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The unique structure and composition of articular cartilage is critical for its
physiological function. However, this architecture may get disrupted by
degeneration or trauma. Due to the low intrinsic regeneration properties of the
tissue, the healing response is generally poor. Low-grade inflammation in patients
with osteoarthritis advances cartilage degradation, resulting in pain, immobility,
and reduced quality of life. Generating neocartilage using advanced tissue
engineering approaches may address these limitations. The biocompatible
microenvironment that is suitable for cartilage regeneration may not only rely
on cells and scaffolds, but also on the spatial and temporal features of
biomechanics. Cell-autonomous biological clocks that generate circadian
rhythms in chondrocytes are generally accepted to be indispensable for
normal cartilage homeostasis. While the molecular details of the circadian
clockwork are increasingly well understood at the cellular level, the
mechanisms that enable clock entrainment by biomechanical signals, which
are highly relevant in cartilage, are still largely unknown. This narrative review
outlines the role of the biomechanical microenvironment to advance cartilage
tissue engineering via entraining the molecular circadian clockwork, and
highlights how application of this concept may enhance the development and
successful translation of biomechanically relevant tissue engineering
interventions.
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1 Introduction

The Global Burden of Disease 2019 study has shown that over 1.5 billion people live with
musculoskeletal conditions, including osteoarthritis (OA), rheumatoid arthritis (RA), low
back pain, neck pain, fractures, and other injuries (Cieza et al., 2021). The global burden of
OA poses a considerable impact on individuals, communities, and healthcare systems, and
these are projected to increase further in the coming decades (Foster et al., 2023). There is no
curative treatment available for patients with OA. Only moderate benefits have been
observed following hyaluronan, glucocorticoid and platelet rich plasma intra-articular
therapies for pain and function in knee OA (Rodriguez-Garcia et al., 2021). Exercise
therapy has been identified as the best treatment for OA pain, followed by nonsteroidal
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anti-inflammatory drugs (NSAIDs) and opioids (Thorlund et al.,
2022). Other effective therapies include the monoclonal antibody
tanezumab, the antidepressant duloxetine, autologous
microfragmented adipose tissue, intra-articular ketorolac
injection, and subchondral or intra-articular mesenchymal stem
cell (MSC) injection (Foster et al., 2023). MSCs are ideal candidates
to repair damaged issues due to their trilineage differentiation
potential, trophic effects, and immunomodulatory properties
(Wei and Bao, 2022).

Pain in OA mainly occurs during the day and during physical
activities, but patients may also experience resting pain at night (Fu
et al., 2018), indicating that pain in OA may have a diurnal pattern.
Pain patterns are different in RA compared to OA: RA patients
usually exhibit a peak onset of pain in the morning, whereas the pain
from OA worsens during the day (Knezevic et al., 2023). Such
rhythmicity in pain may have important implications for patients,
both in terms of planning their daily activities, and in developing
more efficient chronotherapeutic programs (Bellamy et al., 2002).
The circadian clock could also be exploited to increase the efficacy of
MSC-based chondro-regenerative approaches (Vago et al., 2022).
Although research in this area has shed some light on clock-
controlled pathways in chondrocytes, we are far from using
chronotherapy in OA patients with clinically relevant outcomes.

In this narrative review, we highlight current challenges in
chondro-regenerative applications, and demonstrate that the
biomechanical microenvironment could be exploited to fine-tune
existing approaches via the modulation of the circadian clock.

2 Cartilage tissue engineering

Almost three decades ago, the emerging field of tissue
engineering held the prospect of repairing injured tissues or
organs (Huey et al., 2012). The original premise was that tissues
with comparable qualities to those in the human body could be
generated in vitro and implanted to the site of damage to restore
function (Langer and Vacanti, 1993). Cartilage appeared as an ideal
candidate, as it is avascular and is characterized by only a few cell
types (Huey et al., 2012). However, regenerative tissue engineering
has been more successfully applied in other tissues such as bone
(Elgali et al., 2017). This is at least partially attributable to the recent
understanding that there is a significant level of heterogeneity
among chondrocyte populations (Wang et al., 2021).

Cartilage tissue engineering mostly relies on a combination of
scaffolds (Roffi et al., 2017; Uzieliene et al., 2021) or hydrogels
(Naranjo-Alcazar et al., 2023; Uzieliene et al., 2023), cells (Huang
et al., 2016), and stimulatory factors (Kwon et al., 2016) including
mechanical stimulation (Juhasz et al., 2014; Ouyang et al., 2019), as
well as autologous or allogeneic cells. Universal donor cells that are
invisible to the immune system are also on the horizon (Lanza et al.,
2019). The properties of the scaffold, including structure, surface
characteristics, and mechanical properties, are also important
(Cengiz et al., 2018). The regenerative attributes of cells depend
on ex vivo culturing parameters and external factors such as
mechanical stimulation (Ouyang et al., 2019). Endogenous stem
cells in an appropriate scaffold secrete bioactive molecules that
provide a suitable microenvironment for controlling regeneration
(Caplan, 2007).

Generally, ex vivo cultured cells are seeded onto scaffolds, and a
bioreactor is used before implantation (Cengiz et al., 2018).
However, seeding cultured cells might not even be necessary.
Novel approaches are being developed to bypass the complicated
ex vivo process. The patient’s own regenerating capacity can be
exploited by mobilizing endogenous stem cells or tissue-specific
progenitor cells. Implanted scaffolds may provide a suitable
microenvironment to aid the recruitment of host cells that can in
turn regenerate functional hyaline cartilage (Ko et al., 2013).

Stem cells are not the exclusive cell source for regenerative
medicine. Most tissue engineering approaches rely on the
assumption that stem cells contribute as building blocks to tissue
regeneration (Altamirano et al., 2020). However, stem cells are being
increasingly recognized to coordinate healing via their
immunomodulatory capacity (Altamirano et al., 2020). Adipose
or bone marrow-derived stem cells, or cells isolated from the
target tissue are commonly used sources (Cengiz et al., 2018).
Cell–scaffold interactions pose some of the questions that need to
be resolved in order to translate these constructs from bench to
bedside (Huey et al., 2012).

Bioreactors are also extensively applied to stimulate regenerative
cell function (Ravichandran et al., 2018). These tools have an
outstanding potential to grow and mature 3D tissues by
providing conditions that mimic their native microenvironment.
Development in this direction has a significant potential for clinical
translation (Ravichandran et al., 2018).

3 The biomechanical
microenvironment of developing and
mature cartilage

The articular cartilage matrix exhibits a unique architecture
which is challenging to regenerate in vitro. Each chondrocyte is
surrounded by the pericellular matrix (PCM). The PCM is spatially
distinct within the extracellular matrix (ECM) and serves as the
biomechanical microenvironment (BME) of chondrocytes (Xu et al.,
2022). The molecular composition of the PCM differs from the rest
of the ECM, and confers diverse biomechanical properties to
transform physical stimuli to molecular pathways (Guilak et al.,
2006). Mechanical stimuli are vital in chondrocyte differentiation
and joint formation, and also in mature articular cartilage (Jortikka
et al., 1997), which highlights the importance of the BME at early
stages of development (Vining and Mooney, 2017).

Different kinds of forces, including compression, shear stress
and tensile strain were studied on articular chondrocytes (Grad
et al., 2011; Khoshgoftar et al., 2018). Pressure applied to joint
surfaces generates interstitial fluid flow that dynamically alters the
amount of water and ions in the PCM/ECM, and this puts additional
physical factors under the spotlight, such as shear stress caused by
fluid flow, changes in local pH, osmotic and hydrostatic pressure
(Hing et al., 2002; Elder and Athanasiou, 2009). Joint loading is a
complex process in vivo, which brings challenges to mechanobiology
research in terms of modelling the complexity of physical stimuli in
developing, mature and pathological articular cartilage (O’Conor
et al., 2013).

The biochemical composition of the BME makes chondrocytes
sensitive to physical stimuli. Type VI collagen is essential in the
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PCM, and it acts as the main biomechanical transducer by
anchoring chondrocytes to the matrix via integrin receptors
(Alexopoulos et al., 2009). Type IV and IX collagens are also
present in the PCM, in addition to special ground substance
components such as proteoglycans and multi-adhesive
glycoproteins (Schminke et al., 2016; Chu et al., 2017; Chery
et al., 2021). The spatial distribution of PCM components is
uneven, which suggests its involvement in fine-tuned
mechanosensation (Guilak et al., 2006).

Dynamic mechanical loading enhances the gene expression of
cartilage-specific transcription factors and ECM components in
chondroprogenitor cells and stimulates the chondrogenic
differentiation in vitro (Takahashi et al., 1998; Elder et al., 2000;
Juhasz et al., 2014). Mechanosignals may affect chondrocytes in
several ways such as integrin signaling (Loeser, 2014). Mechanical
loading of articular cartilage results in activation of ion channels
(e.g., stretch or voltage gated channels, big conductance K+ (BK),
transient receptor potential (TRP), Piezo1/2 channels, etc.) (Zelenski

et al., 2015; Lee et al., 2017; Zhang et al., 2021). Primary cilia harbor
plasma membrane and signaling proteins, and deformation of these
cell surface projections plays a role in chondrocyte
mechanotransduction (Williantarra et al., 2022). Nuclear
deformation and remodeling of the actin cytoskeleton can also be
caused by physical stimuli (Erickson et al., 2003; Swift and Discher,
2014).

Biomechanical signals subsequently activate downstream
signaling (Figure 1) (Juhasz et al., 2014; Volz et al., 2022). The
increased expression of glycosaminoglycans, type II collagen, SOX9,
phosphorylated SOX9 (Juhasz et al., 2014) and growth factors such
as transforming growth factor β1 (TGF-β1) and fibroblast growth
factor-2 (FGF-2) promote chondrogenic differentiation (Ouyang
et al., 2019).

The anatomical characteristics of synovial joints, the types and
extent of load, as well as the metabolic status of the body determine
articular cartilage fate. Inappropriate mechanical load can alter the
reciprocal interaction between chondrocytes and the ECM/PCM

FIGURE 1
Schematic illustration of a chondrocyte, showing the molecules that sense and transmit external stimuli (such as compression, shear stress, tensile
strain, fluid flow-caused shear stress, charges in local pH, osmotic and hydrostatic pressure) from the extracellular matrix via the pericellular matrix into
the cytosol, the cytoskeleton, and the nucleus, at least partially via the circadian clock. Some of the core circadian clock genes are shown in the nucleus.
Please note that the list of proteoglycans shown in the figure is not exhaustive; other proteoglycans such as fibromodulin and lumican are also
important. TM, territorial matrix; PCM, pericellular matrix; IC space, intracellular space; CCGs; clock-controlled genes; BK, big conductance Ca2+

activated K+ channel; TRP, transient receptor potential channel. See other abbreviations in text. Created with BioRender.com.
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(Gilbert et al., 2021), which in turn can contribute to matrix
degeneration and mechanically induced inflammation (Lambert
et al., 2020); and the PCM may be the first to signal the onset of
OA (Chery et al., 2020).

4 Cartilage circadian clock

Intrinsically driven circadian rhythms have evolved in response
to the external 24-h day-night cycle and result from a network of
tissue clocks and rhythms comprised by cellular oscillators (Dibner
et al., 2010). These cellular oscillators generating circadian rhythms
are expressed in almost every nucleated cell in the body, including
the central circadian clock in the suprachiasmatic nucleus (SCN) of
the hypothalamus and peripheral clocks such as liver, adipose and
cartilage tissues. At the heart of the cellular molecular clock is a
genetically conserved autoregulatory feedback loop consisting of
transcription factors CLOCK/NPAS2 and BMAL1, driving
expression of a plethora of genes, including Per and Cry, whose
protein product interact with the CLOCK–BMAL1 complex and
thereby repress their own expression (Takahashi, 2017). The
CLOCK–BMAL1 complex also drives output from this molecular
oscillation by promoting circadian expression of ~5–20% of the
transcriptome in a tissue-specific context (Zhang et al., 2014).

One of the first mentions of day-night variation in cartilage
physiology is a report that the mitotic index in rat cartilage peaks in
the morning (Simmons, 1964). Circadian biology in chondrocytes
has recently been reviewed (Rogers and Meng, 2023). It has been
firmly established that both human and mouse cartilage tissue and
chondrocytes express circadian clocks (Gossan et al., 2013; Dudek
et al., 2016; Akagi et al., 2017), and that the expression of these
circadian clocks develops between days 11–21 of chondrocyte
differentiation from stem cells (Naven et al., 2022). Cellular
clocks drive circadian rhythms in just under 4% of the mouse
cartilage transcriptome (Gossan et al., 2013), which include genes
involved in remodeling of the ECM and metabolic homeostasis
(Yang and Meng, 2016). The core clock and cartilage marker genes
shows a rhythmic expression pattern in mature chondrocytes
derived from healthy knee articular cartilage and rib growth plate
(Hinoi et al., 2006; Takarada et al., 2012), which indicates that they
possess a well-functioning circadian clockwork in vivo. Expressing
synchronized circadian rhythms in physiology was recently shown
to benefit early chondrogenesis (Alagha et al., 2021), which is in line
with the general notion that temporal organization benefits
physiology.

The benefit of circadian rhythms in cartilage also becomes clear
from studies in which the essential clock gene Bmal1 is ablated.
Chondrocyte-specific Bmal1 ablation in mice associated with lesions
in knee cartilage and loss of chondrocytes and ECM, which became
more pronounced over time (Dudek et al., 2016). Indeed, in surgical
models of OA in mice, cartilage-specific absence of the circadian
clock through Bmal1 knockout leads to more rapid cartilage
degeneration than in wildtype mice (Qian et al., 2023). This is, at
least in part, associated with a suppression of TGF-β signaling
(Dudek et al., 2016; Akagi et al., 2017). Conversely, there are
reports that expression of the circadian clocks is perturbed in
human cartilage tissue of OA patients (Akagi et al., 2017; Soul
et al., 2018), although the timing of the sample collection is unclear

as they were acquired from patients undergoing knee surgery, which
may affect interpretation.

5 Mechanical signals as Zeitgebers for
the circadian clock

Circadian clocks are influenced and synchronized by internal
and external factors (Zeitgebers). Dark and light cycles are the most
important exogenous Zeitgeber, but other external stimuli may also
have a significant impact on the clockwork (Gossan et al., 2015).
Cells in the peripheral tissues express their own circadian regulation
which is synchronized by non-photic cues such as glucocorticoid
signaling (Balsalobre et al., 2000; Astiz et al., 2019). For cartilage,
mechanical loading is essential for proper differentiation and
homeostasis (Fahy et al., 2018). The biomechanical environment
of chondrocytes can be influenced through the application of
mechanical stimulation, which is required for embryonic cartilage
formation and maintaining the healthy biological characteristics of
mature cartilage (Sanchez-Adams et al., 2014; Fahy et al., 2018; Volz
et al., 2022). Mechanical stimulation in itself promotes the
chondrogenic differentiation pathway of MSCs (Fahy et al.,
2018). While mechanical stimulation is a key external factor for
physiological cartilage metabolism, the molecular details of
mechanotransduction pathways are not fully understood.

Given that cartilage is avascular and aneural, the master clock in
the hypothalamus is unlikely to be an important synchronizer for
the cell-autonomous circadian clocks in chondrocytes. After being
cultured in vitro, the asynchronous expression of clock genes has
been observed during in vitro chondrogenesis (Alagha et al., 2021).
However, after applying serum shock, clock and chondrogenic
marker genes showed a synchronized mRNA expression pattern
in differentiating chondrocytes (Alagha et al., 2021). This indicates
that the peripheral clockwork can be entrained in
chondroprogenitor cells by specific stimuli, acting as local timing
cues for the cells.

The molecular clock in chondrocytes is mainly influenced by
internal factors such as hormones, growth factors or thermal cues,
and also by various external factors (Kamagata et al., 2017; Rogers
et al., 2017). Mechanical stimulation can function as a Zeitgeber for
resetting and entraining the circadian clock in cartilage-specific cells
(Kanbe et al., 2006; Yang et al., 2017). Chondrocytes are sensitive to
mechanobiological stimuli through mechanoreceptors in their
plasma membrane (Lee et al., 2017; Zhao et al., 2020). Uniaxial
dynamic compressive force enhances the chondrogenic
differentiation of primary chondroprogenitor cells (Vago et al.,
2022). The core molecular components of the circadian
clockwork, as well as chondrogenic markers showed a
synchronized expression pattern after mechanical stimulation,
both at mRNA and protein levels, which was otherwise not
detectable (Vago et al., 2022). Therefore, dynamic mechanical
stimulation served as a Zeitgeber for chondroprogenitor clock
entrainment, and chondrogenesis was stimulated through the
synchronizing ability of the loading regime. When primary
articular chondrocytes were exposed to cyclic biaxial tensile
stretch, BMAL1 exhibited a sinusoidal expression pattern at the
protein level, and the oscillation parameters of BMAL1 followed a
daily rhythm which was mimicked by mechanical stimulation
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(Heywood et al., 2022). Similarly, the molecular clockwork in
human dental pulp-derived MSCs could be entrained following
rhythmic uniaxial mechanical stretch (Rogers et al., 2017).

The above data confirms that in addition to mature cells,
circadian rhythmicity may also be influenced by mechanical cues
in undifferentiated MSCs.

6 Conclusion

Mechanobiology and chronobiological signaling pathways are
closely interconnected during cartilage formation and maintenance.
Appropriate mechanical stimuli can serve as external timing cues
and entrain the circadian clock in developing (Vago et al., 2022) and
mature isolated chondrocytes (Heywood et al., 2022).

However, an important link is still elusive between the
biomechanical environment and the chondrocyte clock. While
CLOCK has been functionally associated with mechanical stress
(Kanbe et al., 2006), the mechanotransducers by which the
mechanical environment affects the circadian clock have not
been fully mapped.

Actin dynamics have been linked to circadian regulation
(Hoyle et al., 2017). The circadian clock is influenced by the
stiffness of the extracellular environment via vinculin and the
Rho/ROCK pathway (Yang et al., 2017). Blocking the Rho-kinase
pathway is beneficial for the chondrocyte phenotype and ECM
production (Piltti et al., 2017). The CREB/CRE pathway has also
been suggested to couple timing cues following mechanical
stimuli to the resetting of the circadian clockwork (Heywood
et al., 2022). A recent study has confirmed the role of YAP/TAZ
in influencing the circadian clockwork by disrupting REV-ERBα
oscillations (Abenza et al., 2022).

Ca2+ signaling pathways mediated by mechanosensitive ion
channels that influence the chondrocyte phenotype may also act
as key upstream regulators of the clock genes (Mobasheri et al.,
2019; Cavieres-Lepe and Ewer, 2021). Mechanical stimuli can
affect mechanosensitive ion channels, and the resulting ionic
fluxes then modulate chondrocyte metabolism (Zhang et al.,
2021). Ca2+ influx via N-methyl D-aspartate (NMDA)
receptors has recently been shown to regulate the circadian
clock components PER2 and BMAL1 in chondrocytes through
activation of the CREB and NF-κB signaling pathways (Kalev-
Zylinska et al., 2018; Alhilali et al., 2021).

7 Perspectives

The current insights into the chronobiology of cartilage biology
inspire at least two important future directions. One is aimed at the
chronobiology of clinical treatments and tissue engineered cartilage
grafts, and another aimed at understanding the mechanistic links
between the molecular physiology of cartilage and circadian clocks.

The majority of currently marketed medicinal products may
benefit from chronotherapy, a timed administration based on the
circadian rhythmicity of the drug target (Lee et al., 2021). It is known
that many drug targets exhibit circadian rhythmicity (Zhang et al.,
2014), and the targets for treatment of OA could have similar
patterns. It would also be advantageous to consider the time of

day/circadian phase of stem cell-based therapies. An improved
understanding of the interactions between chronobiology and the
pathomechanisms of OA pain would enhance targeted drug
discovery programs, resulting in the development of better
therapeutic strategies.

However, circadian rhythmicity is currently not being exploited
for cartilage tissue engineering approaches, despite the emerging
role of the biological clock in developing and mature chondrocytes
in health and disease. Understanding the circadian physiological
landscape in cartilage cultures, and the contrast between in vitro
clock synchronization methodologies (such as dexamethasone or
serum shock) and mechanical stimulated cultures will give key
insights into the molecular links between cartilage molecular
physiology and the circadian timing system. Unveiling the details
of how mechanoreception sits at the intersection of cartilage
formation and molecular circadian oscillators will give us
putative targets for the optimal time of day of treatment.
Combining this with the effects of biomechanics on chondrocyte
metabolism (i.e., metabolomics) would help in the successful
development and clinical translation of tissue-engineered cartilage
grafts to restore joint function, delaying the need for prosthetic
interventions.
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