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Introduction: Medical imaging-based triage is critical for ensuring medical
treatment is timely and prioritized. However, without proper image collection
and interpretation, triage decisions can be hard to make. While automation
approaches can enhance these triage applications, tissue phantoms must be
developed to train and mature these novel technologies. Here, we have
developed a tissue phantom modeling the ultrasound views imaged during the
enhanced focused assessment with sonography in trauma exam (eFAST).

Methods: The tissue phantom utilized synthetic clear ballistic gel with carveouts in
the abdomen and rib cage corresponding to the various eFAST scan points.
Various approaches were taken to simulate proper physiology without injuries
present or to mimic pneumothorax, hemothorax, or abdominal hemorrhage at
multiple locations in the torso. Multiple ultrasound imaging systems were used to
acquire ultrasound scans with or without injury present and were used to train
deep learning image classification predictive models.

Results: Performance of the artificial intelligent (AI) models trained in this study
achieved over 97% accuracy for each eFAST scan site. We used a previously trained
AI model for pneumothorax which achieved 74% accuracy in blind predictions for
images collected with the novel eFAST tissue phantom. Grad-CAM heat map
overlays for the predictions identified that the AI models were tracking the area of
interest for each scan point in the tissue phantom.

Discussion: Overall, the eFAST tissue phantom ultrasound scans resembled
human images and were successful in training AI models. Tissue phantoms are
critical first steps in troubleshooting and developing medical imaging automation
technologies for this application that can accelerate the widespread use of
ultrasound imaging for emergency triage.
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1 Introduction

Medical triage is essential for prioritizing limited resources to
ensure that medical intervention can be provided to the most urgent
cases during emergency medicine. This extends to military medicine
where triage is critical for prioritizing casualty evacuation (Ball and
Keenan, 2015; Townsend and Lasher, 2018). A range of imaging-
based and differential diagnosis approaches exist for patient triage
depending on the situation and resource availability. One widely
used methodology is the Focused Assessment with Sonography for
Trauma (FAST) exam to identify free intraperitoneal fluid in the
abdomen or pericardial fluid using ultrasound (US) (Scalea et al.,
1999; Bloom and Gibbons, 2021). This exam has been adopted by
emergency departments across the world as a standard means of
rapidly identifying internal hemorrhage so that timely surgical
intervention can be administered (Rozycki et al., 1995). The
FAST exam is comprised of four scan points to assess for free
fluid as diagrammed in Figure 1 (Bloom and Gibbons, 2021):

i. Subxiphoid view for evaluating the pericardial space for free
fluid.

ii. Right Upper Quadrant (RUQ) view for assessing the hepatorenal
recess or Morrison’s pouch, liver, and lower right thorax for
abdominal hemorrhage (AH) and hemothorax (HTX).

iii. Left Upper Quadrant (LUQ) view evaluates the splenorenal
recess, spleen, and lower left thorax for AH and HTX.

iv. Pelvic view scans the rectovesical or rectouterine pouch for AH.

The FAST protocol is often extended (eFAST) to include
thoracic evaluation for identifying air in the pleural
cavity—known as pneumothorax (PTX) (Kirkpatrick et al., 2004;
Maximus et al., 2018). Untreated PTX can lead to a tension PTX
which can impact cardiac venous return and result in shock (Jalota
Sahota and Sayad, 2023). The eFAST protocol adds the following set
of scan points diagrammed in Figure 1:

v. Multiple Intercostal space views on the left and right chest to
identify lung sliding or the absence of motion due to air in the
pleural cavity (Husain et al., 2012)

As the eFAST protocol is critical for triaging a number of potential
conditions following trauma, it is essential that images are collected
and interpreted correctly so that a proper triage assessment can be
provided. As a result, image acquisition and interpretation require
extensive training. While often present in emergency medical centers,
in rural or remotemedicine and combat casualty care, when resources
are stretched thin, expertise for conducting an eFAST exam may not
exist (Harper and Myers, 2008).

In response, the eFAST protocol in part or in its entirety can be
automated to make this triage methodology more widely available
and consistent. Image acquisition automation may take the form of
augmented reality overlays to guide a user to proper scan points
(Farshad-Amacker et al., 2020), imaging feedback to direct the user
to proper scan points (Brattain et al., 2021), or utilize computer
vision guided robotics to estimate body pose (Esteva et al., 2021;
Zheng et al., 2022) and capture proper images fully autonomously.
Image interpretation automation can utilize state-of-the-art deep
learning artificial intelligent (AI) networks to create predictive
models (Krizhevsky et al., 2012; Boice et al., 2022b) that
categorically classify US images, provide masks (Hatamizadeh
et al., 2022) or bounding box overlays (Redmon and Farhadi,
2018) of regions of interest in captured images, and even
integration with ultrasound equipment for real-time deployment
for rapid triage decision making. All of these automation methods
will require large data sets to properly train and calibrate for this
triage application and, thus, require training platforms for image
acquisition and testing automation implementation.

Due to anatomical differences, this is challenging to accomplish
with animal models and not feasible to do in clinical research due to
the number of images or iterative tests needed to tune these
automation approaches. Instead, ultrasound tissue phantom
trainers are a logical starting point. Currently, there are some
commercially available FAST or eFAST training models that have
varying levels of real-time imaging capabilities. The SonoSkin
trainer (Simulab, Seattle, WA) can simulate ultrasound scanning
during an eFAST exam using a skin-like cover that can be placed
over a mannequin or person. This in turn can be scanned with a

FIGURE 1
Ultrasound scan points for the extended Focused Assessment
with Sonography for Trauma (eFAST) exam. Views include (i)
subxiphoid, (ii) right upper quadrant, (iii) left upper quadrant, (iv) pelvic,
and (v) intercostal scan points. Image obtained from creative
commons as: “Torso” by Tim Reckmann | a59.de is licensed under
CC BY 2.0 DEED and was modified to include eFAST scan location
markers.
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simulated ultrasound probe to produce images at each scan site. The
trainer includes a software system that shows predetermined
ultrasound images when the probe scans specific anatomical
locations in the skin cover (SonoSkin Ultrasound Diagnostic
Wearable for FAST and eFAST Training, n.d.). However, these
images are preloaded in the software and do not require the probe to
be placed at the proper orientation relative to the scan point severely
limiting its usability for training image acquisition and
interpretation technologies.

Other more interactive trainers allow for real-time ultrasound
scanning. Imaging Solutions (Brisbane, Australia) has a variety of
FAST pediatric and adult abdomen phantoms. These phantoms
have tissue and organs made of urethane-based resin and bone made
of epoxy-based resin. These models allow for active ultrasound
scanning of hemorrhage at imaging landmarks (Ultrasound
Abdominal Examination Training Model ABDFAN, 2023).
Similar to Imaging Solutions, CAE Healthcare (Sarasota, FL)
offers a Blue Phantom FAST exam trainer. This training model is
made of materials that mimic the ultrasound imaging characteristics
of human tissue. The model has fluid spaces around the heart,
spleen, bladder, and liver. Fluid can be inserted into these spaces by
using a tube that runs through the leg to simulate a hemorrhage
inside the abdomen (CAE Healthcare, 2022). All these models have
effective mechanisms to simulate abdominal hemorrhage but lack
the ability to simulate pneumothorax and hemothorax.

Apart from commercial trainers, some studies have focused on
developing FAST scan ultrasound models. A previous research study
(Al-Zogbi et al., 2021) developed a 3D-printed ultrasound model for
FAST scanning. The bulk of the tissue in the phantom was molded with
a combination gel, 70% Clear Ballistic Gel and 30% Humimic Gel, to
closely mimic the Shore hardness of human tissue. Organs were created
using Clear Ballistic gel and then coated with talcumpowder tomake the
organs more distinguishable during imaging. A 3D-printed
Polycarbonate (PC) skeleton was used to withstand the temperature
of the melted gel. Organ hemorrhages were developed by introducing
latex balloons filled with water at 3 anatomically correct positions (Al-
Zogbi et al., 2021). This study was able to develop a cost effective,
anatomically correct FAST phantom.However, ultrasound images of the
scan points were not shown, so it is challenging to gauge the anatomical
relevance of the model. Also, similar to the commercial trainers, this
phantom lacks the ability to perform PTX scanning.

Our research team has recently developed a tissue phantom
focused specifically on the PTX injury. In a previous study, we
developed a synthetic PTX model using a 3D-printed rib mold
combined with ballistic gel. For negative PTX conditions, healthy
breathing was simulated by sliding an aerated lung phantom against
the inner surface of the rib model. Positive PTX was simulated by
imaging the rib model with an air gap between it and the lungmodel.
Quality of the images was validated by training a classifier algorithm
on phantom images which resulted in more than 90% accuracy on
blind PTX positive and negative images captured in euthanized
swine tissue (Boice et al., 2022a). However, this phantom lacked the
complete anatomical rib structure needed for integration into an
eFAST phantom.

In this effort, we integrate AH, HTX, and PTX positive and
negative injury states into a modular tissue phantom as an improved
platform for developing and evaluating automation techniques for
the eFAST exam. The key objectives for this paper are as follows:

• Integration of positive and negative PTX injury states into a
tissue phantom

• Development of RUQ, LUQ and Pelvic views into the same
tissue phantom for positive and negative HTX and AH
viewpoints.

• Highlight proof of concept deep learning model training with
the eFAST phantom for automating image interpretation.

2 Materials and methods

2.1 Making the phantom

2.1.1 Phantom components
A full torso phantom was developed and composed of the main

internal organs that are ultrasonically viewed when performing an
eFAST exam. An open access repository containing ready-to-print 3D
datafiles was used to obtain models for: the bottom lobe of both lungs,
liver, spleen, stomach, both kidneys, bladder, rectum, ribs, costal
cartilage, and sternum (Mitsuhashi et al., 2009). Supplementary
Table S1 summarizes the material and 3D-printing method used for
each part. Fused deposition modelling printing was performed using a
Raise3D Pro2 Plus printer (Raise3D, Irvine, CA, United States), and
stereolithographic printing was done using FormLabs’ Form2 or
Form3L printers (FormLabs, Somerville, MA, United States).

Since the 3D-printed plastic organs have relatively low melting
points, a multi-step casting process was used. Each organ was first
3D-printed, and then cast with Dragon Skin 10 NV (Figures 2A, B)
(Smooth-On, Macungie, PA, United States). The Dragon Skin’s heat
resistant properties made it ideal for use with clear ballistic gel
(CBG) (Clear Ballistics, Greenville, SC, United States). Sufficient
volumes (varied by organ) of CBG were melted at 130°C and mixed
with talc powder (Fasco Epoxies, Ft. Pierce, FL, United States) at
0.25% (w/v) concentration to pour each organ mold (Figure 2C).
Specifically for the stomach, lungs, and rectum models, this same
CBG mixture was vigorously stirred before pouring to mix in and
distribute small bubbles which mimic the natural state of these air-
filled organs. Conversely, two different bladder sizes were poured
with pure CBG without talc powder, as it is a fluid-filled organ.

Once the ribs, cartilage, and sternum were 3D-printed they were
assembled using custom brackets. A schematic of the full assembly,
including organs is shown on Figure 2D. In place of the backbone,
silicone tubing with notches was used to support the posterior ends
of the ribs. To protect the inside of the thoracic cavity, rubber sheets
were sown together and attached to the ribs with wires, preventing
CBG from leaking into the cavity when pouring the bulk of the torso.

2.1.2 Casting and pouring the full torso
A torso cast was made with EpoxACast HT670 (Smooth On,

Macungie, PA, United States) using a plastic mannequin (Amazon,
Seattle, WA, United States). The mannequin was modeled after a
human male, from the upper thigh region to just above the clavicle
and placed supine into the EpoxACast HT670 resin mixture. A rim
was fixed normal to the coronal plane and attached around the
perimeter of the mannequin allowing the front contour shape to be
captured while adding depth to the cast as opposed to fully
submerging the mannequin model. This permitted space to
position the internal components within the final phantom mold.
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The bulk of the torso was made of the same CBG with 0.25% (w/v)
talc powder mixture. The ribs were placed in the empty cast, lined
with rubber sheets, and then layers of liquid CBG mixture were
poured until the ribs were covered. Layering was used to allow
bubbles to escape after each portion was poured, ensuring minimal
bubbles were trapped in the final phantom. The bulk of the phantom
was allowed to cool and fully solidify overnight.

After the bulk was ready, the area right behind the ribs was
carefully carved to remove the rubber sheets and have access to
insert the internal organs. All the carving for organ placement was
performed from the back to preserve the front and sides of the torso
for ultrasound imaging. The cavity inside the ribs was expanded to
the waistline, allowing for enough space to fit the stomach, liver,
kidneys, lungs, diaphragm, and spleen. To allow superior access to
the thoracic cavity, any neck tissue was removed, leaving the
thoracic cavity open from the superior and posterior sides of the
phantom.

A second cavity, in the pelvic area, was also carved from the back
until there was approximately 2 cm to the surface (front of
phantom). This cavity was big enough to fit both bladder sizes
along with the rectum. Carving for all areas was performed with a
scalpel blade, and a hot knife (Modifi3D, Coalville,
United Kingdom). While carving the bulk of the phantom, it was
left in the original cast for ease of mobility.

2.2 Arranging and imaging each scan point

US imaging was performed using three different US systems:
Sonosite Edge (Fujifilm Sonosite, Bothell, WA, United States),
Sonosite PX (Bothell, WA, United States), and Terason 3200t
(Terason, Burlington, MA, United States). For the chest scan
points a linear-array probe from each system was used to collect
M-mode images. All other views were scanned with curvilinear and

phased-array probes to obtain a 30 s B-mode clip of the scan points.
Additional details specific to each scan point are described in the
sections below. A polyurethane quick set foam resin (McMaster-
Carr, Elmhurst, IL, United States) platform was created to the same
dimension as the phantom cast to act as a base for the phantom to
lay on its back while US imaging.

2.2.1 Pneumothorax view
PTX baseline images were created by rotating a 2 cm wide and

1.1 cm thick foam ring under an intercostal space in the chest of the
phantom. The foam piece was fused with a cyanoacrylate adhesive
(Loctite, Düsseldorf, Germany) along the perimeter of an acrylic
gear with a diameter of 6.25 cm. The gear was then attached to the
end of the rod and placed under the intercostal space region of
interest. The rotating motion was created by an actuator (Amazon,
Seattle, Washington, United States) powered by a 12 V power supply
at 12 revolutions per minute. The motion was transferred to inside
the phantom through the neck cavity using a hex-rod. The t-rail
containing the actuator was angled to allow complete contact
between the intercostal space and the foam. Twelve evenly
spaced cuts were made to the foam midpoint in order to give the
M-mode images more granularity. Prior to imaging, US gel
(Aquasonics Enterprises, Gary, IN, United States) was applied to
the foam ring. Rotating the device resulted in baseline images as lung
motion is mimicked by rotation. PTX positive images were collected
by removing the device from view. A total of four M-mode images
for each condition, negative and positive PTX, were captured with
the three US systems.

2.2.2 Pelvic view
The bladder and rectum CBG models were attached to each

other using melted CBG and placed inside the pelvic cavity. A 10%
gelatin mixture dissolved in water and evaporated milk, with flour at
0.25% w/v concentration was added around the organs to fill out the

FIGURE 2
Process of individual organ casting and three-dimensional reconstruction of assembled body parts. (A) 3D printed left kidney in polylactic acid. (B)
Cast of the kidney made of Dragon Skin 10NV. (C) CBG organ after removal from cast. (D) 3D rendering of all body parts used, in their approximate
locations; generated using Solidworks computer aided design (Waltham, MA, United States). Each anatomical component is identified, and the vertebral
column is shown for rendering purposes only.
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space in the cavity. This mixture has been previously used to
simulate tissue in US phantoms (Hernandez-Torres et al., 2022).
The gelatin mixture was left to solidify at 4°C for approximately 2 h
covered in plastic wrap to prevent gelatin dehydration. To create
positive AH injuries, a CBG hypoechoic pocket was cast in a custom-
made 3D mold and attached between the bladder and rectum. Once
gelatin solidified, the phantom was placed supine on the foam base
for US imaging.

2.2.3 Right and left upper quadrant views
A wall was created inside the rib cavity to separate areas

designated to PTX and HTX models. The wall was created by
placing two laser cut (Dremel, Racine, WA, United States) acrylic
panels inside the cavity with CBG poured on top to create a fluid
seal. For AH and HTX models, a CBG diaphragm model was
developed by spreading melted CBG mixed with 0.25% (w/v)
flour into a thin layer. The diaphragm was then attached to the
lungs and to the ribs in the thoracic cavity of the phantom using
melted CBG. The liver, spleen, stomach, and kidneys were attached
to each other using melted CBG as pasting material in their
approximate anatomical locations. The CBG organs were then
placed inside the rib cavity. A total of 3L of the 10% gelatin
mixture simulating tissue was used to fill the cavity space around
the organs. The phantomwas held at 4°C to allow the gelatin mixture
to solidify. To create a positive HTX injury, a sheet of CBG without
any air bubbles was placed in between the ribs and lungs. For
positive AH injuries, the hypoechoic pocket used for the pelvic view
was also attached in between the liver and kidney or spleen and
kidney for RUQ and LUQ AH, respectively. Imaging was conducted
with the phantom remaining prone in its cast to maintain structural
integrity.

2.3 eFAST commercial simulator

A commercial eFAST trainer (Simulab, Seattle, WA,
United States) was used for scan point view location
confirmation and US image comparison. The trainer included
two normal patients and three patients with different injury
combinations. As the probe goes near the different scan points
the software shows representative images or videos of the region.
Some of the abdominal scan points offer longitudinal and transverse
views, as well as videos. The lung scan points have both B-mode and
M-mode images. US scans from the software were screen-recorded
and framed, using the procedure described in the next section and
shown as representative human images throughout the result
sections, for comparison.

2.4 Ultrasound image classification
algorithm training

2.4.1 Preprocessing data
All ultrasound images and clips captured were named according

to the US system they were recorded with, injury type, injury
severity, and probe used to scan. For the PTX view, images were
split into baseline and positive folders and then processed using
MATLAB R2022b (MathWorks, Natick, MA, United States). The

images were cropped to remove the user interface of each US system,
leaving only the M-mode region of interest. For cropping, pixel
coordinates of the upper corner were identified, as well as the length
and width of the window of interest. To boost the number of US
images, a 4-pixel rolling window was used for further cropping,
yielding 108 image segments per M-mode image, following the
process described previously (Boice et al., 2022a). The image
segments were then resized to 512 × 512 × 3 using MATLAB
R2022b batch image processing.

For all the other scan points, frames were extracted from each
30 s clips using ffmpeg via a Ruby script. Images for the pelvic view
were separated into baseline and AH positive folders, for binary
classification. Images for the RUQ and LUQ were split into three
categories: baseline, AH positive, and HTX positive. At this point
images were processed with MATLAB to crop and remove the
patient information and user interface of each ultrasound system.
Similar approaches were used to determine the top left corner,
width, and height pixel coordinates used for cropping. The images
were then resized to 512 × 512 × 3.

2.4.2 AI model training
A previously developed deep learning architecture, ShrapML,

was tuned for image classification of US images (Snider et al., 2022).
Briefly, the architecture is an original, Bayesian optimized,
convolutional neural network with 6 convolutional and two fully
connected layers which uses a RMSprop optimization function with
430k trainable parameters. This architecture has been used to
develop a PTX detection model (Boice et al., 2022a), which was
used to test the images obtained from the full torso tissue phantom
for the PTX scan points. The same algorithm architecture was used
to train newmodels for the other three scan points. Prior to training,
images were augmented using X-Reflection, Y-Reflection,
X-Translation (−60 to 60 pixels), Y-Translation (−60 to
60 pixels), and Image Rotation (−180 to 180°). Example images
after augmentation are shown in Supplementary Figure S1.

Training of the eFAST models was conducted using MATLAB
R2022b. Phantom images were processed according to the injury
type and were split into 70%, 10%, and 20% for training, validation,
and testing, respectively. The models were trained for up to
100 epochs with a validation patience of 5, learning rate of 0.001,
and a batch size of 32. Training was performed using either an Asus
ROG Strix running Windows 11, 12th gen 14 core i9-12900H
(2500 MHz), 16GB RAM, and a NVIDIA GeForce RTX 3070 Ti
(8 GB VRAM) or a Lenovo Legion 7 running Windows 11, AMD
Ryzen 9 5900HX (3300 MHz), 32GB RAM, and a NVIDIA GeForce
RTX 3080 (16 GB VRAM).

2.4.3 AI model performance evaluation
Performance of AI models was evaluated on blind, holdout

testing images not used during training. Confusion matrices were
created to classify testing performance as true positive (TP, correct
injury identification), true negative (TN, correct baseline
identification), false positive (FP, injury identified when not
present) or false negative (FN, injury not identified when
present) depending on the accuracy of the prediction to the
ground-truth label. These labels were used to calculate accuracy,
precision, recall, specificity, and F1 score using widely accepted
calculation approaches (Shri Varsheni, 2021), and to create
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confusion matrices for each model using GraphPad Prism (San
Diego, California). In addition, area under the receiver operating
characteristic curve (AUROC) was calculated for each label. For the
PTX view, eight previously developed replicate AI models were used
to make blind test predictions. Performance metrics were calculated
on blind test images for three trained models for RUQ, LUQ, and
pelvic AI models, and averages and standard deviations were
calculated for each metric. Images from three US machines were
merged and treated as a single training set unless otherwise specified.

In addition to performance metrics, Gradient-weighted Class
Activation Mapping (Grad-CAM) was used to assess what features
in an US image was driving the AI model prediction (Selvaraju et al.,
2017). Grad-CAM heat map overlays were created using MATLAB
R2022b for a subset of test images. “Hot spots” in the overlay
correspond to high weighted regions, driving the model prediction
for the respective US image.

3 Results

3.1 Lung view for pneumothorax detection

Diagnosis of PTX using US has key landmarks in both B-mode
and M-mode US imaging. While US scanning the full torso
phantom with the actuator running (Figure 3A), B-lines and
sliding lung were present in real-time, characteristic of healthy
breathing lungs. When scanning in M-mode, the “seashore” sign
became apparent (Figure 3B) while the actuator was running and

then converted to a “barcode” sign (Figure 3C), when the simulated
lung was no longer in contact with the pleura. The same patterns can
be observed in the commercial eFAST trainer (Figures 3D, E).

Previously trained AI models, successful at detecting PTX in
swine and simple tissue phantom M-mode images, were used to
make predictions for the image sets collected in the full torso
phantom (Boice et al., 2022a). Initial test results had
unsatisfactory performance, leading to the separation of data for
each US imaging system to provide a more granular understanding
of the results. The Sonosite Edge resulted in all the predictive PTX
models (n = 8) classifying the images as negative for PTX, resulting
in 50% accuracy (Figure 4A). However, this trend did not continue
for the other US machines, with Sonosite PX having similar rates for
both false positive and false negative outcomes and Terason being
biased toward false negative results (Figures 4B, C). The accuracy for
both systems was 85%–87% (Table 1). On average, across all the US
systems, results were heavily skewed towards a false negative
outcome (Figure 4D) due to the Sonosite Edge predictions and
had an overall accuracy of 74%.

To further evaluate differences in predictions, Grad-CAM overlay
masks were generated for test images from each US system. Similar,
features were being tracked in negative or baseline images for all US
systems, with the heat map being focused on the “seashore” sign in the
M-mode image (Figure 5). For PTX positive images, all the Sonosite
Edge images failed to detect or track any feature, while the majority of
predictions from Terason 3200t and Sonosite PX tracked the
“barcode” sign on the M-mode image segments (Figure 5). This
example highlights the variability that US systems can have on AI

FIGURE 3
Recreating a pneumothorax injury in the phantom. (A)Diagram of themechanism used to simulate a breathing lung in US for the tissue phantom. (B)
Baseline or normal (“seashore” sign) M-mode US images collected with the breathing lung mechanism in the phantom. (C) PTX positive (“barcode” sign)
M-mode US images acquired with the tissue phantom. Representative US images shown in the figure were captured by Sonosite PX. Commercial eFAST
simulator human US scans for (D) baseline and (E) PTX injury.
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predictions and the relevance of including these effects in this stage of
model development.

3.2 Pelvic view for abdominal hemorrhage

Abdominal hemorrhage diagnosed in the pelvic view looks at
blood pooling behind the bladder towards the rectum (Figure 6A).
In the tissue phantom, this was replicated by placing a hypoechoic

pocket between the bladder and rectum (Figure 6C). The pelvic view
in the full torso phantom for both baseline and AH (Figures 6B, C),
resembles the US images from the commercial trainer for the same
views and injury (Figures 6D, E), except for US image depth and
contrast.

Deep learning predictive models for the pelvic view were trained
using tissue phantom images as AI models had not been previously
developed for this imaging application. A subset of images was used for
training (70%) and validation (10%) and included images from three US

FIGURE 4
Confusion Matrices for pneumothorax model predictions on test M-mode images collected in the tissue phantom. Previously trained PTX models
(n= 8) were used tomake blind predictions. Average confusionmatrix results are shown for US images collected using (A) Sonosite Edge, (B) Sonosite PX,
(C) Terason 3200t, and (D) average results across all three US systems. Values represent the number of images classified in each confusion matrix
category (n = 432 PTX positive and n = 432 PTX negative images for each US system).

TABLE 1 Performance metrics for pneumothorax model prediction on test M-mode images collected using the developed tissue phantom.

PTX results Sonosite Edge Sonosite PX Terason 3200t Average

Average ± StDev Average ± StDev Average ± StDev Average ± StDev

Precision 0.887 ± 0.183 1.000 ± 0.000 0.944 ± 0.080

Recall 0.000 ± 0.000 0.874 ± 0.228 0.731 ± 0.166 0.535 ± 0.469

F1 0.858 ± 0.201 0.834 ± 0.124 0.846 ± 0.017

Accuracy 0.500 ± 0.000 0.857 ± 0.209 0.866 ± 0.083 0.741 ± 0.209

Specificity 1.000 ± 0.000 0.841 ± 0.327 1.000 ± 0.000 0.947 ± 0.092

Results are shown for individual US systems and as an average across the three systems. Performance metrics were averaged across n = 8 previously trained pneumothorax models and standard

deviations for these replicates were calculated.
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systems to help overcome prediction biases. Using blind test images
(20%) from all US systems, the resulting trained AI model successfully
identified true positive and negative images with a low false positive and
negative rate (Figure 7A). Evaluating Grad-CAMpredictive overlays, the
AI was tracking the region below or around the bladder for positive and
negative AH predictions which correlates with where fluid would be
found (Figures 7B, C). Triplicate deep learningmodels were trained with
a similar accuracy, 99% on average (Table 2).

3.3 Right upper quadrant view

The abdominal scan point on the right side of the abdomen can look
for HTX or AH. When the US image is shallower and focused on the

posterior, lower rib area HTX can be diagnosed by blood accumulating
within the pleural space. In the developed eFAST phantom, this was
simulated by placing a completely clear sheet of ballistic gel (Figure 8A)
between the ribs and bubbly lung, generating a HTX positive image in
our phantom (Figures 8B, C). US scan focused on the liver and kidney
looks at the region known as Morrison’s pouch for any signs of
abnormality. Here, differences are noticed if blood is pooling between
the liver and kidney (Figure 8E), as placed in the tissue phantom (Figures
8F, G). Images were similar to when comparing to the same anatomical
location in the commercial eFAST trainer human images (Figures
8D, H).

Similar to the pelvic view, anAImodel was trained for this specific
application using the previously developed ShrapML framework.
However, the model was modified to allow for three categorical

FIGURE 5
Grad-CAMoverlays for pneumothorax AImodel predictions on test images collected using the developed tissue phantom. RepresentativeUSM-mode scan
segments for eachUS systemare shownwithout andwith theGrad-CAMoverlay for (A)PTXnegative and (B)PTXpositive images. Areas of high importance to the
AI model as determined by Grad-CAM are indicated as red-yellow while lower importance regions are denoted as green-blue hues.
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FIGURE 6
Pelvic view in the eFAST phantom. (A) 3D representation of the organ arrangement for the pelvic viewwith hemorrhage. (B) Baseline image showing
the bladder and rectum. (C) Hemorrhage positive image with blood, represented by hypoechoic pocket, between the bladder and rectum. Hemorrhage
region indicated by arrow. Representative US images shown from the phantom were captured with Terason 3200t. Commercial eFAST simulator US
scans for (D) baseline and (E) AH positive.

FIGURE 7
Performance results for an AI classification model trained for the pelvic eFAST view. (A) Confusion matrix results for test images grouped into two
categories: AH positive and negative for injury. Average number of images per confusionmatrix category shown (n= 3 trainedmodels, n=297 images per
classification category). (B–C) AI model Grad-CAM overlays for representative US images for (B) AH positive and (C) negative predictions. US images are
shown without and with heat map overlay. Areas of high importance to the AI model as determined by Grad-CAM are indicated as red-yellow while
lower importance spots are denoted as green-blue hues.
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outcomes - AH, HTX, and negative for either injury. A model was
successfully trained using US images from all three US systems, with
blind image predictions identifying each of three categories with high
accuracy and without an obvious bias toward any false category
(Figure 9A). Evaluating Grad-CAM overlays, AH-positive
predictions were often focused on the area around the hemorrhage
region (Figure 9B) and HTX-positive predictions were focused on the
middle of the US scan where the thorax hemorrhage effects weremost
obvious (Figure 9C). Negative predictions had less of a consistent
focus, with most heat map attention on the organs at the center of the
US scan (Figure 9D). Overall testing accuracies for each of the three
categories were 98.6%, 98.7%, and 97.6% for AH, HTX, and negative,
respectively (Table 3).

3.4 Left upper quadrant view

Similar to the RUQ view, the LUQ scan focuses on the upper left
side of the abdomen, where HTX and AH can be diagnosed as well.
For HTX, the US diagnosis focuses on fluid accumulating between
the pleural spaces (Figure 10A) and shows as a dark fluid band
superficial to the lung, visible through an intercostal space (Figures
10B, C) in the full torso tissue phantom. The AH on the left side of
the body can be diagnosed by a dark hypoechoic strip of blood
between the kidney and spleen (Figures 10E, F), as arranged in the
US tissue phantom (Figure 10D). When compared to human US
scans (Figures 10G, H), images captured with the tissue phantom
were anatomically similar.

An approach similar to the RUQ view was taken to train a three
category—AH positive, HTX positive, and negative for both
injuries—classification model for the LUQ views. Resulting models
had a strong affinity towards true positive and true negative
predictions across the three categories (Figure 11A). The AH
positive predictions were often tracking the image region where
blood was present (Figure 11B) and HTX predictions continued
this trend of tracking the hemorrhage region but sometimes
detecting the darker area of the overall image (Figure 11C).
Negative image predictions were mostly focused on a cross-section
of the image and the absence of hemorrhage in those regions
(Figure 11D). In summary, model accuracy for the LUQ view for
the test set by category was 97.5%, 98.0%, and 98.4% for the AH-
positive, HTX-positive, and negative categories, respectively (Table 4).

TABLE 2 Summary of performance metrics for the pelvic AI model.

Pelvic results Average ± StDev

Precision 0.991 ± 0.002

Recall 0.993 ± 0.003

F1 0.992 ± 0.002

Accuracy 0.992 ± 0.002

Specificity 0.991 ± 0.002

AUCa 0.998 ± 0.001

Average results and standard deviations are shown for n = 3 trained models.
aArea Under the ROC (receiver operating characteristic) Curve.

FIGURE 8
Right upper quadrant view in the phantom. (A) 3D representation of the organ arrangement for the RUQ view, focused on HTX. (B) Baseline image
showing the diaphragm through an intercostal space. (C) HTX positive image, blood is indicated by arrow between the pleural spaces. (D) Commercial
phantom image of positive HTX. (E) 3D representation of the organ arrangement for the RUQ view, focused on AH. (F) Baseline image of the liver and
kidney. (G) AH positive image, blood indicated by red arrow separating the kidney and liver. (H) Human US image obtained from commercial eFAST
trainer. Representative phantom US images shown were captured with Sonosite Edge system.
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4 Discussion

Ultrasound imaging is a critical tool for life-saving triage
decisions during emergency and military medicine. However, the
skill threshold for US image acquisition and interpretation makes
wide use of this technology challenging. Automating US image
interpretation has the potential to lower this threshold if properly
designed, which requires large image datasets and troubleshooting
to evaluate real-time implementation of this technology. Tissue

phantoms, if properly developed, can accelerate automation
technology development by allowing initial AI model training
and troubleshooting to be possible without the need for animal
or human testing. The eFAST tissue phantom in this effort helps
meet this need by incorporating AH detection scan points with
thoracic PTX and HTX detection.

The eFAST phantom successfully integrated injury sites for four
out of the five scan areas evaluated during the exam. The PTX
methodology built on a simple 2D phantom we previously

FIGURE 9
Performance results for an AI classification model trained for the right upper quadrant eFAST view. (A) Confusion matrix results for test images
grouped into three categories: AH, HTX, and negative for both injuries. Average number of images per confusion matrix category shown (n = 3 trained
models, n = 297 images per classification category) (B–D) AI model Grad-CAM overlays for representative US images for (B) AH, (C)HTX, and (D) negative
predictions. US images are shown without and with heat map overlay. Areas of high importance to the AI model as determined by Grad-CAM are
indicated as red-yellow while lower important spots are denoted as green-blue hues.

TABLE 3 Summary of performance metrics for right upper quadrant AI model.

RUQ Results Abdominal Hemorrhage Hemothorax Negative

Average ± StDev Average ± StDev Average ± StDev

Precision 0.980 ± 0.015 0.977 ± 0.009 0.971 ± 0.006

Recall 0.979 ± 0.015 0.984 ± 0.008 0.964 ± 0.019

F1 0.979 ± 0.014 0.980 ± 0.006 0.967 ± 0.012

Accuracy 0.986 ± 0.009 0.987 ± 0.004 0.978 ± 0.008

Specificity 0.990 ± 0.008 0.988 ± 0.005 0.990 ± 0.008

AUCa 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.001

Average results and standard deviations are shown for n = 3 trainedmodels for each classification category: abdominal hemorrhage positive, hemothorax positive, and negative for both injuries.
aArea Under the ROC (receiver operating characteristic) Curve.
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developed by integrating a similar motion concept to mimic lung
motion in a realistic rib cage. Resulting images resemble those from
the prior phantom and human US scans. However, the methodology
in its current form lacks the capability of altering respiratory rate in
baseline images and the creation of lung points which are often
looked for when diagnosing PTX clinically. HTX was accurately
detected at the right and left side scan points and mimicked human
US images, while AH was detectable across three abdominal scan
points. HTX and AH can be visualized simultaneously or
independently at a scan point to create more variations in the
phantom setup when simulating an eFAST exam. The bladder
volume present at the pelvic scan point was modular to represent
a more and less full bladder as the effect of that on successfully
identifying AH at this scan point is well known (Richards and
McGahan, 2017; Rowland-Fisher and Reardon, 2021). The only
eFAST scan point not included was the subxiphoid view for cardiac
assessment. Creating an US phantom analogue that mimicked heart
motion and had realistic heart chamber structure for proper eFAST
examination was not possible with the setups needed at the RUQ
and LUQ viewpoints and PTX scan sites. Tissue phantoms exist for
the cardiac view and even hemopericardium detection which could
be used in conjunction with this tissue phantom to allow for
inclusion of this eFAST scan point (CAE Healthcare, 2022).

To demonstrate a use case for the eFAST tissue phantom, we
evaluated existing or newly trained AI models for the various scan
points using images collected in the eFAST protocol. The new models
for AH and HTX for three different scan points were successful at
accurately detecting these injuries at more than 95% accuracy for all
instances. While one of the benefits for the tissue phantom is that
these different viewpoints can be reformatted to increase subject
variability, it is still less than biological noise, so these high
performances were expected. However, efforts were taken during
AI model training to prevent overfitting. A widely used approach is to
augment image inputs so that AI models less easily focus on image
artifacts not associated with the injury. For this effort, we used
rotation, flip, zoom, translation augmentations similar to
approaches successfully used in other AI US imaging efforts
(Hussain et al., 2017; Xu et al., 2022; Snider et al., 2023). Another
approach taken was to include validation patience during training so
that training ceased if validation loss did not decrease for five training
epochs. This prevents model overfitting during 100s of training
epochs and was triggered within 20–40 epochs for all training
performed. With the limited datasets at this point, the ultimate
validation was the Grad-CAM overlays that highlight the region
on the image that is driving predictions. With the described
overfitting prevention methods, Grad-CAM overlays showed the

FIGURE 10
Left upper quadrant view in the phantom. (A) 3D representation of the organ arrangement for the LUQ view, focused on HTX. (B) Baseline image
showing the diaphragm through an intercostal space. (C)HTX positive image, blood is indicated by arrow between the pleural space and the lung. (D) 3D
representation of the organ arrangement for the LUQ view, focused on AH. (E) Baseline image of the spleen and kidney. (F) AH positive image, blood
indicated by red arrow separating the kidney and spleen. Commercial eFAST trainer LUQ US scans for a (G) baseline image and an (H) AH positive
image. Representative phantom US images shown in the figure were captured with Sonosite Edge system.
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majority of predictions were tracking proper injury locations.
However, some images continue to track image artifacts not
associated with injury, so more training data and subject variability
will be needed to further improve these developed AI models.
Regardless, this use case still highlights the potential use for this
phantom model.

Unlike the other injury conditions, we have previously
developed a model for PTX detection from segments of
M-Mode images which was successful for blind PTX detection

in swine images (Boice et al., 2022a). This deep-learning model
was only trained on a simple PTX tissue phantom. Using this
trained model, prediction performance was heterogeneous based
on US imaging system. Specifically, images from one system were
50% accurate, with every prediction failing to see a PTX injury,
while the other US systems were more than 85% accurate,
achieving slightly lower performance than the swine image
predictions at 93% (Boice et al., 2022a). Image acquisition bias
on AI model predictions is a known issue that includes medical

FIGURE 11
Performance results for an AI classification model trained for the left upper quadrant eFAST view. (A) Confusion matrix results for test images
grouped into three categories: AH, HTX, and negative for both injuries. Average number of images per confusion matrix category shown (n = 3 trained
models, n = 297 image per classification category) (B–D) AI model Grad-CAM overlays for representative US images for (B) AH, (C)HTX, and (D) negative
predictions. US images are shown without and with heat map overlay. Areas of high importance to the AI model as determined by Grad-CAM are
indicated as red-yellow while lower importance spots are denoted as green-blue hues.

TABLE 4 Summary of performance metrics for left upper quadrant AI model.

LUQ Results Abdominal Hemorrhage Hemothorax Negative

Average ± StDev Average ± StDev Average ± StDev

Precision 0.980 ± 0.029 0.951 ± 0.049 0.982 ± 0.015

Recall 0.946 ± 0.058 0.992 ± 0.011 0.971 ± 0.025

F1 0.962 ± 0.033 0.971 ± 0.026 0.976 ± 0.018

Accuracy 0.975 ± 0.021 0.980 ± 0.019 0.984 ± 0.012

Specificity 0.990 ± 0.015 0.973 ± 0.028 0.990 ± 0.015

AUCa 0.997 ± 0.003 0.997 ± 0.002 0.998 ± 0.002

Average results and standard deviations are shown for n = 3 trainedmodels for each classification category: abdominal hemorrhage positive, hemothorax positive, and negative for both injuries.
aArea Under the ROC (receiver operating characteristic) Curve.
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imaging equipment bias among other potential biases that can
limit model generalization (Drukker et al., 2023). The availability
of US technology differs, and the technology is always advancing,
so it is imperative that instrument noise be accounted for during
training to make AI models for eFAST be more robust for
implementation on multiple platforms.

There are some limitations with the eFAST tissue phantom
and trained AI models that should be noted in this work. First,
the eFAST phantom is slow to create compared to using
commercially available trainers. The bulk of the tissue
phantom housing the organs only needs to be made once, but
the gelatin embedded US imaging sites must be newly cast each
time which can take approximately 2 h to solidify prior to
imaging. Second, while the eFAST phantom contains some
subject variability, it pales in comparison to the variability
expected to be seen in a human subject population. The re-
pouring of the US scan regions can assist with this, but organ
sizes and hemorrhage severity were not varied in this work, with
the exception of the fullness of the bladder. Third, the PTX
negative lung motion can only be viewed at a single rib space; the
mechanism also does not allow for lung point generation in
which partial PTX positive and negative views are evident at a
single intercostal space, a phenomenon clinically used to identify
PTX (Skulec et al., 2021). Lastly, the AI models developed using
the eFAST phantom need to be validated and transfer-learned
with human or animal images before they are suitable for use
beyond this tissue phantom platform.

Next steps to expand on the current tissue phantom and its
applications will extend in three directions. First, the phantom
will be applied for real-time AI and US image acquisition
applications to prepare technology for eFAST automation.
This includes integration of AI with US hardware and the use
of robotics and computer vision algorithms to identify proper
scan points and acquire images. Next, the eFAST phantom will be
further updated to include an external skin layer with
recognizable features, such as nipples, to improve its use with
computer vision applications. Other improvements could include
more noise in organ size, placement, and injury severity to
expand on the robustness of the AI training potential for the
tissue phantom. Lastly, the eFAST phantom will be validated
against a wider range of eFAST US scans acquired in humans
which can be used to further improve on eFAST images or to
augment images through generative adversarial networks to
create synthetic images that merge phantom and human
images to create a better training network for deep learning
images (Creswell et al., 2018; Yi et al., 2019).

5 Conclusion

Ultrasound imaging can be a critical triage tool not just in
hospital settings but in military or more remote medicine if the
skill threshold can be lowered. Lowering this skill threshold is
critical for prolonged field care medical scenarios where trained
personnel may not always be available. With proper training
setups such as the eFAST phantom developed in this work, AI
image interpretation models and automated methodology
evaluation and troubleshooting can be accelerated. We

demonstrate this usability by training AI models to automate
US image interpretation, and these models were successfully
developed for each eFAST scan point with a high accuracy
while identifying the proper region of the image. Continuing
this research effort into real time AI integration with US devices
and pairing with means of automated image acquisition will
significantly reduce the skill threshold and allow this critical
triage tool to be more widely used.
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