties against a variety of microorganisms, such
as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa
and Candida albicans (Kim et al., 2009; Panáček et al., 2009;
Martínez-Gutierrez et al., 2012; Dizaj et al., 2014; Shang et al.,
2019). However, a limited number of studies have investigated its
biocompatibility (Zhu et al., 2014; Rangel et al., 2020; Verza et al.,
2021).

According to the literature, depending on the size and
concentration of the particle, silver can decrease cell metabolism,
increase ROS production, cytokine release and even induce
programmed cell death (Foldbjerg et al., 2009; Liu et al., 2010;
Foldbjerg et al., 2011; Park et al., 2011; Martínez-Gutierrez et al.,
2012; Murphy et al., 2016). To optimize the antimicrobial properties
and improve the biocompatibility of silver, some investigators have
combined this metal with different metal oxides, such as vanadate
(VO3), tungstate (WO4) andmolybdate (MoO4) (Fabbro et al., 2016;
Foggi et al., 2017a; Foggi et al., 2017b; Pimentel et al., 2020; Pimentel
et al., 2022). Previous studies have shown that silver tungstate (α-
Ag2WO4), silver molybdate (β-Ag2MoO4) and silver vanadate (α-
AgVO3) showed no cytotoxic effect on normal oral keratinocytes
(NOK-si) and gingival fibroblasts (FGH) (Haro Chávez et al., 2018;
Assis et al., 2019; Pimentel et al., 2020). Furthermore, studies have
shown that α-Ag2WO4 and α-AgVO3 do not promote DNA
degradation (Haro Chávez et al., 2018; Pimentel et al., 2020).
However, despite these promising findings, the biocompatibility
of these materials could not be guaranteed until specific studies
addressing oxidative stress, inflammatory responses, and
extracellular matrix pathways were conducted.

The inflammatory response is a complex, multi-step process that
occurs during injury and infection (Turner et al., 2014; Tu et al.,
2022). Inflammation is part of the immune response and aims to
eliminate the offending agent and initiate the healing process leading
to tissue and functional restoration (Tu et al., 2022). The literature
reports that silver particles, especially nanoparticles, have unique
chemical and physical properties responsible for their antimicrobial
activity. It is already known that metallic particles can indirectly
induce the production of ROS due to the presence of metallic ions
(Haro Chávez et al., 2018; Assis et al., 2019). According to the
literature, ROS, including the superoxide anion (O2• -), activates the
NF-κB (nuclear factor kappa B) and MAPK (mitogen-activated
protein kinase) pathways, which are responsible for stimulating
IL-1β, TNFα and IL—6 genes (Ndengele et al., 2005; Martínez-
Gutierrez et al., 2012; Murphy et al., 2016; Yu et al., 2020; Canaparo
et al., 2021). Thus, the presence of ROS can activate the immune
response (Akter et al., 2018) and stimulate the immune system to
produce various cytokines and other inflammatory mediators (Parks
et al., 2004; Abdulkhaleq et al., 2018).

Given the potential application of α-Ag2WO4, β-Ag2MoO4 and
α-AgVO3 in dental materials and medical devices to prevent oral
infections, it is imperative to establish their ability to mitigate any
excessive inflammatory responses. Furthermore, the role of matrix
metalloproteinases (MMPs), which are responsible for tissue
remodeling and healing (Araújo et al., 2011), must be
understood. Previous studies have shown that MMPs are strongly
associated with periodontal disease, leading to the loss of

periodontal attachment and bone destruction (Franco et al., 2017;
Al-Majid et al., 2018). Among the 23 types of MMPs already
identified, the upregulation of MMP-8 and -9 has been related to
periodontitis and peri-implantitis (Franco et al., 2017; Checchi et al.,
2020) and it is associated with disease progression and bone loss
(Arakawa et al., 2012; Al-Majid et al., 2018). High levels of MMP-8
and -9 are found in periodontal tissues where the disease is
established, possibly indicating severity and progression of the
pathology (Franco et al., 2017; Al-Majid et al., 2018; Checchi
et al., 2020). Additionally, MMP production can contribute to
the failure of dental restorations (Hashimoto et al., 2016).
Therefore, therapies aimed at controlling MMP production, while
avoiding cytotoxic and genotoxic effects and reducing their levels,
have the potential to effectively prevent periodontal disease and
peri-implantitis.

In this context, the present study evaluated the cytotoxicity
profile, and the production of reactive oxygen species (ROS), pro-
inflammatory cytokines (IL-1β, TNFα, IL-6, and IL-8), and MMPs
(−8 and −9), by THP-1 cells (human monocytes) and THP-1
macrophage-like cells following exposure to silver-containing
microcrystals (α-Ag2WO4, β-Ag2MoO4 and α-AgVO3).

2 Materials and methods

2.1 Preparation of microcrystals

Silver tungstate, silver molybdate, and silver vanadate were
prepared as previously described (Fabbro et al., 2016; Foggi et al.,
2017a; Oliveira et al., 2017). Briefly, 1 × 10−3 mol of silver nitrate
(AgNO3; 99.98% purity; Cennabras, Guarulhos, SP, Brazil) was
diluted in 50 mL of distilled water. Simultaneously, 5 × 10−4 mol
of sodium tungstate dihydrate (Na2WO4•2H2O; 99.99% purity;
Sigma-Aldrich, St. Louis, MO, United States) or sodium
molybdate dihydrate (Na2MoO4•2H2O; 99.98% purity; Alfa
Aesar, Haverhill, MA, United States) or 1 × 10−3 mol of
ammonium metavanadate (NH4VO3; 99.99% purity; Sigma-
Aldrich, St. Louis, MI, United States) were diluted in 50 mL of
distilled water. Temperatures of 70°C for α-Ag2WO4 and β-
Ag2MoO4 and 10°C for α-AgVO3 were used. After reaching the
temperatures required, the solutions were mixed, instantly forming a
precipitate. These precipitates were washed with distilled water to a
pH of 7 and oven-dried at 60°C for 12 h. After synthesis, all
microcrystals were diluted in PBS to 2 mg/mL (stock solution),
and the samples were maintained in the dark and at room
temperature until further use.

2.2 Physicochemical assessment and silver
concentration

The structural characterization of the materials was performed
at long-range, a D/Max-2500 PC diffractometer (Rigaku, Japan)
with Cu Kα radiation (λ = 1.54056 Å) in the 2θ range of 10°–80°

at a scan rate of 0.01°min−1. To analyze the morphologies, a scanning
electron microscope with a field emission gun (FEG-SEM) FEI
Model Inspect F50, operating at 5 kV was used. Particle count
analysis was performed using ImageJ software, with a minimum
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count of 100 particles. The silver content present in the
microcrystals suffers oxidation during the synthesis process. To
calculate the amount of oxidized silver [Ag+] in the microcrystals
structure, first, the microcrystal concentration was converted from
µg/mL to µmol/mL using the following equation: silver content in
each microcrystal concentration = microcrystal concentration
(µmol/mL) × 10–6/Molecular Weight of the microcrystal. Then,
the amount of silver was calculated based on the number of mols
released by each microcrystal.

2.3 Microcrystals concentration against
Candida albicans

The experimental groups were defined based on the minimal
inhibitory concentration (MIC) and minimal fungicidal
concentration (MFC) from C. albicans ATCC 90028 performed
previously by Fabbro et al. (2016); Foggi et al. (2017a),; Pimentel
et al. (2020). Both α-Ag2WO4 and β-Ag2MoO4 presented the same
MIC andMFC values (7.81 μg/mL and 15.62 μg/mL, respectively for
each microcrystal). For α-AgVO3, the MIC and MFC values were
3.9 μg/mL and 15.62 μg/mL, respectively. Working solutions were
prepared immediately before use by diluting each microcrystal stock
solution in Dulbecco’s modified Eagle’s medium (DMEM).

2.4 In vitro THP-1 andmacrophages-like cell
culture and growth conditions

The cell line THP-1 (human monocytes from peripheral blood)
was obtained from the Rio de Janeiro Cell Bank (BCRJ; cell line code
0234) and routinely cultured at 37°C in a 5% CO2-humidified
environment in Roswell Park Memorial Institute medium
(RPMI-1640; Sigma-Aldrich, St. Louis, MO, United States),
supplemented with 2 mM of glutamine (LONZA, Basel,
Switzerland), 10 mM of HEPES (Sigma-Aldrich, St. Louis, MO,
United States), 1 mM of sodium pyruvate (Sigma-Aldrich, St.
Louis, MO, United States), 4.5 g/L of glucose (Synth, Diadema,
SP, Brazil), 1.5 g/L of sodium bicarbonate (Synth, Diadema, SP,
Brazil), 1% of antibiotic/antimycotic solution (Sigma-Aldrich, St.
Louis, MO, United States), 10% of fetal bovine serum (FBS; Gibco,
Grand Island, NY, United States), and 0.09% of β-mercaptoethanol
(Gibco, Grand Island, NY, United States). To obtain the
macrophages-like from THP-1 cells, before each experiment, the
THP-1 cells were seeded and stimulated with 100 ng/mL of phorbol
12-myristate 13-acetate (PMA; Sigma-Aldrich, St. Louis, MO,
United States) (Park et al., 2007), which was added to the cell
culture medium and maintained at 37°C in a 5% CO2-humidified
environment to achieved the macrophage phenotype. After 48 h, the
supernatant was discarded and the macrophages cells were washed
twice with PBS. Subsequently, a fresh medium was added and
maintained overnight before the assays.

2.5 Cell viability assay

Cell viability was performed after 24 h of contact with silver-
containing microcrystals, and it was assessed by alamarBlue™

assay. THP-1 and macrophages-like cells (1 × 106/well) were
seeded on 12-well plates at a final volume of 3 mL of RPMI
medium with 5% FBS and maintained at 37°C in 5% CO2. After
16 h, the cells were washed with PBS, and the cell culture medium
without FBS was added with silver-containing microcrystals (α-
Ag2WO4: 7.81 μg/mL; β-Ag2MoO4: 15.62 μg/mL; α-AgVO3:
3.9 μg/mL and 15.62 μg/mL). The plates were maintained at
37°C in 5% CO2, and after 4 h and 24 h an aliquot of 100 µL
of the supernatants from each well were collected and stored
at −20°C until the cytokine production assay. After 24 h of
contact with the microcrystals, the cells were incubated for 4 h
in a fresh cell culture medium containing 10% of alamarBlue™
reagent (Invitrogen, Carlsbad, CA, United States). Then, 200 µL
of each well was transferred in quadruplicate to a black 96-well
plate, and the fluorescence emission was measured (excitation:
544 nm; emission: 590 nm; Fluoroskan Ascent II, ThermoFisher
Scientific, Waltham, MA, United States). Standard cell culture
conditions were used as live cell control (CT) and cells incubated
with 10 µL of lysis buffer solution (LB; Triton-x 100 9%; Sigma-
Aldrich, St. Louis, MO, United States) were used as dead cell
control. This assay was performed in quadruplicate and on three
different occasions.

2.6 Intracellular ROS (O2
−) quantification

The production of superoxide (O2
−) induced by silver-

containing microcrystals on THP-1 and macrophages-like cells
was conducted with dihydroethidium reagent (DHE; D23107;
Invitrogen, Carlsbad, CA, United States), a selectively probe for
O2

−detection. Cells were seeded in a 96-well plate at 2 × 104 cells/well
in Krebs-Henseleit buffer (pH 7.0 ± 0.2). Then, 200 µL of DHE (1:
1000) was added to each well and the plates were maintained at 37°C
for 1 h. Further, the α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4

(15.62 μg/mL), and α-AgVO3 (3.9 μg/mL and 15.62 μg/mL)
silver-containing microcrystals were added to the corresponding
wells and the plates were maintained at 37°C for 1 h. Thereafter, the
cells were washed and, 100 µL of fresh Krebs-Henseleit buffer was
added to each well. The intracellular superoxide production was
measured by fluorescence emission in a fluorescence reader
(FLUOstar Omega, BMG Labtech, Cary, NC, United States; Ex.:
540-10nm; Em.: 620–10 nm). Cells under standard culture
conditions were used as negative O2

− control, hydrogen peroxide
(H2O2 [0.125 mM]; Sigma-Aldrich, St, Louis, MO, United States)
was used as positive O2

− control, and N-Acetyl-L-cysteine (NAC)
[0.01 mM] (Sigma-Aldrich, St. Louis, MO, United States) as a
scavenger. This assay was performed in quadruplicate and on
three different occasions.

2.7 Intracellular ROS (O2
−) detection by

confocal laser scanning microscopy (CLSM)

For the CLSM assay, THP-1 and macrophage-like cells were
seeded in a 48-well plate at 3 × 104 cells/well and incubated with
DHE probe for 1 h at 37°C in 5% CO2. Then, the α-Ag2WO4

(7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and α-AgVO3 (3.9 μg/
mL and 15.62 μg/mL) microcrystals were added to the
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corresponding wells and the plate were incubated for another hour
at 37°C in 5% CO2. The probe excess was removed and the CLSM
images were obtained with an LSM 800 microscope (Carl Zeiss,
Oberkochen, Germany) using a 561-nm laser, detection of
brightfield and fluorescence spectra up to 700 nm,
with ×20 objective. Cells under standard culture conditions were
used as negative O2

− control, hydrogen peroxide (H2O2 [0.125 mM];
Sigma-Aldrich, St. Louis, MO, United States) as positive O2

− control,
and NAC [0.01 mM] (Sigma-Aldrich, St. Louis, MO, United States)
as scavenger control.

2.8 Production of pro-inflammatory
cytokines

The IL-1β, TNFα, IL-6, and IL-8 cytokines production was
assessed after THP-1 and macrophage-like cells were exposed to
α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and α-
AgVO3 (3.9 μg/mL and 15.62 μg/mL) microcrystals, at 4 and
24 h of exposure. The samples were obtained as described in
section 2.5 and maintained at—20°C until the analysis. The
Human Inflammatory Cytokine Kit (Cat. No. 551811; BD
Biosciences, San Jose, CA, United States) was used according
to the manufacturer’s instructions. Briefly, while the samples
thawed at room temperature, the lyophilized Human
Inflammatory Cytokines Standards were reconstituted with
2 mL of Assay diluent, and then a serial dilution was
performed from 1:2 until 1:256. The negative control (0 pg/
mL) was prepared only with Assay Diluent. Next, a mix of
capture beads was prepared and 50 µL was added in each tube
(standard curve and samples). Then, 50 µL of standard cytokines
or samples were added to each corresponding tube, and finally
50 µL of Human Inflammatory PE Detection Reagent were added
to all tubes. After 3 h of dark room incubation, 1 mL of Wash
Buffer was added to all tubes and centrifuged at 200 g for 5 min.
The supernatants were carefully discarded, and the pellets were
resuspended in 300 µL of Wash Buffer. The samples were
analyzed using a BD FACSAria™ Fusion Flow Cytometer (BD
Biosciences, San Jose, CA, United States), and all data obtained
were evaluated with the FCAP Array software v3 (BD
Biosciences, San Jose, CA, United States).

2.9 MMPs signaling

To evaluate the production of MMP-8 and -9, THP-1 and
macrophage-like cells were seeded in 25-cm2

flasks at a
concentration of 5 × 105 cells/flask in RPMI culture medium
containing 5% FBS and 5% CO2 at 37°C. After 16 h, the cells
were washed with PBS, and fresh culture medium, without FBS,
containing α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL),
and α-AgVO3 (3.9 μg/mL and 15.62 μg/mL) microcrystals were
added to the correspondent treatment flask. The cells were
maintained at 37°C in 5% CO2 for 24 h. Negative control cells
(CT) were maintained under standard cell culture conditions, and
the positive control of MMP production was assessed with cells
incubated with 1 μg/mL of lipopolysaccharide from Escherichia coli
(LPS; Sigma-Aldrich, St. Louis, MO, United States). Subsequently,

the supernatants were collected and stored at −20°C until analysis.
This assay was performed in duplicate on two independent
occasions. Before the ELISA assay, the amount of total protein in
each sample was measured with the Bradford protein assay
(Bradford, 1976) (Sigma-Aldrich, St Louis, MO, United States)
using bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO,
United States) as the standard. Spectrophotometric measurements
were performed at 595 nm (EZ Read 400 Microplate Reader;
BioChrom, Cambourne, CAM, United Kingdom). The MMPs
(−8 and −9) production was detected with the MMP-8 Human
ELISA Kit (ab100609, Abcam, Cambridge, CBE, United Kingdom)
and MMP-9 SimpleStep ELISA Kit (ab246539; Abcam, Cambridge,
CBE, United Kingdom), according to the manufacturer’s
instructions. The OD was immediately read at 600 nm using a
microplate reader (EZ Read 400 Microplate Reader; BioChrom,
Cambourne, CAM, United Kingdom). The final data were
normalized by the amount of protein per sample. This assay was
performed in triplicate in a single occasion.

2.10 Statistical analysis

All data obtained were analyzed for normality (Shapiro-Wilk’s
test) and homoscedasticity (Levene test). The statistical analysis of cell
viability and O2

− production was performed with one-way ANOVA,
followed by Tukey’s post hoc on the IBM SPSS Statistics software
(version 23). For cytokine and MMP production, a 95% confidence
interval (CI) was defined to compare the results among groups. A
significance level of 5% was adopted.

3 Results

3.1 Microcrystals’ characterization and silver
concentration

The XRD and FEG-SEM analyses are shown in Figure 1. For the
α-Ag2WO4 sample, the orthorhombic phase was obtained, with a
Pn2n space group (PDF 34–61) (Figure 1A). This phase has a
complex structure, formed by several clusters of [AgOx] (x = 2,
4, 6, and 7) and distorted octahedral clusters of [WO6] (Assis et al.,
2020). Its morphology is composed of hexagonal micro rods
(Figure 1B) of average length and width of 0.95 ± 0.35 and
0.15 ± 0.06 µm, respectively. The β-Ag2MoO4 phase was also
obtained, with cubic structure and Fd-3m space group (PDF
8–473) (Figure 1C). This structure has a lower complexity in
terms of constituent clusters, being formed by distorted
octahedral and tetrahedral clusters of [AgO6] and [MoO4],
respectively (Foggi et al., 2020). Its morphology does not have a
polyhedral microstructure, known as bean-like morphology
(Figure 1D). These particles have a high degree of aggregation,
coalescing in many cases. The average length and width obtained for
this sample was 3.80 ± 0.80 and 1.40 ± 0.31 µm, respectively. For α-
AgVO3, it is observed that the pure phase is obtained, without any
additional peak, referring to the monoclinic phase with C2/c space
group (PDF 89–4396) (Figure 1E). This phase is formed by distorted
octahedral clusters of [AgO6] and distorted clusters of [VO4] (Silva
et al., 2019). Its morphology is homogeneous, with the shape of 4-
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sided micro rods (Figure 1F). Its average length and width are 9.17 ±
4.98 and 0.52 ± 0.18 µm, respectively, showing high sample size
dispersibility. The results obtained for the three samples are in
agreement with those published in previous works (Oliveira et al.,
2017; Assis et al., 2021; Teodoro et al., 2022).

To calculate the total of silver ions [Ag+] concentration found in
the microcrystals, the target concentration of each one was
converted from µg/mL to µmol/mL, as following:

(7.81 μg/mL)/(463.57 g/mol) of α-Ag2WO4 = 0.0168 μmol/mL
of α-Ag2WO4;

(15.62 μg/mL)/(375.68 g/mol) of β-Ag2MoO4 = 0.0416 μmol/
mL of β-Ag2MoO4;

(3.9 μg/mL)/(206.81 g/mol) of α-AgVO3 = 0.0188 μmol/mL of
α-AgVO3;

(15.62 μg/mL)/(206.81 g/mol) of α-AgVO3 = 0.0755 μmol/mL
of α-AgVO3.

Since, according to the chemical definition, 1 mol of α-Ag2WO4

and β-Ag2MoO4 releases 2 mol of Ag+ each, the molar concentration
of Ag+ in these two microcrystals is twice the concentration of α-
Ag2WO4 and β-Ag2MoO4, 0.0168 μmol/mL and 0.0416 μmol/mL,
respectively. Thus, the total [Ag+] was 0.0336 μmol/mL or
0.0156 μg/mL for α-Ag2WO4 and 0.0832 μmol/mL or 0.0313 μg/
mL for β-Ag2MoO4. In the same way, 1 mol of α-AgVO3 releases
1 mol of Ag+, so the total [Ag+] was 0.0188 μmol/mL or 0.0039 μg/

mL for α-AgVO3 at 3.9 μg/mL, and 0.0755 μmol/mL or 0.0156 μg/
mL for α-AgVO3 at 15.62 μg/mL.

3.2 Cell viability

The cell viability was evaluated by alamarBlue™ assay (Figure 2).
First, when THP-1 cells were maintained in contact with α-Ag2WO4

(7.81 μg/mL) and α-AgVO3 (3.9 μg/mL), cell viability was
statistically similar to the control group (CT) (p > 0.05)
(Figure 2A). However, the contact of THP-1 cells with β-
Ag2MoO4 (15.62 μg/mL) and α-AgVO3 (15.62 μg/mL) promoted
a decrease in cell viability as compared to CT (p = 0.0003 and p =
0.017, respectively) (Figure 2A). Similarly, the cell viability of
macrophage-like cells was decreased after exposure to α-Ag2WO4

(7.81 μg/mL) and α-AgVO3 (15.62 μg/mL), when compared to CT
(p = 0.0009 and p < 0.0001, respectively) (Figure 2B). The contact of
α-AgVO3 (3.9 μg/mL) and β-Ag2MoO4 (15.62 μg/mL) microcrystals
with macrophage-like cells promoted cell viability similar to CT (p =
0.05 and p = 0.991, respectively) (Figure 2B).

Despite the observed changes in cell viability, based on the
cytotoxicity classification proposed by Lonnroth and Dahl (2001),
Lönnroth and Dahl (2003) and Sletten and Dahl (1999), no
cytotoxicity was noted when THP-1 cells were treated with α-

FIGURE 1
X-ray diffraction (XDR) patterns and FE-SEM images. (A,B) α-Ag2WO4; (C,D) β-Ag2MoO4; (E,F) α-AgVO3.
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AgVO3 (3.9 μg/mL; reduction of 8.31% in cell viability), whereas α-
AgVO3 (15.62 μg/mL), α-Ag2WO4 (7.81 μg/mL), and β-Ag2MoO4

(15.62 μg/mL) were slightly cytotoxic (reduction of 26.04%, 22.7%,
and 30.71% in cell viability, respectively). For macrophage-like cells,
α-AgVO3 (3.9 μg/mL), α-Ag2WO4 (7.81 μg/mL), and β-Ag2MoO4

(15.62 μg/mL) were non-cytotoxic (reduction of 8.27%, 9.42%,
and −2.84% in cell viability, respectively), whereas α-AgVO3

(15.62 μg/mL) presented slight cytotoxicity (reduction of 29.64%
in cell viability).

3.3 Intracellular O2
− quantification and

imaging

The generation of O2
− by the cells after the contact with silver-

containing microcrystals was evaluated with fluorescence emission

using a DHE probe. The THP-1 cells exposed to silver-containing
microcrystals increased the production of O2

−. As expected, when
cells were incubated with microcrystals and the NAC scavenger was
added (+NAC), there was a drop in the O2

− production (Figure 3A).

FIGURE 2
Mean values of cell viability (%) of (A) THP-1 cells and (B)
macrophage-like cells after contact with α-Ag2WO4 (7.81 µg/mL),
β-Ag2MoO4 (15.62 µg/mL), and α-AgVO3 (3.9 µg/mL and 15.62 µg/
mL) microcrystals for 24 hours. Error bars: standard deviation.
CT: live cell control; LB: lysis buffer, dead cell control. Dotted line: 70%
of cell viability. Groups with asterisks are statistically different from
control. *: p = 0.017; **: p < 0.009; ***: p < 0.0001. α= .05.

FIGURE 3
Mean values of fluorescence intensity of THP-1 cells (A) and
macrophage-like cells (B) using DHE probe after contact with NAC
[0.01 mM], H2O2 [0.125 mM], and α-Ag2WO4 (7.81 µg/mL), β
Ag2MoO4 (15.62 µg/mL), and α-AgVO3 (3.9 µg/mL and
15.62 µg/mL) microcrystals (alone or with NAC). Error bars: standard
deviation. NAC: N-Acetyl-L-cysteine; H2O2: hydrogen peroxide.
Groups with asterisks are statistically different from control *: p =
0.026; **: p = 0.005; ***: p = 0.001; ****: p < 0.0001. α= .05.
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The highest decrease regarding O2
− production was observed when

THP-1 cells were exposed to α-Ag2WO4 (7.81 μg/mL) +NAC and α-
AgVO3 (3.9 μg/mL) + NAC, but yet they were similar to control
group (CT; p > 0.170) (Figure 3A).

Macrophage-like cells showed lower production of O2
−

compared to THP-1 cells, which was similar to control group
(p > 0.05) (Figure 3B). Nevertheless, similar to THP-1, there was
a decrease in the O2

− production in the presence of NAC when
macrophage-like cells were exposed to all microcrystals, particularly
to α-Ag2WO4 (7.81 μg/mL; p < 0.0001), α-AgVO3 (3.9 μg/mL;
p < 0.0001) and α-AgVO3 (15.62 μg/mL; p < 0.001) (Figure 3B).

The CLSM images confirmed the data obtained with the
intracellular fluorescence emission quantification. The THP-1
(Figure 4) and macrophage-like cells (Figure 5) treated with
H2O2 showed higher fluorescence than control (CT) (Figures 4A,

B; Figures 5A, B, respectively). The treatment withmicrocrystals also
presented high fluorescence, which was decreased when
microcrystals were associated with NAC (Figures 4C–J;
Figures 5C–J).

3.4 Production of pro-inflammatory
cytokines

The flow cytometry analysis showed that THP-1 cells produced only
IL-8 at both 4 and 24 h (Figures 6A, B, respectively). For this cell line, only
α-Ag2WO4 (7.81 μg/mL)was able to increase IL-8 production after 4 h of
contact (p = 0.0136), when compared to the control group (CT).
However, after 24 h of contact, there were no significant differences
(p ≥ 0.7161) in the production of IL-8 between all experimental groups
and the control group. The other cytokines evaluated (IL-1β, TNFα, and
IL-6)were not detected in this cell line at any conditions (data not shown).

FIGURE 4
CLSM of THP-1 cells. (A) standard culture conditions; (B)
H2O2 [0.125 mM]; C and D: α Ag2WO4 (7.81 µg/mL) without NAC (C)
and with NAC [0.01 mM] (D); E and F: β-Ag2MoO4 (15.62 µg/mL)
without NAC (E) and with NAC [0.01 mM] (F); G and H: α-AgVO3
(3.9 µg/mL) without NAC (G) and with NAC [0.01 mM] (H); I and J: α-
AgVO3 (15.62 µg/mL) without NAC (I) and with NAC [0.01 mM] (J).
Red fluorescence: O2—production.

FIGURE 5
CLSM of macrophage-like cells. (A) standard culture conditions;
(B) H2O2 [0.125 mM]; C and D: α-Ag2WO4 (7.81 µg/mL) without NAC
(C) and with NAC [0.01 mM] (D); E and F: β-Ag2MoO4 (15.62 µg/mL)
without NAC (E) and with NAC [0.01 mM] (F); G and H: α-AgVO3
(3.9 µg/mL) without NAC (G) and with NAC [0.01 mM] (H); I and J: α-
AgVO3 (15.62 µg/mL) without NAC (I) and with NAC [0.01 mM] (J).
Red fluorescence: O2—production.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Pimentel et al. 10.3389/fbioe.2023.1215438

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1215438


For macrophage-like cells, all cytokines were detected (Figure 7).
The production of TNFα, IL-6 and IL-1βwas lower than CT after 4 h
of contact with all silver-containing microcrystals (p ≤ 0.0321;
Figures 7A, C, E). In contrast, when compared to control, no
significant changes in the production of IL-8 were observed after
4 h of exposure to all experimental microcrystal (p ≥ 0.1789;
Figure 7G). After 24 h of exposure to α-AgVO3 (15.62 μg/mL),
macrophage-like cells showed a reduction in TNFα production
(p = 0.0035) (Figure 7B). At this time, no significant changes in
IL-6 production were observed, regardless the experimental
microcrystals (p ≥ 0.1549; Figure 7D). Similar results were
observed for IL-1β and IL-8, except for α-AgVO3 (15.62 μg/mL)
and β-Ag2MoO4 (15.62 μg/mL), where there was an increased

production of IL-1β (p = 0.0006) and IL-8 (p = 0.0039),
respectively, after 24 h of exposure (Figures 7F, H).

3.5 Production of MMP-8 and -9

The release ofMMPs by THP-1 andmacrophage-like cells, after 24 h
of exposure to silver-containing microcrystals, was measured by the
ELISA. It was not possible to detect the production of MMP-8 by THP-1
cells, even under standard cell culture conditions or in the presence of LPS
(data not shown). The release of MMP-9 was not detected when these

FIGURE 6
Mean values of pg/mL of IL-8 produced by THP-1 cells after
4 hours (A) and 24 hours (B) of contact with α-Ag2WO4 (7.81 µg/mL),
β-Ag2MoO4 (15.62 µg/mL), and α-AgVO3 (3.9 µg/mL and 15.62 µg/
mL) microcrystals. Error bars: standard deviation; CT: standard
culture control; LPS: lipopolysaccharide, control. Groups with
asterisks are statistically different from control. *: p < 0.0463; ***: p <
0.0001. α= .05.

FIGURE 7
Mean values of pg/mL of IL-1β, TNFα, IL-6, and IL-8 produced by
macrophage-like cells after 4 hours (A,C,E,G) and 24 hours (B,D,F,H)
of contact α-Ag2WO4 (7.81 µg/mL), β-Ag2MoO4 (15.62 µg/mL), and
α-AgVO3 (3.9 µg/mL and 15.62 µg/mL) microcrystals. Error bars:
standard deviation; CT: standard culture control; LPS:
lipopolysaccharide, control. Groups with asterisks are statistically
different from control. *: p < 0.0321; **: p = 0.0035; ***: p <
0.0039. α= .05.
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cells were stimulated with α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4

(15.62 μg/mL), and α-AgVO3 (15.62 μg/mL) (Figure 8A). The small
amount of MMP-9 released after 24 h of contact with α-AgVO3

(3.9 μg/mL)was not statistically different from the control group (p=0.7).
When evaluating the release of MMP-8 and -9 by macrophage-like

cells, it was noted that all microcrystals promoted a decrease in the
amount of MMP-8 released (p < 0.0001). Also, MMP-8 was not
detected when these cells were maintained in contact with α-AgVO3

(15.62 μg/mL) for 24 h (Figure 8B). The exposure of macrophage-like
cells to α-Ag2WO4 (7.81 μg/mL), α-AgVO3 (3.9 μg/mL), and α-AgVO3

(15.62 μg/mL) resulted in MMP-9 release statistically similar to control
group (p ≥ 0.216; Figure 8C). Only macrophage-like cells exposed to β-

Ag2MoO4 (15.62 μg/mL) for 24 h showed a decrease in MMP-9
released (p = 0.010).

In Figure 9 we have a summary of the main findings of this work.

4 Discussion

The use of silver as an antimicrobial agent has been extensively
studied in recent years. At the nanoscale, silver has demonstrated
excellent antimicrobial properties by inducing the production of
reactive oxygen species (ROS) (Carlson et al., 2008; Liu et al., 2010;
Park et al., 2011; Akter et al., 2018; Canaparo et al., 2021; Liu et al.,
2021). However, the generation of ROS can also be responsible for
cytotoxic effects on mammalian cells (Carlson et al., 2008; Foldbjerg
et al., 2009; Foldbjerg et al., 2011; Nishanth et al., 2011; Canaparo
et al., 2021). Furthermore, silver concentration has been reported as
a toxic factor within the range of 10–100 μg/mL (Chernousova and
Epple, 2013). To enhance the antimicrobial properties of silver and
improve its biocompatibility, researchers have combined silver with
different metal oxides, such as vanadate (VO3), tungstate (WO4),
andmolybdate (MoO4). The compounds α-AgVO3, α-Ag2WO4, and
β-Ag2MoO4 have shown antimicrobial activity against C. albicans
(Fabbro et al., 2016; Foggi et al., 2017a; Foggi et al., 2017b; Assis
et al., 2019; Pimentel et al., 2020; Pimentel et al., 2022), methicillin-
resistant S. aureus (MRSA) (Longo et al., 2014; Oliveira et al., 2017;
Assis et al., 2018; Foggi et al., 2020) and E. coli (Canaparo et al.,
2021). They have been effective in reducing 3 log10 (CFU/mL) to
6 log10 (CFU/mL) (Longo et al., 2014; Fabbro et al., 2016; Foggi et al.,
2017a; Foggi et al., 2017b; Oliveira et al., 2017; Pimentel et al., 2020;
Pimentel et al., 2022), without causing damage to both human
keratinocytes and fibroblasts cells (Haro Chávez et al., 2018; Assis
et al., 2019; Pimentel et al., 2020). The results reported here indicate
a slight decrease in cell viability after 24 h of contact with α- α-
Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and AgVO3

(3.9 μg/mL and 15.62 μg/mL) microcrystals. This decrease in
viability may be partly attributed to the silver content and its
ability to generate reactive oxygen species. Previous theoretical
studies have suggested that these silver-containing microcrystals
are formed by complex clusters connected by weak interactions and,
when in an aqueous environment, these clusters can break water
molecules into hydroxyl radicals and protons (OH* and H•).
Simultaneously, there is an electron transfer to oxygen molecules
(O2), resulting in the formation of Oʹ2, which interacts with the
proton (H•) to form the radical HO2* (Fabbro et al., 2016; Foggi
et al., 2017a; Oliveira et al., 2017).

The calculated silver content in the microcrystals used in this
study was approximately 0.0156 μg/mL for α-Ag2WO4 (at 7.81 μg/
mL), 0.0313 μg/mL for β-Ag2MoO4 (at 15.62 μg/mL), 0.0039 μg/mL
for α-AgVO3 (at 3.9 μg/mL), and 0.0156 μg/mL for α-AgVO3 (at
15.62 μg/mL). At these concentrations, the silver-containing
microcrystals were considered either non-cytotoxic or slightly
cytotoxic. Such concentrations are significantly lower when
compared to those found in silver nanoparticles described in
previous studies (Martínez-Gutierrez et al., 2012; Martinez-
Gutierrez et al., 2013).

It is already known that metal particles can indirectly induce
ROS production due to the presence of metal ions (Haro Chávez
et al., 2018; Assis et al., 2019). This oxidative stress can be

FIGURE 8
Mean values of pg/µg of MMP-9 released by THP-1 cells (A) and
MMP-8 (B) and -9 (C) released by macrophage-like cells after
24 hours of contact with α-Ag2WO4 (7.81 µg/mL), β-Ag2MoO4

(15.62 µg/mL), and α-AgVO3 (3.9 µg/mL and 15.62 µg/mL)
microcrystals. CT: standard culture conditions; LPS:
lipopolysaccharide, positive control; ND: non-detected. Groups with
asterisks are statistically different from control. *: p = 0.010; ***: p <
0.0001. α= .05.
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responsible for the cytotoxicity of metal particles, considering that
an increase in ROS generation can lead to cell damage and even cell
death (Hashimoto et al., 2016; Canaparo et al., 2021; Liu et al., 2021).
In this work, silver-containing microcrystals induced the production
of superoxide (O2

−) by THP-1 and macrophage-like cells.
Interestingly, the production of superoxide by THP-1 cells when
incubated with the silver-containing microcrystals was higher than
that of H2O2 control. This is probably due to rapidly degradation of
H2O2, limiting superoxide production by the cells. In contrast, the
silver-containing microcrystals may promote a more sustained
superoxide production. This is because, based on their
mechanism of action, when in an aqueous environment, these
silver-containing microcrystals degrade into complex clusters that
interact with water and oxygen molecules, leading to the
decomposition of these molecules into ROS (Foggi et al., 2017a;
Foggi et al., 2017b; Oliveira et al., 2017; Foggi et al., 2020). When the
NAC ROS scavenger was added to the cells, together with the
microcrystals, the O2

− signaling was reversed. This was already
expected because NAC is a ROS scavenger. In a previous study,
Brzicova et al. (2019) also observed an increase in superoxide
production after THP-1 cells were maintained in contact with
silver nanoparticles for 24 h. However, no significant differences
were observed among concentrations and times of exposition
(Brzicova et al., 2019).

According to the literature, ROS, including anion superoxide
(O2

• -), activate the NF-κB (nuclear factor kappa B) and MAPK
(mitogen-activated protein kinase) pathways, which stimulates
the expression of genes responsible for IL-1β, TNFα and IL-6
production (Ndengele et al., 2005; Martínez-Gutierrez et al.,
2012; Murphy et al., 2016; Yu et al., 2020; Canaparo et al.,
2021). This may occur by oxidative stress, which is induced
when the antioxidant ability of the cells is overcome by ROS

generation (Park et al., 2011; Yu et al., 2020; Canaparo et al.,
2021). In the present study, despite the high production of O2

− by
THP-1 cells, there was no detection of IL-1β, TNFα, and IL-6.
Only IL-8 was detected, but it was not significantly different from
the control group, except for THP-1 cells in contact with α-
Ag2WO4 (7.81 μg/mL) for 4h, where an increase in IL-8
production was observed. Furthermore, the exposure of
macrophages-like to silver-containing microcrystals resulted in
a decreased or similar production of the IL-1β, TNFα, IL-6, and
IL-8 pro-inflammatory cytokines after 4 h. This decrease or
similar production was maintained after 24 h for all cytokines
evaluated, except for the increased production of IL-1β and IL-8,
when macrophage-like cells were exposed to α-AgVO3 (15.62 μg/
mL) and β-Ag2MoO4 (15.62 μg/mL), respectively. Previous
findings have reported macrophage inflammatory responses
caused by silver nanoparticles (Martínez-Gutierrez et al., 2012;
Murphy et al., 2016). This may be attributed to the higher amount
of ROS generated by silver nanoparticles due to their relatively
large surface area (Park et al., 2011) compared to microcrystals.
Another explanation is that nanoparticles can penetrate cell
membranes and form clusters inside cell cytoplasm, inducing
the inflammatory process (Martínez-Gutierrez et al., 2012),
which does not occur with microcrystals due to their larger
size. The findings reported here showed that even with the
high production of O2

−, this was easily reversed in the
presence of a ROS scavenger, indicating that O2

− production
by these particles may be self-limited and, consequently, less
capable of inducing significant inflammatory responses. Thus,
the low cytotoxicity of α-Ag2WO4 (7.81 μg/mL) and α-AgVO3

(3.9 μg/mL) could be explained by the reversible REDOX
signaling by O2

−, which is considered an important property
of both microcrystals. Additionally, literature reports suggest

FIGURE 9
Schematic representation of ROS formation and its action on THP-1 andmacrophage like cells, stimulating or inhibiting the production of ROS, pro-
inflammatory cytokines, and MMPs as evaluated in this study. ND: non-detected; CT: control. α-Ag2WO4: blue arrows; β-Ag2MoO4: purple arrows;
α-AgVO3: green arrows.
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that, among the ROS produced by cells, the O2
− pathway is less

harmful (Schieber and Chandel, 2014).
The present investigation also reveled that when THP-1 and

macrophage-like cells were stimulated with silver-containing
microcrystals, the production of MMP-8 and MMP-9
decreased. Considering that TNFα is a physiological inducer
of MMP-9 (Heidinger et al., 2006), the reduced amount of
TNFα produced in the presence of silver-containing
microcrystals may explain the decrease in MMP-9 production
by the cells. Previous studies have demonstrated that MMPs play
a role in pathological and healing processes in the oral
environment, particularly in relation to periodontal disease,
leading to the loss of periodontal attachment and bone
destruction (Franco et al., 2017; Al-Majid et al., 2018; Zhang
et al., 2018). Among the 23 types of MMPs identified so far,
upregulation of MMP-8 and MMP-9 has been associated with
periodontitis and peri-implantitis (Araújo et al., 2011; Franco
et al., 2017; Al-Majid et al., 2018; Checchi et al., 2020), and other
studies have reported that these two MMPs are linked to disease
progression and bone loss (Arakawa et al., 2012; Al-Majid et al.,
2018). Elevated levels of MMP-8 and MMP-9 are found in
periodontal tissues where the disease is established, potentially
indicating the severity and progression of the pathology (Franco
et al., 2017; Al-Majid et al., 2018; Checchi et al., 2020). Moreover,
MMP-8 has been implicated in bone loss in patients with severe
peri-implantitis (Arakawa et al., 2012; Al-Majid et al., 2018).

Hashimoto et al. (2016) evaluated cytotoxicity, genotoxicity, and
MMP production of gold and platinum nanoparticles on human
cells were evaluated, along with their effect on dental resin properties
(Hashimoto et al., 2016). The authors demonstrated that gold
nanoparticles inhibited MMP production without causing cell
damage, which is an interesting characteristic considering that
MMP production can contribute to the failure of dental
restorations (Hashimoto et al., 2016). Therefore, therapies that
can reduce the production of MMP-8 and MMP-9 may be
effective in preventing peri-implant disease.

The favorable biological responses of the α-Ag2WO4, β-
Ag2MoO4, and α-AgVO3 microcrystals in the present
investigation, along with studies highlighting their antimicrobial
properties, suggest that these microcrystals are promising candidates
as coating materials for dental and medical devices.

5 Conclusion

In conclusion, α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/
mL), and α-AgVO3 (3.9 μg/mL and 15.62 μg/mL) demonstrated low
cytotoxicity to THP-1 and macrophage-like cells over a sufficiently
long period to measure potential damage. Additionally, these
microcrystals increased the production of O2

− and modulated
cytokines and MMP production in a cell phenotype-dependent
manner. The data presented here indicated that α-Ag2WO4

(7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and α-AgVO3 (3.9 μg/
mL and 15.62 μg/mL) are capable of modulating immune response

by either increasing or decreasing the production of key pro-
inflammatory cytokines. Thus, the potential future applications of
these microcrystals in the dental and medical fields appear
promising and warrant further evaluation.
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