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Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal
ganglion cells (RGCs) due to their capacity for simultaneous recording of neural
activity across multiple channels. However, conventional planar MEAs face
limitations in studying RGCs due to poor coupling between electrodes and
RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording
sensitivity. To overcome these challenges, we employed photolithography,
electroplating, and other processes to fabricate a 3D MEA based on the planar
MEA platform. The 3D MEA exhibited several improvements compared to planar
MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (−15.11° ± 1.27°),
as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic
charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ±
0.57). Leveraging the advanced 3D MEA, we investigated the encoding
characteristics of RGCs under multi-modal stimulation. Optical, electrical, and
chemical stimulation were applied as sensory inputs, and distinct response
patterns and response times of RGCs were detected, as well as variations in
rate encoding and temporal encoding. Specifically, electrical stimulation elicited
more effective RGC firing, while optical stimulation enhanced RGC synchrony.
These findings hold promise for advancing the field of neural encoding.

KEYWORDS

3D microelectrodes arrays, retinal ganglion cells, multi-modal stimulation, neural
encoding, electroplating

1 Introduction

Understanding how populations of neurons encode external stimuli is crucial for
unraveling the complex mechanisms underlying information processing in the nervous
system (Schneidman et al., 2011; Ng et al., 2020). Deciphering the encoding principles of
neurons relies on identifying the information contained within spike sequences and how
stimulus-related information is represented by these spikes. Within the visual system, retinal
ganglion cells (RGCs) play a vital role as the final output neurons responsible for
transmitting sensory information from the external environment (Masland, 2001;
Trenholm et al., 2013). Investigating how RGCs encode distinct information from
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external inputs will enhance our understanding of the encoding
mechanisms employed by the nervous system.

Microelectrode arrays (MEA) offer a high spatiotemporal
resolution for simultaneous electrophysiological recordings of
multiple RGCs (Marblestone et al., 2013). This versatile tool has
demonstrated significant advancements in various areas, including
visual encoding (Fiscella et al., 2015; Pamplona et al., 2022) and
visual prosthetics (Corna et al., 2021; Greco et al., 2021). However,
when applied to ex vivo retinal tissue, conventional planar MEAs
face challenges due to the curved structure of the hemispherical
retinal tissue, which can result in limited spatial resolution and
potential hypoxia for neurons located at the bottom of the electrode.
Additionally, the limited contact between planar electrodes and the
tissue leads to reduced coupling, ultimately diminishing the signal-
to-noise ratio and recording sensitivity (Reinhard et al., 2014; Fujii
et al., 2016; Ha et al., 2020). These factors collectively impact the
physiological measurements of RGCs, thereby hindering our
understanding of neuronal encoding.

The utilization of three-dimensional microelectrode arrays (3D
MEA) presents a promising solution to overcome the limitations
associated with planar MEA-based detection of RGCs (Ha et al.,
2020; Seo et al., 2020). The protruding three-dimensional structure
of 3D MEA not only enhances the coupling efficiency with retinal
tissue but also provides additional spatial capacity to effectively
mitigate tissue hypoxia, which are crucial considerations for the
cultivation and assessment of retinal tissue (Wang et al., 2010; Seo
et al., 2019). There are various methods available for the fabrication
of three-dimensional electrodes, including electroplating, etching,
3D printing, and others (Hales et al., 2020; Choi et al., 2021), Among
these methods, electroplating on planar electrodes offers a cost-
effective and highly customizable approach for the formation of
three-dimensional electrodes (Hai et al., 2010; Teixeira et al., 2021).
Researchers can selectively electroplate desired locations, choose
appropriate materials, and control the height of the electrodes based
on their specific detection requirements (Spanu et al., 2020). In our
study, this approach will be employed to monitor the
electrophysiological activity of retinas with unique structures.

Based on a comparative analysis of the performance of
commonly used biosensor materials, PtNPs were selected as the
choice for constructing three-dimensional electrode structures
(Moon et al., 2018; Chang et al., 2019). This decision was
primarily driven by their mechanical properties and stability, as
substantiated through practical experiments conducted on retinal
testing. The exceptional mechanical characteristics of PtNPs ensure
the preservation of the electrode surface structure during the delicate
process of retinal positioning, this is the key to detecting the neural
activity of RGCs. Moreover, to validate their electrochemical
capabilities, comprehensive tests were performed to evaluate the
electrochemical performance of the three-dimensional electrodes
constructed with PtNPs in comparison to planar electrodes. The
results unequivocally confirmed the superior electrochemical
performance achieved by the 3D MEA formed with PtNPs.

Using the fabricated 3D MEA, a study was conducted on the
encoding of RGCs under multi-modal stimulation. Previous
research has indicated that neurons can encode information
through rate encoding and temporal encoding (Shadlen and
Movshon, 1999; Uhlhaas et al., 2009; Saal et al., 2016). Rate
encoding refers to the transmission of neuronal information

through firing rates (number of spikes) (Mease et al., 2017).
Temporal encoding suggests that the precise timing of each spike
carries information (Mackevicius et al., 2012), such as the onset
timing of a spike (Denning and Reinagel, 2005; Lesica et al., 2006),
interspike intervals (ISI) (Butts et al., 2010), and the duration of a
firing (Marsat and Pollack, 2010). Additionally, studies have shown
that burst (Gollisch and Meister, 2008; Zeldenrust et al., 2018), the
intraburst ISI (Oswald et al., 2007), and synchronous firing across
multiple neurons also encode information (Toutounji and Pipa,
2014; Torre et al., 2016). Therefore, in this study, we conducted an
analysis of Rate encoding and temporal encoding in the retina under
multi-modal stimulation conditions.

Optical Stimulation (OS), Electrical Stimulation (ES), and
Chemical Stimulation (CS) were employed as sensory stimuli. An
analysis of the response patterns and response times of Retinal
Ganglion Cells (RGCs) was conducted under different stimulation
conditions, resulting in the identification of distinct responses
observed across the four conditions. Furthermore, variations in
spike firing rates as a measure of rate encoding in RGCs were
investigated among the different stimulation conditions. Temporal
encoding was explored by examining joint ISI distribution,
correlation, and burst count across the four conditions. Through
these comprehensive studies, valuable insights into the field of
neural encoding research are anticipated to be provided.

2 Materials and methods

2.1 Reagents and apparatus

The retinal culture medium consisted of the following
components: 120.0 mM NaCl, 5.0 mM KCl, 2.0 mM CaCl2,
1.0 mM MgCl2, 30.0 mM NaHCO3, 15.0 mM Glucose, 0.2 mM
L-Glutamate, 10 ppm Phenol red, pH 7.5. The CS reagents
utilized were 20 μM KCl. Fine ophthalmic scissors, forceps, and
bent-nose pliers (RWD Life Science, China) were utilized as surgical
instruments. The experimental animals involved in the study were
C57BL/6J mice aged between 3 and 6 weeks, obtained from Charles
River Laboratory Animal Technology Co., Ltd.

The following equipment was utilized in this study: a Cerebus
multichannel neural signal acquisition system (Blackrock
Microsystems, United States), a dual-channel flow-type perfusion
pump (Lead-2, China), an ultrapure water system (MW-D20,
China), an intelligent digital temperature controller (XMTD-
6000, China), a pressure chamber (SHD-42/10, United States), an
inverted microscope (TE2000-U, Nikon, Japan), an electrochemical
workstation (Gamry Reference 600, United States), an ultrasonic
cleaning machine (SK2200HP, China), LED light source, controller,
and fiber optics (Thorlabs, United States), and a dual-channel
electrophysiological electrical stimulator (MultiChannel,
United States).

2.2 Retinal detachment and culture

All animal experiments performed in this study adhered to the
guidelines and regulations established by the Beijing Association on
Laboratory Animal Care and were approved by the Institutional
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Animal Care and Use Committee at Aerospace Information
Research Institute, Chinese Academy of Science. Mice within the
specified age range were selected to ensure consistency in visual
characteristics across the experimental groups.

As depicted in Figure 1A, a dark adaptation period of 1 h was
provided to the mice in a dark environment. Concurrently, the
retinal culture medium was infused with a gas mixture of 95%
oxygen and 5% carbon dioxide at a temperature of 30°C for 30 min.
After completing the preparatory steps, the mice were euthanized by
swiftly performing cervical dislocation under the illumination of
dim red light. Subsequently, their eyeballs were delicately extracted
and transferred to pre-prepared dissecting dishes. Using fine
ophthalmic scissors and forceps, the eyeballs were halved along
the serrated edge, and the cornea, lens, and vitreous body were
subsequently removed. The retina was delicately separated using
forceps, transferred onto an MEA, and inserted into the detection
circuit.

To ensure the experimental success rate, the activity, and
adhesion of the retinal samples were evaluated, as illustrated in
Supplementary Figure S1. The selected retinal samples were
subjected to perfusion at a flow rate of 1 mL/min, and the
initiation of perfusion was recorded as t0. After 10 min from t0,
the activity of the retina was assessed. If the test result indicated
sufficient activity, signifying a positive outcome, the experiment
proceeded according to the predetermined experimental plan. The
entire experiment had a duration of approximately 1 hour.

2.3 Methods of sensory stimulation

Upon successful detection of the response from RGCs, a 5-min
baseline recording of spontaneous firing activity was obtained as the
control group. Subsequently, the influence of different stimulation
methods on the population response of RGCs was investigated. The
sequential order of multi-modal stimulation was as follows: OS was
administered first, followed by ES, and finally CS. Immediately after
each stimulation, electrophysiological signals were recorded for
5 min. A 5-min rest interval was incorporated after each
recording period before proceeding to the next stimulation group.

As shown in Figure 1B, for OS, a flash stimulation method was
employed to stimulate all RGCs continuously throughout the entire
duration. Each cycle consisted of 4 s, comprising a 2 s “ON” period
followed by a 2 s “OFF” period. The light source utilized in this study
was a coupled LED (Thorlabs, United States) with a wavelength
range spanning from 400 nm to 700 nm. The LED was operated at a
minimum power output of 21.5 mW. In the case of ES, a
bidirectional delayed pulse stimulation method was utilized. The
stimulation parameters were set as follows: a pulse duration (PD) of
200 µs, an inter-pulse interval (IPI) of 500 µs, and a pulse amplitude
of 300 mV. The stimulation duration was set to 1 min. During the
stimulation process, the ground electrode of the ES was connected to
the ground of the MEA interface circuit, while the stimulating
electrode was connected to the intermediate region where a
larger number of RGCs responded. CS involved the application

FIGURE 1
Schematic diagram of retinal detachment, experimental procedure, and detection circuit. (A) Experimental workflow for retinal detachment inmice.
(a) After 1 h of dark adaptation, the mice were euthanized by swiftly performing cervical dislocation under the illumination of dim red light. (b) Retinal
detachment in retinal culture medium. (c) Retinal culturemedium supplemented with 95%O2 and 5% CO2. (B) Three stimulation protocols and detection
circuit used in this study. (a) From top to bottom: electrical stimulation (ES, PD: pulse duration, IPI: inter-pulse interval), chemical stimulation (CS),
and optical stimulation (OS). (b) Retina adhered to the surface of the MEA. (c) MEA inserted into the detection circuit.
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of a high-K+ (20 µM) reagent. The reagent was directly added to the
retinal culture medium using a pipette.

2.4 Fabrication of 3D MEA

In this study, a 3D MEA was employed for recording, as
illustrated in Figure 2A, which consisted of 57 working electrodes
and one reference electrode. The electrode was fabricated on a
5 cm × 5 cm glass substrate through multiple steps of
photolithography and electroplating, as depicted in Figure 2B.
The fabrication process began with that of planar MEA
according to the previous work (He et al., 2022), and then
proceeded through steps a-d to form the three-dimensional
electrodes. The detailed fabrication steps are as follows:

Firstly, the planar MEA underwent pre-treatment. Surface cleaning
was performed using a plasma cleaner (100W, 3 min) to enhance the
hydrophilicity of the planar MEA, facilitating better adhesion of the
photoresist. Subsequently, as shown in Figure 2B-a, the spin coating was
carried out on the planar MEA to control the thickness of the
photoresist by adjusting the spinning speed. After spin coating, pre-
baking was conducted at 120°C for 3 min. Then, a photomask was used
for selective exposure in the desired window regions. Different
photoresists and thicknesses required corresponding adjustments in
the exposure time to avoid overexposure or underexposure.

Next, the development process (Figure 2B-b) was performed
using a 0.6% NaOH developer. The color change from dark red to
golden yellow in the patterned areas indicated the completion of
development, resulting in an MEA with multiple micropores.
Subsequently, as illustrated in Figures 2B-c, C, three-dimensional
microcolumns were grown in the micropores through
electrodeposition, which was accomplished using an
electrochemical workstation.

Finally, as illustrated in Figure 2B-d, the fully electroplated
electrode was released by removing the photoresist using acetone,
absolute ethanol, and deionized water, allowing the three-
dimensional electrodes to be released. By following this process,
the fabrication of the 3D MEA was completed.

2.5 Electroplating process for 3D MEA
fabrication

As shown in Figure 2C-a, the electroplating process was carried
out using a three-electrode system, where the working electrode was a
bare electrode, the counter electrode was Pt, and the reference
electrode was Ag/AgCl. The electroplating parameters, such as
applied potential, current density, and deposition time, were
carefully adjusted using an electrochemical workstation to control
the deposition rate and the size of the formed nanoparticles.

FIGURE 2
The design and fabrication of 3D MEA. (A) Illustration of the size and three-dimensional structure of the 3D MEA, comprising 57 working electrodes
and one reference electrode. (B) Fabrication process of the 3D MEA. (a) Spin coating and photolithography on a planar MEA substrate. (b) Patterned
photoresist through development to define the reactive area. (c) Electrodeposition of material to grow the three-dimensional structure. (d) Removal of
the photoresist to release the three-dimensional structure. (C) Detailed description of the electroplating process to form a 3D structure. (a)
Electroplating was performed using a three-electrode system, where the working electrode was the bare electrode to be plated, the counter electrode
was Pt, and the reference electrode was Ag/AgCl. (b) In this study, PtNPs were chosen as the electroplatingmaterial, whichwas obtained by reducing Pt4+

onto the bare electrode surface. The addition of ultrasound during this process facilitated the uniform growth of PtNPs. (c) The unmodified electrode
formed a groove after etching the insulating layer, and this groove was filled with a planar MEA. The 3DMEA, based on the planar MEA, was formed by this
process to create a three-dimensional structure.
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Figure 2C-b illustrates that the electroplating solution contained Pt4+,
which was reduced to PtNPs and grown on the electrode surface
during the electroplating process. Notably, the addition of ultrasound
during the electroplating process enhanced the concentration and
transfer rate of reactants on the electrode surface, resulting in a more
uniform deposition of PtNPs (Tudela et al., 2014). Figure 2C-c
illustrates the intended electrode structure with PtNPs deposited at
different heights. The unmodified electrode exhibited a groove
corresponding to the height of the insulating layer (The height of
the insulating layer is approximately 300–500 nm), while the planar
MEA was filled with PtNPs to eliminate this groove, but it did not
achieve a true three-dimensional structure. Through the process
shown in Figure 2B, the 3D MEA was successfully fabricated. (The
height of the electrode is determined by the thickness of the spin-
coating photoresist and the electroplating parameters).

2.6 Signal acquisition and analysis

RGC responses were recorded using a 3D MEA system, with the
retina and electrodes positioned using the inverted microscope. A
specialized retina anchor ensured stable placement. Continuous
perfusion with a culture medium containing 5% CO2 and 95% O2

maintained cell viability. OS was applied to the retina’s photosensitive
layer to elicit distinct RGC responses. RGC spikes were classified using
Offline Sorter software and the K-means clustering algorithm,

facilitating the identification of neuronal populations. NeuroExplorer
(Nex Technologies, United States) software analyzed relevant metrics,
while Origin (OriginLab, United States) and Python software visualized
the data. Data were calculated as mean ± standard error of mean.
Statistical comparisons utilized a two-tailed t-test for robust analysis. A
statistical significance of p < 0.05 was set for all analyses.

3 Results

3.1 Morphological characterization of
3D MEA

The morphology of the electrodes was characterized using
scanning electron microscopy (SEM). Firstly, we characterized the
morphology of PtNPs deposition on the electrode surface with and
without ultrasound. Figures 3A–C show the 3D structural
morphology of PtNPs formed from without ultrasound plating to
the addition of ultrasound plating, and Figure 3D shows the surface
morphology of the central region of the electrodes after ultrasound
plating in more detail, clearly demonstrating that ultrasound-assisted
electroplating leads to a more uniform and dense distribution of
detection sites. Figure 4A illustrates the current-time curves of the
electroplating process with and without ultrasound. Without
ultrasound, the deposition rate starts to decrease after
approximately 10 s. In contrast, under ultrasound conditions, the

FIGURE 3
Morphological characterization of 3D MEA. (A) Morphology of PtNPs growing adherently to the wall to form a 3D ring structure. (B) Surface
morphology of PtNPs deposition on the electrode without ultrasound. (C) Surfacemorphology of PtNPs deposition on the electrode with ultrasound. (D)
SEM image of Figure 3C magnified to observe the formation of a more compact structure of PtNPs on the electrode with ultrasound. (E) SEM image of
multiple electrode sites with protruding PtNPs formed by modification. (F) PtNPs forming a three-dimensional structure through layer-by-layer
stacking. (G) Furthermagnification of the stacking details in Panel (F) reveals the clustering ofmultiple PtNPs, forming the three-dimensional structure. (H)
Surface morphology of the electrode obtained with ultrasound in Panel (G), showing a more uniform distribution of PtNPs. (I) Morphology at the
nanoscale in Panel (H), revealing a significant number of honeycomb-like structures.
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deposition rate remains constant, maintaining an enhanced current
response curve. Subsequently, we investigated the modified
morphology of multiple electrodes after PtNPs modification, as
shown in Figure 3E, revealing multiple protruding electrode sites
that facilitate the coupling between the electrode and RGCs.

Furthermore, we characterized the surface morphology of the
three-dimensional structure formed by PtNPs on the electrode surface
and its further ultrasound treatment. As depicted in Figures 3F, G,
PtNPs formed a three-dimensional structure through layer-by-layer
stacking, but the stacking exhibited non-uniformity. As mentioned
earlier, the addition of ultrasound during the electroplating process
improved this phenomenon. Figure 3H illustrates the dispersion of the
initially deposited three-dimensional structure throughout the entire
electrode surface under ultrasound, resulting in a more uniformly
dense surface, as observed by SEM. This process was repeated
cyclically, eventually forming PtNPs with a certain height.
Figure 3I displays the nanoscale morphology of this structure,
revealing a substantial number of dense and uniform honeycomb-
like structures. This enhanced the specific surface area of the electrode,
thereby contributing to improved electrochemical performance.

3.2 Electrochemical performance
characterization of MEA

The electrochemical performance of the electrodes was
characterized using electrochemical impedance spectroscopy

(EIS) and cyclic voltammetry (CV). Figures 4B, C present the
impedance phase test results for different types of electrodes.
Compared to the bare electrode, both the 3D MEA and the
planar MEA (modified with a thin platinum film) significantly
improved the impedance and phase performance. At 1 kHz, the
average impedance of the test points decreased from 637.51 ±
25.23 kΩ (bare electrode) to 17.09 ± 4.18 kΩ (planar MEA), and
finally to 8.73 ± 1.66 kΩ (3D MEA). Simultaneously, the phase
angle increased from −82.95° ± 7.06° (bare electrode) to −33.66° ±
3.53° (planar MEA), and finally to −15.11° ± 1.27° (3D MEA)
(Figure 4D).

The CSC of the electrodes was evaluated through cyclic
voltammetry (CV) testing, as shown in Figure 4E
(Supplementary Text S1 presents a methodology for
calculating the CSC and CSCc, along with a technique for
determining the active area of the electrode). The calculated
CSC increased from 0.25 ± 0.02 mC/cm2 (bare electrode) to
4.76 ± 0.36 mC/cm2 (planar MEA), and finally to 10.16 ±
0.81 mC/cm2 (3D MEA). The CSCc has become a popular
method for determining the charging capacity of stimulating
microelectrodes. The calculated CSCc increased from 0.17 ±
0.01 mC/cm2 (bare electrode) to 3.48 ± 0.28 mC/cm2 (planar
MEA), and finally to 7.10 ± 0.55 mC/cm2 (3D MEA)
(Figure 4F). The differences observed in impedance phase,
CSC, and CSCc between the bare electrode, planar MEA, and
3D MEA highlight the advantages of the 3D protruding
structure in improving electrode performance.

FIGURE 4
Electrochemical performance characterization of 3DMEA. (A) i-t response curves during the electrodeposition process with andwithout ultrasound
conditions. (B) Impedance variation of bare electrodes, planar MEA, and 3D MEA in the frequency range of 10 Hz–100 kHz. (C) Phase variation of bare
electrodes, planar MEA, and 3D MEA in the frequency range of 10 Hz–100 kHz. (D) Statistics of impedance and phase at 1 kHz frequency for bare
electrodes, planar MEA, and 3D MEA (n = 3). (E) Cyclic voltammetry testing of bare electrodes, planar MEA, and 3D MEA. (F) Statistics of CSC and
CSCc for bare electrodes, planar MEA, and 3D MEA (n = 3).
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3.3 Evaluating the detection performance of
3D MEA

We conducted performance tests on planar MEA and 3D MEA in
electrophysiological detection experiments of RGCs. As shown in,
Figure 5A represents the test results of one channel of the planar
MEA, with the left side showing the spike trajectories within 300 s
and the right side showing the overlay of spikes after noise removal
throughout the entire time. The corresponding test results of one channel
of the 3D MEA are shown in Figure 5B. Compared to Figure 5A, the
spikes in Figure 5B exhibit significantly increased amplitude and count.

We performed statistical analysis on the data obtained from five
channels of both planar MEA and 3D MEA. Firstly, the statistical
results of the SNR are shown in Figure 5C, where the SNR of the
planar MEA is 4.08 ± 0.46 and that of the 3D MEA is 8.91 ± 0.57.
Next, we analyzed the average number of detected spikes within
5 min. The planar MEA detected 110.60 ± 3.11 spikes, while the 3D
MEA detected 410.54 ± 29.09 spikes (Figure 5D). Finally, we

examined the average peak-to-peak amplitude of the spikes. The
planar MEA had an amplitude of 114.20 ± 12.84 μV, while the 3D
MEA had an amplitude of 249.40 ± 15.99 μV (Figure 5E). These
results indicate that the detection performance of the 3D MEA
surpasses that of the planar MEA. The increased height not only
enhances the surface area, thereby improving electrode performance
but also promotes tighter adhesion to retinal tissue, leading to
improved coupling and stability (Supplementary Figure S2) (Hai
et al., 2010; Santoro et al., 2013). This further emphasizes the
beneficial role of the three-dimensional electrode structure in the
cultivation and detection of ex vivo retinal tissue.

3.4 Response patterns and times of RGCs
under multi-modal stimulations

To investigate the response of RGCs to different types of
stimuli, we sequentially performed OS, ES, and CS on the

FIGURE 5
Spontaneous firing activity of RGCs detected by the planar MEA and 3D MEA. (A) Spontaneous firing activity of RGCs detected by planar MEA. Left:
Spike firing within 300 s. Right: Stacked waveform of spikes. (B) Spontaneous firing activity of RGCs detected by 3D MEA. Left: Spike firing within 300 s.
Right: Stacked waveform of spikes. (C) Statistical analysis of the signal-to-noise ratio (SNR) between planar MEA and 3DMEA. (D) Statistical analysis of the
average number of detected spikes within 5 min between planar MEA and 3D MEA. (E) Statistical analysis of the average peak-to-peak amplitude of
detected spikes between planar MEA and 3D MEA (n = 5).
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FIGURE 6
Response patterns and times of RGCs under multi-modal stimulations. (A) Spontaneous firing activity of multiple channels in the control group
within 300 s. (B) Spike raster plot (a) and time histogram (b) within 10 s for the control group. (C) Firing activity of multiple channels under optical
stimulation within 300 s [The arrows indicate the start time of the stimulation, and the horizontal lines below the arrows represent the duration of the
stimulation. The same applies to subsequent cases. The optical stimulation is continuous throughout the entire 5 min. Light source is coupled LED,
wavelength range: 400 nm–700 nm, power: 21.5 mW (Min)]. (D) Spike raster plot (a) and time histogram (b) within 10 s under optical stimulation. (E) Firing
activity of multiple channels under electrical stimulation within 300 s (The parameters for electrical stimulation were referenced from the Methods
section, with a stimulation duration of 1 min). (F) Spike raster plot (a) and time histogram (b) within 10 s under electrical stimulation. (G) Firing activity of
multiple channels under chemical stimulation within 300 s [high-K+ (20 µM)]. (H) Spike raster plot (a) and time histogram (b) within 10 s under chemical
stimulation.
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retina, with each stimulation recorded for 5 min and a 5-min
interval between stimulations. Figures 6A, C, E, G represent the
firing patterns of action potentials within 5 min for the control
group (A), OS (C), ES (E), and CS (G), respectively. The overall
responses of RGCs varied across the four conditions. In the control
group, spontaneous firing was random, except for channel 6, where
the firing activity was relatively sparse compared to the other
channels. In the case of OS, the most significant difference from the
control group was the emergence of rhythmic firing patterns in
RGCs after stimulation. The neurons exhibited oscillatory firing
within a certain period, which has been demonstrated to encode
specific information. A detailed analysis of this phenomenon is
presented in the next section. Next, ES was applied, and similar to
OS, rhythmic firing patterns were observed. However, in this case,
the number of spikes during each period of rhythmic firing
increased, and the period of the rhythm became longer. This
effect was particularly noticeable in certain channels, such as
channels 1, 5, and 6. Finally, CS was performed by adding KCl
to the culture medium. We observed that RGCs did not respond
immediately after the stimulation for approximately 45 s. Studies
have shown that neurons require a certain level of adaptation to CS
(Montes et al., 2019), and they need time to reestablish stable firing
activity after the stimulus onset. This adaptive and recovery
process may require a specific time window, and as a result, no
firing activity may be observed for a while following the
stimulation. We speculate that this period represents the
adaptation time of RGCs.

To further analyze the differences in response times of RGCs
under the three types of stimuli, we analyzed the raster plots and
time histograms of the first 10 s following each stimulation
[Figure 6B, D, F, H, control group (B), OS (D), ES (F), and CS
(H)]. In the case of spontaneous firing, the discharges were
concentrated around 3 s and 9 s, with fewer channels exhibiting
firing around 6 s. The overall firing activity lacked periodicity. For
OS, firing was observed around 2 s, 4 s, and 6 s. The period with the
highest number of spikes was approximately 2 s, which
corresponds to half the period of the OS. This finding suggests
that the response of RGCs to OS is associated with the “ON” and
“OFF” states, representing the response of two types of RGCs.
Analysis of the 10 s response to ES revealed that RGCs exhibited
almost simultaneous responses immediately after the stimulation
onset. The response time for ES was the fastest among the different
stimuli. Additionally, within the first 5 s, there was an increase in
the firing rate, indicating that ES evoked responses from a larger
number of RGCs. However, unlike the rhythmic firing observed
during the 10 s period of OS, no periodic firing was observed
during the 10 s period of ES. Considering the entire 300 s duration,
the response period of ES was longer. Finally, for CS, it was evident
that RGCs did not respond until approximately 1 s after the
stimulation onset (The time of addition of high-K+ is the time
of stimulus onset), and this is due to the fact that it takes time for
the diffusion of high-K+ to take place, and that when acted upon
the neuron, the neuron responds by silencing in order to adapt to
this stimulus. These results demonstrate that RGCs exhibit
different response patterns to different stimuli, including
variations in periodicity, firing rate, and response time. The
specific encoding of information will be further analyzed in the
next section.

3.5 Population encoding of RGCs under
multi-modal stimulations

We first analyzed the rate encoding of RGCs under different
conditions. Supplementary Figure S3A (Control group) and
Figure 7A (From left to right: OS, ES, CS) depict the spike firing
rate heatmap of RGCs. Overall, all three stimuli increased the
response of RGCs. Among them, ES resulted in the highest firing
rate of 1.67 ± 0.74, followed by OS with a firing rate of 1.12 ± 0.34,
and CS with a firing rate of 1.11 ± 0.28. The control group exhibited
a firing rate of 0.94 ± 0.33 spikes/s (Supplementary Figure S3D).
Examining the active regions, OS enhanced the response of RGCs
across the entire visual field, as all RGCs showed a response. This
observation can be attributed to the fact that OS covered the entire
visual field. However, for ES, RGCs near the stimulation site
exhibited higher responses, significantly higher than those in
other areas. This suggests that not all RGCs were stimulated by
ES. In the case of CS following ES, it can be considered as a global
stimulation of RGCs, and therefore, the firing locations continued
from the previous firing locations.

Next, we analyzed the temporal encoding of RGCs under
different conditions. We first examined the joint ISI distribution
of RGCs. Supplementary Text S2 provides algorithm details for
joint ISI distribution. Supplementary Figure S3B (Control group)
and Figure 7B (From left to right: OS, ES, CS) displays the joint ISI
distribution for all channels, with the number of grid cells with log
counts greater than 4 near the origin being counted to visually
represent the differences among stimuli. A higher value indicates
smaller ISI and greater neuronal excitation. Therefore, compared to
the control group, RGCs exhibited increased excitability under all
stimulus conditions, with ES inducing higher excitability than CS,
which was higher than OS. Figure 7D presents the count of
neuronal firings within all 40 ms intervals in the joint ISI
distribution. The results show that ES elicited 56.25 ±
10.38 spikes firings, CS elicited 33.69 ± 8.94 spikes firings, OS
elicited 31.81 ± 7.76 spikes firings, and the control group exhibited
25.13 ± 5.38 spikes firings. This indicates that under equivalent
conditions, ES triggered a higher number of RGC firings. Moreover,
these statistical results align with the trend observed in firing rates,
demonstrating the consistency between overall firing quantity and
excitability.

Then, we analyzed the correlation between RGCs under
different conditions. We calculated the Pearson correlation
coefficient to measure the correlation between neurons and
generated a correlation matrix heatmap, as shown in
Supplementary Figure S3C (Control group) and Figure 7C (From
left to right: OS, ES, CS) (refer to Supplementary Text S3 for the
detailed algorithm). We observed that the correlation coefficients
changed most noticeably in OS and CS, followed by ES and the
control group. The statistical results are presented in Figure 7E,
illustrating the impact of different stimulus modalities on the
correlation between neurons. OS and CS induced higher
correlation, possibly due to their global stimulation nature, which
triggered more consistent RGC response patterns. On the other
hand, ES only acted on specific regions, leading to increased
heterogeneity in RGC activity and reduced correlation levels.

Finally, we analyzed the number of bursts under the four
conditions. Supplementary Text S4 describes a description of
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the burst counting algorithm. Figure 7F presents the overall
burst statistics. OS had the highest number of bursts, with a
count of 17.25 ± 1.74. The control group exhibited 14.88 ±
3.64 bursts, CS had 12.38 ± 0.78 bursts, and ES had 10.50 ±
1.31 bursts. The lower number of bursts in CS was attributed to
a silent period of RGCs, while the lower count in ES was due to
an excessively long firing period. In summary, RGCs exhibited
distinct differences in Rate encoding and temporal encoding in
response to different sensory stimuli. These encoding

mechanisms provided insights into the discrimination of
various input stimuli.

4 Conclusion

In summary, we employed a simple and scalable
microfabrication method to design and fabricate a 3D MEA for
the electrophysiological detection of RGCs. The method utilized a

FIGURE 7
Population encoding of RGCs under multi-modal stimulations. (A) Heatmap of RGCs firing rates under different stimulation (From left to right: OS,
ES, CS). (B) Joint ISI distributions of RGCs under different stimulation (From left to right: OS, ES, CS). (C) Correlation heatmap matrix of RGCs under
different stimulation (From left to right: OS, ES, CS). (D) Boxplot of the number of neural firings within 40 ms in the joint ISI distribution. (E) Statistical
analysis of correlation coefficients. (F) Boxplot of the number of bursts (n = 8).
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planar MEA as a substrate and employed processes such as
photolithography and electroplating to grow materials on the
electrode surface, thus forming a three-dimensional structure.
The selection of the appropriate electroplating material was
crucial for achieving excellent electrode performance. The chosen
material is needed to possess good conductivity, solubility, and
stability. Additionally, considering that our detection target was
ex vivo retinal tissue, which could potentially damage the electrode
structure during positioning, it was preferable for the material to also
have a certain mechanical strength.

In this study, PtNPs were chosen as the selected material.
However, it is worth noting that further research can explore
other superior electrode materials to meet different testing
requirements. Moreover, the substrate used in this method can
also be adjusted according to the specific testing needs, such as
silicon substrates or plastic substrates, which are equally applicable.
Following electrochemical performance testing of bare electrodes,
planar MEA, and 3D MEA, comparative analysis revealed that the
3D MEA exhibited superior performance in all aspects.
Furthermore, in the electrophysiological testing experiments with
ex vivo retinal tissue, the detection performance of the 3D MEA was
significantly superior to that of the planar MEA. Therefore, the
fabrication method employed in this study for three-dimensional
electrodes offers strong customization capabilities and cost-
effectiveness.

Benefiting from the excellent performance of the electrode, this
study also conducted encoding research on RGCs under multi-
modal stimulation. Specifically, we employed OS, ES, and CS as
sensory inputs to the retina to investigate the response patterns and
response times of RGCs under different inputs. We observed distinct
response patterns and response times for each type of stimulation,
such as the notable silent period observed during CS. These findings
contribute to our understanding of the regulatory function and
adaptation mechanisms of RGCs. Furthermore, we analyzed the
Rate encoding and temporal encoding of RGCs under different
sensory inputs. Regarding Rate encoding, we found that ES was
more effective than the other two stimuli in eliciting RGC firing.
This is promising news for research aiming to restore vision through
the ES of RGCs. In terms of temporal encoding, by analyzing the
joint ISI distribution, synchrony, and burst counts of RGCs, we
found that these analyses jointly encode different sensory inputs.
These analyses interact but are not substitutes for each other; for
example, we found that neuronal firing rates and excitability (joint
ISI) were higher with ES, but synchronicity and burst counts were
relatively low. It is the combined assessment of multiple methods of
analysis that can more accurately encode stimuli with different
sensory inputs. In conclusion, both our electrode fabrication
method and the encoding research on RGCs under multi-modal
stimulation are expected to invigorate the field of neural encoding.
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