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Introduction: Hybrid modeling combining First-Principles with machine learning
is becoming a pivotal methodology for Biopharma 4.0 enactment. Chinese
Hamster Ovary (CHO) cells, being the workhorse for industrial glycoproteins
production, have been the object of several hybrid modeling studies. Most
previous studies pursued a shallow hybrid modeling approach based on three-
layered Feedforward Neural Networks (FFNNs) combined with macroscopic
material balance equations. Only recently, the hybrid modeling field is
incorporating deep learning into its framework with significant gains in
descriptive and predictive power.

Methods: This study compares, for the first time, deep and shallow hybrid
modeling in a CHO process development context. Data of 24 fed-batch
cultivations of a CHO-K1 cell line expressing a target glycoprotein, comprising
30 measured state variables over time, were used to compare both
methodologies. Hybrid models with varying FFNN depths (3-5 layers) were
systematically compared using two training methodologies. The classical
training is based on the Levenberg-Marquardt algorithm, indirect sensitivity
equations and cross-validation. The deep learning is based on the Adaptive
Moment Estimation Method (ADAM), stochastic regularization and semidirect
sensitivity equations.

Results and conclusion: The results point to a systematic generalization
improvement of deep hybrid models over shallow hybrid models. Overall, the
training and testing errors decreased by 14.0% and 23.6% respectively when
applying the deep methodology. The Central Processing Unit (CPU) time for
training the deep hybrid model increased by 31.6% mainly due to the higher FFNN
complexity. The final deep hybrid model is shown to predict the dynamics of the
30 state variables within the error bounds in every test experiment. Notably, the
deep hybrid model could predict the metabolic shifts in key metabolites (e.g.,
lactate, ammonium, glutamine and glutamate) in the test experiments. We expect
deep hybridmodeling to accelerate the deployment of high-fidelity digital twins in
the biopharma sector in the near future.
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1 Introduction

Chinese hamster ovary (CHO) cells are the most widely used host
system for the industrial production of biologics. They cover more
than 70% of the mammalian cell-based therapeutic proteins
production (Vcelar et al., 2018). They present several advantages
such as well-established large-scale cultivation with high productivity
(cell densities higher than 20Mcell/mL with protein titer as high as
10 g/L), human-like N-glycosylation, well-established molecular
biology techniques and an impressive track record of approvals by
the U.S. Food and Drug Administration (FDA) (Galleguillos et al.,
2017). Given its industrial relevance, many companies have
established CHO-cell platforms to streamline process development
of many different molecule candidates in a short timeframe (e.g.,
(Mora et al., 2018)). Different upstream tasks such as clone screening,
culture media customization and reactor optimization should be
integrated in a rational way to improve the efficiency of process
development. The adoption of high-throughput screening
technologies allied with advanced digitalization tools for data
analysis, mathematical modeling and control across the different
development stages are key factors to improve process
development efficiency (Hole et al., 2021).

There are currently three main mathematical modeling
formalisms that are used for the digitalization of biopharmaceutical
processes: First-Principles or mechanistic modeling (e.g., Hartmann
et al., 2022; Monteiro et al., 2023) data-based or machine learning
(ML) (e.g., Mowbray et al., 2022; Mowbray et al., 2022; Helleckes et al.,
2023) and hybrid mechanistic/ML (e.g., Badr and Sugiyama, 2020;
Bayer et al., 2023; Narayanan et al., 2023). Mechanistic modeling relies
on prior process knowledge and requires less process data. They are
more complex to develop but tend to extrapolate better outside the
domain of experience. The intrinsic complexity of biological systems is
however a critical limitation for the deployment of mechanistic models
in an industrial context (Badr et al., 2021). Conversely, ML relies
almost exclusively on process data with minimal prior knowledge
requirements. Artificial neural networks (ANNs) are currently the
most popular ML technique in bioprocess engineering, followed by
ensemble learning, multivariate data analysis, support vector machines
and gaussian processes (Mowbray et al., 2022). As key advantage,
ANNs were shown to be universal nonlinear function approximators
(Cybenko, 1987). Due to the typically large number of parameters and
unstructured nature, ANNs require large data sets for training and are
prone to overfitting and poor generalization (Bejani andGhatee, 2021).
ANNs and ML methods in general are easier to develop but require
large amounts of data that are costly, time-consuming and difficult to
reuse. ML models tend to describe better inside the domain of
experience (e.g., better interpolation) but are less reliable at
extrapolating in comparison to mechanistic models. Hybrid models
combine mechanistic and ML techniques in a common workflow and
share the pros and cons of both techniques (e.g., Psichogios andUngar,
1992; Oliveira, 2004; Teixeira et al., 2005; Teixeira et al., 2007; von
Stosch et al., 2014; Kurz et al., 2022; Pinto et al., 2019). Themechanistic
modules allow to decrease the complexity of the ML modules within
the hybrid model and as such the overall data requirements are
decreased. Moreover, the ML modules fill the gaps of the
mechanistic modules for which knowledge is still lacking.
Narayanan et al. (2022) studied the impact of increasing the
amount of prior knowledge (e.g., material balances, reaction

stoichiometry and reaction kinetics) in the hybrid model of a cell
culture process. Between a fully data-driven (or MLmodel) and a fully
mechanistic model, there are different degrees of hybridization
possible depending on the amount of prior knowledge included in
the hybrid model. The authors concluded that the inclusion of
unbiased prior knowledge progressively improves the performance
of the hybrid model. Unsurprisingly, fully data-driven models showed
poor performance particularly when data is scarce. Rogers et al. (2023)
have also investigated the optimal amount of prior knowledge to
incorporate in a hybrid bioprocess model. The authors concluded that
the inclusion of correct kinetic information generally improves the
performance of the hybrid model. The inclusion of incorrect kinetic
assumptions may however create inductive bias that decreases the
performance of the hybridmodel. Due to the flexible trade-off between
prior knowledge and data availability, hybrid modeling is becoming a
method of choice to develop digital twins in the realm of Biopharma
4.0 (e.g., Badr and Sugiyama, 2020; Yang et al., 2019; Sansana et al.,
2021; Sokolov et al., 2021; Badr and Sugiyama, 2020; Narayanan et al.,
2023, Bayer et al., 2022, Bayer et al. 2023).

Being the preferred host system in biopharma, CHO cultivation
processes have been the object of several hybrid modeling studies
(Table 1). Most of previous studies combined macroscopic material
balance equations of extracellular species with somemachine learning/
statistical modeling methods with predominance of shallow FFNNs
with a single hidden layer. Themacroscopicmaterial balance equations
are translated to systems of Ordinary Differential Equations (ODEs)
describing bioreactor dynamics. The machine learning component is
typically dedicated to model biological kinetics, which are parts of the
system lacking mechanistic basis. The number of biochemical species
has been limited to 2–12 species. Typically, the viable cell count,
concentrations of the target molecule and the concentrations of key
central carbon metabolites such as glucose, lactate, glutamine,
glutamate and ammonium. A recent study by Doyle et al. (2023)
has also covered amino acids dynamics. The training method is either
coupled or uncoupled. In the latter case, the machine learning
component is isolated from the mechanistic model and trained as a
standalone module. In the former case, the mechanistic and machine
learning models are parametrized in a common mathematical
structure and trained together. Uncoupled training has been
adopted by Kotidis et al. (2021) to develop a hybrid model of
glycosylation critical quality attributes in CHO cultures. The
N-linked glycosylation was described by a FFNN with 2 hidden
layers, while the cell growth and metabolism were described by a
mechanistic model based on a system of Differential and Algebraic
Equations (DAEs) (Kotidis et al., 2019). The FFNN was trained as a
standalone model on data generated by the mechanistic model using
the TensorFlow package in Python 3.7. The final trained FFNN and the
mechanistic model were assembled in a hybrid workflow in gPROMS
v.5.0.1. Coupled training has been the preferred approach for material
balance + FFNN hybrid models, following the scheme originally
proposed by Psichogios and Ungar (1992). The sum of square
error between measured and calculated concentrations is
minimized during the training using the Levenberg-Marquardt
(LMM) algorithm. Since the FFNN outputs cannot be directly
compared with measured properties, this method is termed indirect
training. The indirect sensitivity equations are employed to compute
the gradients of measured concentrations in relation to neural network
weights (Psichogios andUngar, 1992; Oliveira, 2004). Cross-validation
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techniques are employed to avoid overfitting. Following the coupled
training approach with cross-validation, Bayer et al., 2022 compared
fully mechanistic and shallow hybrid modeling for characterization of
a CHO cultivation process. The authors concluded that the prediction
accuracy of the shallow hybrid model was always superior to the
mechanistic model irrespective of the utilized data partition. Due to its’
higher fitting power, the shallow hybridmodel prediction accuracy was
more sensitivity to data resampling than the fully mechanistic model.
Every hybrid model in Table 1 is of dynamic nature except the one by
Ramos et al. (2022). The authors have used a large genome-scale
network with 788 reactions as mechanistic component combined with
a Principal Component Analysis (PCA) model. The overall hybrid
model is of static nature, solved by linear programming under the
pseudo steady-state hypothesis, i.e., by hybrid Flux Balance Analysis
(hybrid FBA).

Most previous hybrid modeling studies have combined material
balance equations with shallow FFNNs or other nondeep machine
learning techniques. In the field of neural networks, Deep neural
networks have however been shown to have a general advantage over
their shallow counterparts thanks to their ability to approximate more
complex functions with a lower number of parameters and being less
prone to overfitting (Delalleau and Bengio, 2011; Eldan and Shamir,
2016; Mhaskar and Poggio, 2016; Liang and Srikant, 2017). Training
of deep structures also requires special care, with the ADAMmethod
(Kingma, 2014) being commonly used due to its robustness and lower
sensitivity to local optima. Along with the training approach, the use
of stochastic regularization techniques has also shown to be very

effective at avoiding overfitting (Hinton et al., 2012; Srivastava et al.,
2014; Koutsoukas et al., 2017).

Only very recently, hybrid modeling is incorporating deep
neural networks and deep learning into its framework (Bangi and
Kwon, 2020; Pinto et al., 2022; Bangi and Kwon, 2023). Pinto et al.
(2022) investigated the use of ADAM and stochastic regularization
in a hybrid modeling context concluding that the predictive power
of deep hybrid models was significantly improved. None of these
techniques have been applied to CHO processes (Table 1). In this
study, we thus investigate deep learning techniques based on
ADAM and stochastic regularization in a hybrid modeling
context with application to a CHO-K1 fed-batch process. The
deep learning method is compared with the classical shallow
method based on the LMM algorithm, indirect sensitivity
equations and cross-validation. The rest of this paper is organized
as follows: in Section 2 we introduce the methodology. Section 3
contains the results for the case study, and a discussion of the results in
section 4. Section “Conclusion” gives the final remarks and sums up
the main findings.

2 Methods

2.1 CHO-K1 experimental dataset

Data from 24 fed-batch reactor experiments with a CHO-K1 cell
line coding for a target glycoprotein were used to compare the

TABLE 1 Compilation of CHO hybrid modeling studies.

First-principles Machine learning Training method Cross
validation

Objective References

Macroscopic material balances
(2 species)

Shallow FFNN (tanh hidden
nodes)

Levenberg-Marquardt;
coupled

Yes Prediction of culture
dynamics; Quality-By-
Design

Bayer et al. (2021)

Macroscopic material balances
(7 species)

Shallow FFNN (tanh hidden
nodes)

Levenberg-Marquardt;
coupled

Yes Prediction of culture
dynamics; Quality-By-
Design

Bayer et al. (2022),
Bayer et al. (2023)

Macroscopic material balances
(4 species)

Shallow FFNN (tanh hidden
nodes)

Levenberg-Marquardt;
coupled

Yes Optimize viable cell density Nold et al. (2023)

Macroscopic material balances
(4 species)

Shallow FFNN (tanh hidden
nodes)

MATLAB fminunc function;
coupled

Yes Prediction of culture
dynamics; Quality-By-
Design

Narayanan et al. (2019)

Macroscopic material balances
(6 species)

Gaussian Process regression Maximum likelihood
estimator; uncoupled

Yes Prediction of culture
dynamics across different
products

Hutter et al. (2021)

Mechanistic kinetic models
(12 species)

Deep FFNN with 2 hidden
layers (softmax/sigmoid
hidden nodes)

Python 3.7 Tensorflow/
gPROMS v.5.0.1; uncoupled

Yes Prediction of culture
dynamics and mAb
glycosylation

Kotidis et al. (2021)

Macroscopic material balances
(5 species)

Set of Shallow FFNN (tanh
hidden nodes)

Levenberg-Marquardt;
uncoupled

Yes Software sensor of r-tPA
production

Senger and Karim
(2003)

Macroscopic material balances
(4 species)

Principle Component
Regression (PCR)

PCA + least squares
regression; uncoupled

Yes Prediction of culture
dynamics

Okamura et al. (2022)

Macroscopic material balances
(24 species)

Saturation and sigmoidal
functions

Least squares regression;
uncoupled

Automated assembly of
dynamic model

Doyle et al. (2023)

CHO-K1 Genome-scale
network (788 reactions;
686 species)

PCA of reaction rates of
extracellular species

Linear programming;
coupled

Yes Hybrid FBA; Culture media
design

Ramos et al. (2022)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Pinto et al. 10.3389/fbioe.2023.1237963

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1237963


hybrid modeling methodologies. Briefly, the cells were pre-cultured
in shake-flasks (Corning, NY, United States) at 37°C in a proprietary
chemically defined medium. The inoculum was transferred to
250 mL stirred microcarrier vessel (Ambr® 250 workstation,
Sartorius, Göttingen, Germany) for antigen production. Stirring
was kept at around 20W/m³. Dissolved oxygen was controlled at
30% of saturation by sparging pure oxygen. The pH was controlled
at 7.0 with a 0.5 M NaOH solution and CO2 sparging. The reactors
were seeded at 3.0 Mcell/mL. They followed a batch/fed-batch phase
for viable cells expansion. Once a threshold viable cell density was
reached, the temperature was decreased to 33°C to induce antigen
production. The antigen production phase was carried out in fed-
batch mode with varying feeding compositions of amino acids,
glucose and pyruvate. The whole process lasted approximately
12 days. Samples were taken daily. Viable cell density and
viability were assayed using a Vi-Cell cell counter (Beckman,
Indianapolis, United States). Glucose, lactate, pyruvate,
glutamine, ammonium, glycerol and lactate dehydrogenase were
assayed using a CedexBio-HTmetabolite analyzer (Roche, Penzberg,
Germany). The antigen quantification was performed off-line with
an Octet HTX (Pall, NY, United States). The remaining metabolites
and amino acids were assayed off-line by Nuclear Magnetic
Resonance spectroscopy at Eurofins Spinnovation (Oss,
Netherlands). A total of 30 concentrations were measured at each
time point (with few exceptions): viable cell count (Xv), glycoprotein
(P), glucose (Glc), lactate (Lac), glutamine (Gln), glutamate (Glu),
ammonium (NH4), pyruvate (Pyr), glycerol (Glyc), citrate (Cit),
alanine (Ala), arginine (Arg), asparagine (Asn), aspartate (Asp),
L-cystine (Lcystin), glycine (Gly), histidine (His), isoleucine (Ile),
leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe),
proline (Pro), serine (Ser), threonine (Thr), tryptophane (Trp),
tyrosine (Tyr), valine (Val), acetate (Ac) and formate (For). The
data were assumed to be corrupted by heterogenous gaussian noise.
The measurement error standard deviations were assumed to be of
5% for P, 10% for Xv and 20% for remaining metabolites, based on
equipment calibration data. The data reliability was pre-assessed by
statistical analysis of metabolic fluxes in the exponential growth and
production phases. The spread of data was analyzed in a boxplot of
metabolic fluxes. No outlying reactor experiments were identified.
All the 24 reactor experiments were used for modeling thus none
discarded due to reliability issues. More details regarding the
experimental protocol and data pre-assessment are provided by
Ramos et al. (2022).

2.2 CHO-K1 synthetic dataset

In addition to the experimental dataset, a synthetic dataset was
created based on the metabolic model proposed by Robitaille et al.
(2015). A synthetic dataset is useful in this context to better assess the
ability of the hybrid modeling methods to describe the intrinsic
process behavior irrespective of measurement noise. Simulations of
this model were performed by varying two parameters, namely, the
pre-induction feeding rate and the post-induction feeding rate. A
central composite design of experiments (CC-DoE) was applied to
obtain 9 combinations of the two feed rates. This resulted in 9 fed-
batch simulated experiments. The dynamic model has 21 intracellular
species and 25 extracellular species. The intracellular species were

hidden to the hybrid model development. The concentrations of
extracellular species were recorded as time series for 240 h with 24 h
sampling time and included the following variables: Xv, monoclonal
antibody concentration (mAb), Ala, Arg, Asn, Asp, Cysteine (Cys),
Glc, Gln, Glu, Pyr, Gly, His, Ile, Lac, Leu, Lys, Met, NH4, Phe, Pro, Ser,
Thr, Tyr and Val. The recorded variables from the synthetic dataset
were the same as in the experimental dataset, except that Pyr, Glyc, Cit
and Ac are not considered in the Robitaille et al (2015) model.
Moreover, the target products are different and Robitaille et al
(2015) considers cysteine instead of Cystine. Gaussian white noise
with standard deviation of 10% ofmaximum concentration values was
added to concentrations time points to mimic (heterogeneous)
gaussian measurement error. This synthetic dataset is provided as
Supplementary Material.

2.3 CHO-K1 hybrid model

A standard hybrid model configuration was adopted in this
study consisting of a multilayered FFNN connected in series with
macroscopic material balance equations (Figure 1). This
configuration is similar to previously published studies (Table 1)
except for the depth of the FFNN and the training methods
employed. The FFNN is dedicated to completely model the
reaction kinetics. The dynamics of state variables are modeled by
a system of ODEs based on macroscopic material balance equations
(First-Principles). Considering a perfectly mixed fed-batch
bioreactor with multiple feed streams, the macroscopic material
balance equations take the following state-space form:

dc
dt

� v c,w( )Xv +∑
k
Dkck,in − c∑

k
Dk (1a)

dV

dt
� V∑

k
Dk (1b)

Dk � Fk

V
(1c)

with t the independent variable time, c the state vector with the
concentrations of 30 species (Xv, P, Glc, Lac, Gln, Glu, Nh4, Pyr,
Glyc, Cit, Ala, Arg, Asn, Asp, Lcystin, Gly, His, Ile, Leu, Lys, Met,
Phe, Pro, Ser, Thr, Trp, Tyr, Val, Ac, For), v(·) the specific reaction
rates vector of the 30 species, D � ∑

k

Dk the reactor dilution rate

(scalar), V the cultivation volume (scalar), Fk the feed rate of stream
k (there are in total 5 feed streams) and ck,in the vector of species
concentrations in feed stream k. The specific reactions rates, v(c,w)
lack mechanistic basis and were thus modeled by a deep FFNN with
nh hidden layers:

H0 � c ⊘ c max (2a)
H i � σ wi ·H i−1 + bi( ), i � 1, . . . , nh (2b)

v � wnh+1 ·Hnh + bnh+1 (2c)

The input layer i � 0 (Eq. 2a) with 30 nodes receives the
information of normalized concentrations (c max is the absolute
maximum concentration of the 30 species (vector) and ⊘ the
Hadamard division). Each hidden layer i computes a vector of
outputs, H i, from a vector of inputs, H i−1, which are the outputs
of the preceding layer (Eq. 2b). The transfer function of hidden
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nodes, σ(·), was either the hyperbolic tangent function, tanh, or the
rectified linear unit, ReLU. The output layer (Eq. 2c) computed the
specific reaction rates vector of the 30 species. The parameters w �
w1,w2, . . . ,wnh+1{ } are the nodes connection weights between layers
and b � b1, b2, . . . , bnh+1{ } the bias weights that need to be
optimized data during the training process. The deep hybrid
model Eqs 1, 2 were integrated numerically using a Runge-Kutta
4th order ODE solver (in-house developed in MATLAB).

2.3.1 Shallow hybrid modeling method
This study compares shallow and deep hybrid modeling. The

shallow structures are represented by Eqs 1, 2 with FFNNs with a
single hidden layer and with hyperbolic tangent activation function,
tanh. Sigmoidal activation functions, and particularly tanh, are
generally accepted as a default in shallow FFNNs. Many practical
studies have corroborated the universal function approximation
property derived by Cybenko, (1989). This FFNN architecture has
also been the preferred choice in a hybrid modeling context (e.g.,
Table 1). The training of shallow hybrid models is based on the LMM
optimization with the indirect sensitivity equations (to compute
gradients) and cross-validation (as early stop criteria). Briefly, the
data were partitioned in a training/validation subset (for parameter
estimation) and a testing subset (to assess the predictive power).
Partitioning was performed batch wise with the amount of data
allocated in each partition depending on the context (further
details in the results section). The LMM algorithm (fminunc
function in MATLAB) was adopted to optimize the network
parameters, w, b{ }, by unconstrained weighted least squares
computed on the training data subset only. The inverse of
measurement error variance was used as weighting factor in the
weighted least squares minimization in order to effectively filter
heterogeneous gaussian error (Eq. 3). The objective function
gradients were computed by the indirect sensitivity equations
following the method described by Oliveira (2004) (more
information in the Supplementary Material). Cross-validation was

adopted as a stop criterion to avoid overfitting, i.e., the training is
stopped when the validation error increases. A data
augmentation strategy was used to automatically create the
validation data subset from the training subset by adding
gaussian noise to the concentrations (Bejani and Ghatee,
2021). The standard deviation of the added noise was the
same as the standard deviation of the measured concentration
error. This strategy has proven to effectively avoid overfitting to
the experimental noise and to produce good generalization
models when the data information content is well distributed
among the training and testing data subsets (Pinto et al., 2022).
For each shallow hybrid structure, the training was repeated
10 times with random weights initialization from the uniform
distribution. Only the best result (lowest training/validation
error) was kept. Further details are provided as Supplementary
Material.

2.3.2 Deep hybrid modeling method
The shallow hybrid models were systematically compared with

deep hybrid models. The deep hybrid models are represented by
Eqs 1, 2 with FFNNs with multiple hidden layers (nh≥ 2) and with
rectified linear unit (ReLU) hidden nodes. The tanh was replaced
by the ReLU because the latter is generally accepted as a default for
several deep neural network architectures including deep FFNNs
(Goodfellow et al., 2006). The ReLU function solved two main
problems associated with the tanh function, namely, signal
saturation and the vanishing gradients problem that occurs
during error backpropagation in networks with multiple hidden
layers (Glorot and Bengio, 2010). Instead of the LMM algorithm,
deep hybrid models were trained with the ADAM algorithm (in-
house implementation). The ADAM algorithm is generally
accepted as an efficient method to train deep FFNNs (Kingma,
2014). The use of ADAM in a hybrid modeling context has been
recently investigated by Pinto et al. (2022). Briefly, the data were
portioned in a training and in a testing subset as for shallow hybrid

FIGURE 1
Hybrid model structure of a CHO-K1 fed-batch process.
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modeling. The ADAM was adopted to optimize the network
parameter, {w, b}, also in a weighted least squares sense in order
to effectively filter heterogeneous gaussian error. The objective
function gradients were computed by the semidirect sensitivity
equations. The semidirect sensitivity equations method was
shown to reduce the training CPU time in comparison to the
indirect sensitivity equations method used in shallow hybrid
modeling (Pinto et al., 2022). Stochastic regularization with
minibatch size (0–1) and weights dropout probability (0–1)
was applied to avoid overfitting in replacement of cross-
validation normally applied in shallow hybrid modeling. The
ADAM with stochastic regularization was run for a sufficiently
large number of iterations with the final deep FFNN weights
taken at the iteration with minimum training error. The training
was performed only once because ADAM is less sensitive to
weights initialization. This methodology has been thoroughly
investigated by Pinto et al. (2022). Further details are provided as
Supplementary Material.

2.3.3 Model performance, selection and
implementation

The performances of shallow and deep hybrid models were
assessed by the Weighted Mean Square Error (WMSE) computed as
follows:

WMSE � 1
T
∑T

t�1
c( *
t − ct)

2

σ2t
(3)

with T the number of data examples, c*t the measured concentration
at time t, ct the model calculated concentration at time t and σt the
standard deviation of measurement at time t. The WMSE was
computed separately for the training and testing data subsets. In
the case of the synthetic dataset, the test WMSE was computed using
c*t with experimental noise (noisy test WMSE) and without noise
(noise-free test WMSE).

Model selection was performed by a probabilistic method and by
a resampling method. The probabilistic method consisted in the
Akaike’s Information Criterion (AIC) with second order bias
correction (AICc). The second order correction is needed for
small data samples (T < 40), eventually converging to the AIC
value for very larger samples (Banks and Joyner, 2017). It is
computed on the training data subset as follows:

AICc � T ln WMSE( ) + 2 nw + 2 nw nw + 1( )
T − nw − 1

(4)

The AICc was adopted to discriminate parsimonious hybrid
structures by taking into account the model complexity (i.e., the total
number of network parameters, nw). The model with lowest AICc
score was selected as the best model.

Model selection was also performed by a resampling technique.
Ten different training and testing data partitions were created by
random selection (from the uniform distribution) of reactor
experiments allocated either for training or for testing. The
training was repeated for every data partition resulting in
10 different models. The respective training and testing WMSE
statistics were evaluated. The best model was selected to be the one
with the lowest mean test WMSE.

The AICc and the resampling method often led to different
model selection conclusions (further discussed in the results
section). It is generally accepted that resampling methods are
preferred over probabilistic methods for statistical model
selection (Tashman, 2000). Therefore, the resampling method,
based on the lowest test WMSE, was taken as the final decision
metric for the selection of hybrid models.

All the code of shallow and deep hybrid modeling was developed
in-house and implemented in MATLAB on a computer with
Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and
24 GB of RAM. CPU time of the different tests performed were
computed as the difference between the result of the “cputime”
MATLAB function.

3 Results

3.1 Shallow hybrid modeling of the CHO-K1
synthetic dataset

Shallow hybrid models with varying number of nodes in a
single hidden layer with tanh activation function were
investigated. At this stage, the synthetic dataset was adopted
since it allows a better control of the information content
distribution among the training and testing data subsets. The
training partition was composed of 5 batches with
2,400 training examples (the number of training examples
was always higher than the number of FFNN weights). The
testing partition was composed of 4 batches with 1920 testing
examples. The training experiments were the center and square
points of the CC-DoE, whereas the test experiments were the
star points of the CC-DoE. The comparatively large testing data
subset, generated at the extreme star points of the CC-DoE,
represents a challenging extrapolating test for the trained
hybrid models. Given the very clear testing rationale, the
resampling repetitions were not applied in this case, which
allowed to save some CPU time. The training and testing
data subsets were always the same with models compared
based on the AICc score and on the final test WMSE. The
number of nodes of the hidden layer varied between 1 and
15 corresponding to a number of weights between 77 and 805.
The training algorithm was the LMM with gradients computed
by the indirect sensitivity method. For each structure, the
training was repeated 10 times with different weights
initialization (classical method). The overall results are
shown in Table 2. These results confirm that the number of
nodes in the hidden layers has a significant effect on the model
performance. The AICc score and the test WMSE did not
converge to a common conclusion (discussed below). The
shallow structure with lowest AICc had 5 hidden nodes only,
which did not correspond to the lowest test error. The shallow
structure with highest predictive power had 12 hidden nodes
with the lowest noisy and noise-free test WMSE (2.04 and 2.06,
respectively). The noisy test WMSE was 32.5% higher than the
train WMSE denoting some degree of overfitting of the training
data. The AICc criterion miss selected the model with the
highest predictive power in this case.
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3.2 Deep hybrid modeling of the CHO-K1
synthetic dataset

Deep hybrid modeling with FFNNs with 2 or 3 hidden layers was
investigated on the same synthetic dataset. Models with more than

3 hidden layers did not produce further improvements (results not
shown). The activation function in the hidden layer was the ReLU in
all cases. The training algorithm was the ADAM with standard
hyperparameters (Kingma, 2014). Stochastic regularization with
optimal minibatch size of 0.8 and weights dropout of 0.2 was

TABLE 2 Shallow hybrid modeling results on the CHO-K1 synthetic dataset. Hybrid models had a FFNN with a single hidden layer with hyperbolic tangent
activation function and a number of nodes between 1 and 15. The training algorithm was the Levenberg-Marquardt with gradients computed by the indirect
sensitivity equations with 1,000 iterations and cross-validation as stop criterion. Training was repeated 10 times for each structure with random weights
initialization from the uniform distribution between −0.01 and 0.01 and only the best result was kept. The WMSE-train was computed on the training dataset with
10%gaussian noise in concentrations. WMSE-test (noisy) was computed on the test dataset with 10%gaussian noise in concentrations. WMSE-test (noise free) was
computed on the test dataset without noise in the concentrations. The AICc was computed on the same dataset as WMSE-train.

Number of hidden
nodes

WMSE
-train

WMSE-test
(noisy)

WMSE-test (noise
free)

AICc CPU time (hh:
mm:ss)

Number of
weights

1 6.07 7.46 8.16 4,890 00:13:20 77

2 2.17 3.82 4.32 2,310 00:25:31 129

3 1.81 3.25 3.64 1950 00:30:04 181

4 1.76 2.79 3.15 2000 00:26:44 233

5 1.28 4.57 4.31 1,290 00:23:06 285

6 1.52 2.31 2.76 1890 00:27:34 337

7 1.55 2.10 2.18 2070 00:24:58 389

8 1.66 3.09 3.45 2,400 00:30:18 441

9 1.73 2.71 2.79 2,500 00:26:40 493

10 1.60 2.47 2.63 2,450 00:32:20 545

11 1.70 2.73 3.12 2,930 00:28:15 597

12 1.54 2.04 2.06 2,850 00:24:52 649

13 1.64 2.70 2.84 3,210 00:32:30 701

14 1.73 6.33 7.14 3,550 00:18:15 753

15 1.54 2.65 2.86 3,460 00:22:18 805

The bold values indicate the optimal model configuration.

TABLE 3 Deep hybrid modeling results on the synthetic CHO-K1 dataset. Hybrid models had a FFNN with 2 or 3 hidden layers with ReLU activation function. The
training algorithm was the ADAM algorithm run for 1,000 iterations with hyperparameters α � 0.001, β1 � 0.9, β2 � 0.999 and η � 1e−7. Gradients were computed
by the semidirect sensitivity equations. Stochastic regularization was applied with weights dropout of 0.2 and minibatch size of 0.8. The training was repeated
only once with random weights initialization from the uniform distribution between −0.01 and 0.01. The WMSE-train was computed on the training dataset with
10%gaussian noise in concentrations. WMSE-test (noisy) was computed on the test dataset with 10%gaussian noise in concentrations. WMSE-test (noise free) was
computed on the test dataset without noise in the concentrations. The AICc was computed on the same dataset as WMSE-train.

Number of hidden
nodes

WMSE
train

WMSE test
(noisy)

WMSE test (noise
free)

AICc CPU time (hh:
mm:ss)

Number of
weights

[5 5] 1.85 2.47 2.63 2,330 00:14:20 315

[7 7] 1.48 2.00 1.94 2090 00:13:30 445

[10 10] 1.34 1.84 1.56 2,510 00:17:15 655

[5 5 5] 2.00 4.43 4.35 2,610 00:19:43 345

[7 7 7] 1.50 2.13 2.35 2,300 00:15:18 501

[10 10 10] 0.982 1.05 0.54 1800 00:19:42 765

[15 15] 1.33 1.72 1.62 3,970 00:17:32 1,045

[20 20] 0.922 1.27 1.01 4,250 00:22:51 1,485

[20 20 20] 0.972 1.27 0.98 6,860 00:24:47 1905

The bold values indicate the optimal model configuration.
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adopted, based on a previous study by Pinto et al. (2022). Stochastic
regularization coupled with ADAM was shown to be very robust to
weights initialization (Pinto et al., 2022) thus the training was
carried out only once with a single random weights initialization
(between −0.01 and 0.01). The overall results are shown in Table 3.
As expected, the complexity of the FFNN has a significant effect on
the model performance. The number of weights varied between
315 and 1905, always lower than the number of training examples
(2,400). The hybrid structure 10 × 10 × 10 with 765 weights clearly
stands out as the best performing structure. The obtained training and
testing errors are comparable denoting a successful training without
overfitting. Moreover, the noise free test error is clearly below the
noisy test error, showing that this model was able to filter noise in the
test partition. The AICc of the 10 × 10 × 10 structure was also the
lowest among the deep hybrid structures investigated. The AICc and
the test WMSE pointed to the same conclusion in this case.

Comparing the shallow hybrid model with 12 hidden nodes
(Table 2) with the deep hybrid model with 3 hidden layers

(10 × 10 × 10) (Table 3) shows that the latter has significantly
better training and testing metrics. The 3 hidden layers did not
correspond to a large increase in the number of weights (only
17.9%). However, the training error decreased 36.2% and more
importantly the noise free test error decreased 73.8%. Both the
AICc score as the test WMSE point to the hybrid deep structure
(10 × 10 × 10) as being the best model. As for the CPU time,
despite the higher complexity of the deep model (with 17.9%
more parameters), the CPU time was reduced by 20.8%. This is
mainly explained by the fact that ADAM with stochastic
regularization is practically insensitive to weights initialization
requiring a single training event compared to the 10 training
repetitions in the case of LMM with cross-validation.

Figure 2 shows the prediction of the dynamics in a test
experiment by the best shallow and best deep hybrid models.
This example shows qualitatively that the deep hybrid model
succeeded to predict very faithfully the dynamics of each variable
individually (the predicted time profiles of process variables are

FIGURE 2
Dynamic simulation of the best shallow (12 hiddenmodes + tanh) and best deep (10 × 10 × 10 + ReLU) hybridmodels for a test reactor experiment of
the CHO-K1 synthetic dataset. Circles are simulated data points and error bars are standard deviations. Green line is the best deep hybrid model structure
(10 × 10 × 10) (Table 3); Blue line is the best shallow structure with 12 hidden nodes (Table 2).
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always within the error bars). Conversely, the shallow hybrid
structure shows systematic deviations in different process
phases for different variables. As examples, mAb, Ala, Cys, Gly,
Asn, Glu, and Thr show systematic deviations in relation to the
true profiles.

3.2.1 Comparison between training methods
In order to better understand if the differences if the models

performances are due to the training method or to the depth of the
FFNNs, the shallow hybrid structures of Table 2 were also trained
with the deep learning method (ADAM + semidirect sensitivity +
stochastic regularization) and the deep structures of Table 3 were
also trained with the classical method (LMM + Indirect sensitivity +
cross-validation). The results are shown in Figure 3. Figure 3A
shows that the final training error is comparable for both
methodologies in the case of shallow hybrid models. The testing
error tends to be slightly lower and more stable for shallow hybrid
models trained with ADAM. The LMM delivers in some cases
equally performing models but it is more unstable. For deep

hybrid models with 2 (Figures 3C–F) hidden layers, the
differences between both methods are more substantial. For deep
structures, as the model size increases the training and testing errors
of the ADAMmethod are significantly lower than those of the LMM
method. For large models (number of weights approaching 2000),
the difference between ADAM and LMM final training and/or
testing errors is as high as 100%. Contrary to ADAM, the final
training error delivered by LMM tends to increase with the number
of weights suggesting that this approach is unable to exploit the
descriptive power of deep FFNNs. However, for small FFNN
structures the LMM performs equally or better than the ADAM
method.

3.3 Hybrid deep modeling of the CHO-K1
fed-batch process

The hybrid modeling framework was applied to the 24 fed-
batch experiments collected in a process development campaign

FIGURE 3
Hybrid model final training and testing errors as function of the FFNN depth (number of hidden layer) and size (number of weights). Orange line and
orange squares—hybrid models trained with LMM + indirect sensitivity equations + cross-validation. Green line and green circles—hybrid models trained
with ADAM + semidirect sensitivity equations + stochastic regularization. (A) Training WMSE of shallow hybrid models (Table 2). (B) Testing WMSE of
shallow hybridmodels (Table 2). (C) TrainingWMSE of hybridmodels with 2 hidden layers (Table 3). (D) TestingWMSE of hybridmodels with 2 hidden
layers (Table 3). (E) Training WMSE of hybrid models with 3 hidden layers (Table 3). (F) Testing WMSE of hybrid models with 3 hidden layers (Table 3).
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to produce a therapeutic glycoprotein. Deep hybrid structures with
2 or 3 hidden layers with nodes between 3 and 30 were investigated.
For comparability, single hidden layer hybrid models with
1–18 nodes were also investigated. Given the results of the
previous section, only the deep learning method based on
ADAM, semidirect sensitivity equations and stochastic
regularization was adopted. The training hyperparameters were
kept the same as in the synthetic dataset study. The training
partition was composed in this case of 20 experiments with
7,953 training examples (83% of data). The testing partition was
composed of 4 batches with 1,593 testing examples (17% of data).
The training was repeated 10 times for each hybrid model structure
with random permutations of test/train experiments to avoid data
selection bias, with the results analyzed statistically (resampling

method). The 10 train/test permutations were kept the same in all
tests performed to ensure comparability. The overall results are
shown in Table 4. Structures with less than 8 hidden nodes did
not have sufficient complexity to describe the process, showing a
very high and unstable training error. The hybrid deep structure
(25 × 25 × 25) with 2,855 parameters showed the lowest test error
of 1.88 ± 0.44, although 39.3% higher than the training error
(1.35 ± 0.21). The best shallow structure with 17 hidden nodes
had 16.3% higher training error and more importantly 30.8%
higher test error compared to the best deep structure. As in the
previous sections, increasing the depth of the FFNN seems to be
advantageous in terms of predictive power. The lowest AICc was
obtained with the structure (25 × 25 × 25) which also had the
lowest test error.

TABLE 4 Hybrid modeling results on the experimental CHO-K1 dataset with 24 independent fed-batch experiments and 31 state variables. The activation function
in the hidden layers was the ReLU in all cases. Hybrid models were trained with ADAM (α � 0.001, β1 � 0.9, β2 � 0.999 and η � 1e−7), semidirect sensitivity
equations and stochastic regularization (minibatch size = 0.8 andweights dropout = 0.2). For each structure, the trainingwas repeated 10 times with random train/
test experiment permutations. Error metrics (WMSE-train, WMSE-test and AICc) are displayed as the mean ± SD of the 10 repetitions.

Number of hidden nodes WMSE-train WMSE-test AICc CPU time (hh:mm:ss) Number of weights

7 Unstable Unstable Unstable Unstable 457

8 25.9 ± 0.74 33.6 ± 1.14 70,000 ± 220 01:32:00 518

9 7.39 ± 0.65 9.18 ± 0.89 24,000 ± 150 01:37:00 579

10 3.54 ± 0.40 4.12 ± 0.75 9,075 ± 120 01:40:00 640

11 3.11 ± 0.36 4.09 ± 0.41 6,980 ± 80 02:05:00 701

12 2.61 ± 0.28 3.84 ± 0.62 4,650 ± 60 01:52:00 762

13 1.74 ± 0.29 2.88 ± 0.62 3,920 ± 70 02:01:00 823

14 1.68 ± 0.27 2.74 ± 0.55 3,880 ± 75 02:10:00 884

15 1.60 ± 0.28 2.66 ± 0.54 3,790 ± 60 02:15:00 945

16 1.58 ± 0.28 2.51 ± 0.50 3,775 ± 80 02:17:00 1,006

17 1.57 ± 0.27 2.46 ± 0.42 3,800 ± 70 02:21:00 1,067

18 1.58 ± 0.27 2.47 ± 0.45 4,025 ± 70 02:18:00 1,128

[5 5] Unstable Unstable Unstable Unstable 365

[7 7] 17.4 ± 0.61 26.9 ± 0.76 50,000 ± 200 01:22:00 513

[10 10] 1.57 ± 0.25 2.50 ± 0.77 3,950 ± 75 01:38:00 750

[5 5 5] Unstable Unstable Unstable Unstable 395

[7 7 7] 4.61 ± 0.31 5.61 ± 0.69 14,010 ± 100 01:16:00 569

[10 10 10] 1.41 ± 0.21 2.17 ± 0.55 3,750 ± 61 02:13:00 860

[15 15] 1.45 ± 0.22 2.33 ± 0.45 3,890 ± 70 02:21:00 1,185

[20 20] 1.39 ± 0.25 2.10 ± 0.51 3,730 ± 80 02:33:00 1,670

[25 25] 1.38 ± 0.21 2.03 ± 0.49 3,725 ± 60 02:49:00 2,205

[30 30] 1.34 ± 0.23 1.98 ± 0.43 3,630 ± 70 02:59:00 2,790

[20 20 20] 1.37 ± 0.22 2.00 ± 0.48 3,680 ± 70 02:41:00 2090

[25 25 25] 1.35 ± 0.21 1.88 ± 0.44 3,625 ± 60 03:05:30 2,855

[30 30 30] 1.34 ± 0.23 1.95 ± 0.42 3,715 ± 80 03:43:00 3,720

The bold values indicate the optimal model configuration.
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3.4 Predictive power analysis of the hybrid
deep structure (25 × 25 × 25)

The best deep hybrid structure (25 × 25 × 25) was analyzed in
more detail. Figure 4A shows the training and test errors
obtained for the 10 train/test permutations. The partitioning
of data for training and testing has indeed a significant effect on
the modeling error metrics. Partition 1 produced a low training
error but also the highest test error. Partition 2 produced the best
results with both low training and testing errors, and closely
matching each other. These results show that the process
information content is not equally distributed among the
10 randomly selected train/partitions. This problem can be
mitigated with more data added to both the train and test
partition in the future. Figure 4B further details model
predictions of all concentrations over the respective
experimental values for partition 8, which had the closest
train and test error to the respective mean values. The slope
of the linear regression as well as the Pearson correlation
coefficient (r2) of train and test data are similar. This shows
that despite the slightly larger WMSE for the test partition, there
is no significant bias when compared to the train partition data
subset.

The predicted time profiles were analyzed qualitatively for
each variable individually. Figure 5 shows the dynamic profiles
of the 30 concentrations individually for a selected test
experiment (experiment 8) predicted by the best shallow
model with 17 hidden nodes and the best deep model (25 ×
25 × 25) trained on partition 8. The deep hybrid model follows
very closely the measured data. Particularly, viable cells (Xv) and
product (P) were accurately predicted. The predictions of
metabolites are within the experimental error bars or very
close. On the contrary, predictions of the best shallow hybrid
model show a tendency to deviate outside of experimental error

bounds, especially as the cultivation progresses in time. Figure 6
shows the predicted time profiles for several test experiments for
a subset of process variables. It shows that viable cell count,
glycoprotein titer, glucose and glutamine concentrations are
always predicted within the error bars. Moreover, the switch
between lactate production and lactate consumption as well as
from ammonium production and ammonium consumption were
correctly described by the model.

4 Discussion

Hybrid modeling combining First-Principles with neural
networks is a well-established methodology in process
systems engineering since the early 90s (e.g., von Stosch
et al., 2014; Agharafeie et al., 2023). Only very recently
hybrid modeling is incorporating deep neural networks and
deep learning into its framework (Bangi and Kwon, 2020; Pinto
et al., 2022; Bangi and Kwon, 2023). Most hybrid modeling
studies of CHO cells followed the shallow approach. The
primary goal of this study was to investigate if hybrid deep
modeling is advantageous over shallow hybrid modeling in a
CHO-K1 process development context.

4.1 Is deep hybrid modeling advantageous?

In the case of the synthetic dataset the best shallow model had
(12) hidden nodes (Table 2) whereas the best deep structure had
3 hidden layers (10 × 10 × 10) (Table 3). The deep model
complexity, as measured by the number of weights, increased
only 17.9% in relation to the shallow model. The deep structure
achieved a reduction of 36.2% in the training error (WMSE-train),
48.5% in the test error (WMSE-test noisy) and 73.8% in the noise

FIGURE 4
Training results for the best hybridmodel structure (25 × 25 × 25)with 2,855weights. (A) Final training and testing error for 10 randomly selected train
(20)/test (4) permutations of experiments. (B) Predicted over measured concentrations of all biochemical species for training/test partition 8 [highlighted
in (A)]. Blue circles are training data. Green circles are test data. Full line is the linear regression. Dashed lines are the upper and lower intervals
corresponding to one standard deviation. The r2 is the Pearson correlation coefficient.
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free test error (WMSE-test noise free). All error metrics were
significantly improved with emphasis on the noise-free test error,
which clearly shows that the deep structure captured more
faithfully the intrinsic process dynamics. The CPU time was
also reduced by 20.8%. It is noteworthy to mention that the
Robitaille et al. (2015) model used to generate the synthetic
dataset included the intracellular dynamics of 21 molecular
species. The cells accumulated different amounts of intracellular
species depending on the reactor feeding conditions eventually
triggering different regulatory mechanisms. The deep FFNN is of
static nature thus a structural bias could be anticipated due to the
mismatch between the dynamic nature of the true process and the
structure of the hybrid model. This was however successfully

mitigated as reflected in the extremely low noise free test error
of extracellular concentrations (Table 3; Figure 2).

In the case of the experimental dataset the best shallow
model had 17 hidden nodes whereas the best deep structure had
3 hidden layers (25 × 25 × 25) (Table 4). The model complexity
(number of weights) increased in this case quite substantially by
167.6%. The deep structure achieved a reduction of 14.0% in the
training error (WMSE-train) and 23.6% in the teste error
(WMSE-test) on average. In this case it is impossible to
evaluate the noise-free test error reduction. Although the
magnitude of the improvement is lower than in the synthetic
dataset, it is statistically significant. Moreover, the
improvement in the test error is on average higher than in

FIGURE 5
Dynamic simulation of best shallow (17) and best deep hybrid (25 × 25 × 25) models for a test experiment of the CHO-K1 experimental dataset.
Circles are experimental data points and error bars are measurement standard deviation. Green line is the best deep hybrid model structure 25 × 25 × 25;
Blue line is the best shallow hybrid structure with 17 hidden nodes.
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the training error. The training CPU time increased in this case
by 31.6%. This increase is explained by the higher model
complexity (more 167.6% weights). It becomes clear that
CPU time increase does not scale linearly with model
complexity (number of weights). This is related with the
computation of gradients by the semidirect sensitivity
equations (Pinto et al., 2022). In this approach, the
sensitivity of state variables in relation to network outputs
are independent of the size of the network.

The results obtained for both the synthetic and experimental
datasets indicate a clear advantage of deep hybrid models over
shallow hybrid models in terms of predictive power. In both cases
the test error reduction is significant and always higher than the
training error reduction. This suggests that hybrid deep structures
capture more faithfully the intrinsic nonlinear dynamics of the true
process than the shallow counterpart when exposed to the same
training dataset. This eventually translates into more accurate
predictions of novel process conditions. This advantage is
generally accepted for standalone FFNNs (Goodfellow et al.
(2006) and is likely to generalize for hybrid models
incorporating deep FFNNs. The only downside to the deep
model in this study is the training CPU time increase. Pinto
et al. (2022) reported a decrease in prediction error of 18.4% in

a Pichia pastoris pilot process using the same training scheme,
which is close to the one reported here. In that study, the shallow
and deep structures had the same number of weights, and as such
the CPU time was also decreased by 43.4%. The CPU cost
comparison seems to be case dependent and mainly related
with the size of the shallow and deep FFNN embodied in the
hybrid model.

4.2 What is the best training method?

Two different training methodologies were compared in this
study: the classical method and the deep learning method. The
classical method is based on the LMM algorithm coupled with
indirect sensitivity equations and cross-validation. This method
is normally used to train shallow hybrid models (Table 1). The
LMM is prone to be trapped in local optima. For this reason, the
training must be repeated several times (in our case 10 times)
with different parameter initializations for each structure
investigated. The deep learning method is based on ADAM,
semidirect sensitivity equations and stochastic regularization.
ADAM is an improvement of the stochastic gradient descent
algorithms with adaptive learning rate. The method estimates the

FIGURE 6
Dynamic simulation of best deep hybrid model (25 × 25 × 25) for multiple test experiments of the CHO-K1 experimental dataset. Circles are
experimental data points and error bars are measurement standard deviation. Full lines are model predictions. The color code (symbol + full line) refers to
different test experiments of partition 8. Blue, orange, yellow and purple colors represent test experiments 1, 4, 5 and 8 respectively. (A) viable cell count.
(B) glycoprotein titer. (C) glucose concentration. (D) lactate concentration. (E) glutamine concentration. (F) ammonium concentration.
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learning rate during the training, based on the first and second
moments of the gradients (Kingma, 2014). Only very recently
ADAM was applied to train hybrid models (Pinto et al., 2022). A
key conclusion was that ADAM is less prone to be trapped in
local optima and is practically insensitive to weights
initialization. For this reason, the ADAM training was
repeated only once for each of the structures investigated,
which in theory reduces the CPU time for FFNNs of
comparable sizes. Based on the results of Figure 3 with the
synthetic dataset, the ADAM method outperforms the classical
method based on LMM both in terms of the training and test
error especially for deep and large FFNNs. The differences are
less marked for shallow and small FFNNs.

4.3What is the optimal network complexity?

Several methods have been proposed to determine the
optimal neural network size (Lawrence et al., 1996; Lawrence
et al., 1997; Teoh et al., 2006; Mohanan et al., 2022) but there is
no consensus on a general methodology. Here, the number of
hidden layers and number of nodes in hidden layers were
chosen heuristically starting with a single hidden layer with
a number of nodes equal to approximately half the number of
inputs and then increasing until the optimal size is found. This
procedure is replicated with an increasing number of hidden
layers. Adding nodes and layers obviously carries a higher
number of weights and higher complexity. Thus, choosing
the best structure must balance the decrease in error with
the increase in model complexity. It is noteworthy to
mention that the AICc criterion, which is evaluated on the
training dataset only, often fails to discriminate the hybrid
structures with the lowest test error. This is an important point
because the final hybrid model is expected to faithfully predict
unseen process conditions. Unseen process conditions mean
that the test data is not yet available. Mei and Smith (2021) have
compared probabilistic methods (the AIC and the Bayesian
Information Criteria (BIC)) with a resampling method based
on blocked cross-validation for selection of shallow FFNNs
trained on meteorological data. They concluded that these
approaches do not converge to the same conclusions, with
the AIC and BIC generally selecting simpler models than the
resampling technique. The results in this study show that the
AICc and the resampling methods pointed roughly to the same
conclusions in the case of hybrid models trained with ADAM
(Tables 3 and 4). This means that the lowest AICc score,
calculated solely on the training dataset, coincided with the
lowest test error statistics produced by the resampling method.
Both methods selected the hybrid deep structure (25 × 25 × 25)
in the case of the experimental dataset (Table 4) and the hybrid
deep structure (10 × 10 × 10) for the case of the synthetic dataset
(Table 3). The AICc failed however to discriminate the shallow hybrid
model with the lowest test error in the case of the synthetic dataset and
the LMM training method (Table 2). It clearly selected a much simpler
model in line with the results by Mei and Smith (2021). It is generally
accepted that the performance of statistical models should be assessed
using resampling methods rather than probabilistic methods

(Tashman, 2000). It is thus advisable to apply resampling methods
also in the context of hybrid modeling despite the higher CPU cost. In
both cases (synthetic and experimental datasets) the optimal depth was
3 hidden layers.

5 Conclusion

This study compares for the first time deep and shallow
hybrid modeling of a CHO-K1 fed-batch process in a process
development campaign. Data of a CHO-K1 cell line expressing a
target glycoprotein comprising 24 independent fed-batch
experiments with 30 measured state variables were used to
compare both methodologies. The results point to a
systematic generalization improvement of deep hybrid
models with FFNNs with 3 hidden layers over shallow hybrid
models. The overall improvement was 14.0% in the training
error and 23.6% in the testing error. The CPU time to train the
deep hybrid model increased by 31.6% and is mainly related to
the higher FFNN complexity. It is today generally accepted that
deep neural networks have a general advantage over
their shallow counterparts in terms of descriptive power and
generalization capacity. This study points to a similar
conclusion in a hybrid modeling context. Particularly,
deep hybrid models tend to generalize better than shallow
hybrid models provided that efficient deep learning
algorithms (such as ADAM with stochastic regularization)
are adapted to the hybrid model framework. This study
focused on FFNN hybrid structures. The combination of first
Principles equations with more complex deep neural network
architectures, such as convolution neural networks (CNN)
and long short-term memory (LSTM) networks, are future
research directions in the hybrid modeling field. Shallow
hybrid modeling is currently a method of choice in the
digitalization of biopharma processes. We expect deep
hybrid modeling to further accelerate the deployment of
high-fidelity digital twins in the biopharma sector in the near
future.
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