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1 Introduction

Induced pluripotent stem cells (iPSCs) are remarkable scientific advances in both
regenerative and personalized medicine. Since they were first reported in 2006, iPSCs
have been seem as a promising cell source for drug screening (Rana et al., 2017; Sharma et al.,
2017), organoid formation (Nguyen et al., 2021; Wang et al., 2022), autologous cell therapy
(Sadeqi Nezhad et al., 2021; Kaneko, 2022; van der Stegen and Rivière, 2023), disease
modeling (Rowe and Daley, 2019) and precision medicine. The iPSCs are obtained by
transferring and overexpressing four transcription factors—Octamer-binding transcription
factor 4 (Oct4), SRY-Box Transcription Factor 2 (Sox2), Kruppel-like factor-4 (Klf4), and
cellular Myelocytomatosis oncogene (c-Myc)—into somatic cells (Papapetrou et al., 2009).
iPSCs not only provide self-renewing pluripotent stem cells, but also avoids the ethical issues
related to embryonic stem cell (ESC) derivation. Thus, iPSCs can be widely in autologous
transplantation, significantly reducing the risk of immune response. Meanwhile, iPSCs can
be differentiated into various cell types, including erythrocytes (Ebrahimi et al., 2020),
hepatocytes (Vallverdú et al., 2021), transplantable hematopoietic stem cells (Rao et al.,
2022), insulin-secreting β cells (Maxwell and Millman, 2021), and endothelial cells (Luo
et al., 2021), among others.

Exosomes are a type of extracellular vesicles (EVs) released by living cells under normal
or pathological conditions, ranging in diameter from 40 to 150 nm, containing secreted
active biological molecules. Exosomes play various roles in removing cell waste, regulating
cellular communication, delivering biomolecule (e.g., nucleic acid and protein, etc.), and
influencing cell state. Researchers have also capitalized on their biocompatibility and low
immunogenicity to encapsulate drugs for targeted delivery (Jing et al., 2018; Zhang et al.,
2018). Moreover, exosomes exhibit therapeutic properties, including recently discovered
anti-oxidative stress effects. For instance, exosomes have been found to inhibit 80% of
apoptosis induced by 6-hydroxy-dopamine (6-OHDA) (Jarmalavičiūtė et al., 2015).

Notably, exosomes secreted by iPSCs are applied widely and outstrip the limitation. It
provides a viable replacement to cell-free therapy for iPSC medicine. At present, iPSC-Exo
shows great potential in skin anti-aging and wound healing. Tang et al. loaded exosomes of
mesenchymal stem cell derived from iPSCs (iPSC-MSC) into thermosensitive chitosan-
based hydrogel to achieve sustained-release exosomes and effectively downregulate the
mRNA expression of collagens (type I α1, type V α1 and type V α2) in corneal stroma, reduce
scar formation in vivo (Tang et al., 2022). Bo et al. reported that injecting exosomes of iPSCs
derived keratinocytes subcutaneously around wound sites could accelerate wound healing
(Bo et al., 2022). Besides that, recent studies have evaluated effect of iPSC-Exo on the
expression of matrix-degrading enzyme matrix metalloproteinase-1 (MMP-1), matrix
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metalloproteinase-3 (MMP-3), and Collagen Type I at mRNA Level.
After iPSC-Exo treatment, the positive expression of senescence-
associated β-galactosidase (SA-β-Gal), a biomarker of senescent
human dermal fibroblast (HDF), was significantly reduced (Oh
et al., 2018). Meanwhile, establishing iPSC models for
complicated diseases is helpful to explore the pathological
mechanism and therapeutic regimen. To give an example, bipolar
I disorder (BP) is a serious recurrent mood disorder characterized by
alternating episodes of mania and depression. Attili et al.
transformed the skin of BP patients into iPSCs, and then
established an iPSC model of BP using exosomes derived from
iPSC astrocytes (Attili et al., 2020).

Although significant progress has been made in clarifying the
mechanisms of iPSCs and related exosomes, much of the research
remains in the laboratory preparation stage. However, a major
obstacle in translating these advances into clinical applications is
the inability to consistently and stably obtain high-quality exosomes.
The increased production of iPSCs and their exosomes poses
numerous challenges. This article will focus on the research
progress of optimizing the whole process of upstream and
downstream production, and discuss the limitations and
challenges faced by iPSCs-derived exosomes in large-scale
production and application.

2 Biogensis

Biogenesis is the upstream stage of the cell and exosome
production process, and the biomass will directly impact the
subsequent processes and the final yield. By enhancing the
production conditions, we have the opportunity to obtain
cells and exosomes with amplified specific properties (Yan
and Wu, 2020). Various methods that may facilitate
the biogenesis of exosome production are summarized in
Table 1.

2.1 3D culture

Currently, several three-dimensional (3D) culture methods have
been introduced, including hanging drop, microwell, hydrogel,
scaffold, spinner flask, and hollow fiber bioreactor (Feng et al.,
2022). 3D culture enables the harvesting of higher yields and
improves the therapeutic effectiveness of exosome products.

Tissue engineering scaffolds made of calcium phosphate,
nanofibers and surface-modified polymer nanoparticles can
effectively increase the derivatization efficiency. The 3D
microenvironment provides support for the assembly of derived
organoids (Li Y et al., 2017). In a study by Patel et al., cells were
inoculated onto 3D scaffolds, which offered a large cell growth area
due to the stacking of pillars. The dynamic culture with active
transport of nutrients and gases on the pillars, combined with media
perfusion at a flow rate of 4 mL/min in a bioreactor, significantly
increased EV production (Patel et al., 2019). Furthermore,
microencapsulation provides protection against shear stress and
prevents iPSC differentiation. This 3D culture approach holds the
potential to achieve large-scale iPSC production (Horiguchi et al.,
2014).

Hydrogel can also be used for 3D culture. Studies have shown
that the 3D environment constructed by gelatin methacryloyl
hydrogel (GelMA) can simulate the biological niches of MSCs,
significantly improve the cell stemness of MSCs, and thus
increase the yield of 3D-Exo (Han et al., 2023). Additionally, Yu
et al. designed a 3D culture model using collagen hydrogel and
observed that the 3D microenvironment provided by the hydrogel
significantly augmented exosome production and exosomal
osteoinductivity both in vitro and in vivo (Yu et al., 2022).

Suspension culture based on microcarriers is currently the most
suitable platform for 3D stem cell culture and has found extensive
use in commercial production. Common materials include glass,
acrylamide, polystyrene, collagen and alginate (Tavassoli et al.,
2018). At the same time, bioreactor matching microcarriers can
further increase production. One example of a commercial
microcarrier is 3D TableTrix™, which can be used directly
without the need for re-sterilization. After adding the medium, it
absorbs water and swells, stirring and dispersing into a free single
microcarrier. The adipose-derived hMSCs can be amplified more
than 500 times in 1 L bioreactor within 11 days (Yan et al., 2020).
However, the introduction of microcarriers in the 3D cultivation
process may lead to sample contamination with particles of similar
size to exosomes, making it difficult to separate them using
ultrafiltration or differential centrifugation, resulting in
compromised exosome quality. Detailed research into the impact
of different materials and microenvironments on exosome quality is
necessary to ensure consistent yield and quality (Tavassoli et al.,
2018). The significant advantage of spinner flasks and bioreactors is
that they are expected to achieve continuous automation and are
suitable for industrial mass production of exosomes. The hollow
fiber bioreactor FiberCell System (C2025, Frederick) contains
thousands of hollow fiber and the hydrophilic polysulfone
membrane surface area of up to 3,000 cm2 (Cao et al., 2020).
Hollow Fiber bioreactor 3D-Exos yields 7.5 times more than 2D-
Exos and has greater ability to repair cartilage defects (Yan and Wu,
2020). The ports reserved on the BioBLU 1c disposable bioreactor
produced by Eppendorf were used to sample, inoculate and add
media, add defoamers and other substances, respectively (Jossen
et al., 2019). Researchers at a hospital in Shenzhen have established a
detailed protocol for the production of large amounts of Good
Manufacture Practice (GMP)-grade exosomes from synovial fluid
mesenchymal stem cells using a 3D bioreactor (The Rotary Cell
Culture System) (Duan et al., 2022). 3D-exo harvested from
Commercial 3D culture platform BioLevitator (Hamilton
Bonaduz AG) equipping with alginate micro-carrier cell culture
system has better effect of anti-apoptosis (Jarmalavičiūtė et al.,
2015).

3D cell spheroids can be harvested using ultra-low attachment
tissue culture flasks. Hu et al. collected exosomes derived from these
three-dimensional spheres (3D HDF XOs) which expressed
significantly higher levels of tissue inhibitor of metalloproteinase-
1 (TIMP-1). They demonstrated the efficacy in restoring collagen
synthesis ability and anti-aging in vitro. The secretion of 3D HDF
XOs also changed significantly. For example, the expression of
vascular endothelial growth factor (VEGF) in HDFs was 22 times
higher in 3D culture system (Hu et al., 2019). A similar spheroid
formation was achieved by coating with poly (2-hydroxyethyl
methacrylate) (poly HEMA) followed by culture. The expression
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TABLE 1 Various methods that may promote biogenesis of exosome.

Method Principle Case Cell type Effectiveness Referrence

3D scaffolds Increase the culture area 3D-printed scaffold
consisting of a pillared array

ECsa EVb production↑ Patel et al. (2019)

Spheroid Change the cell morphology and
density, hypoxia inside the sphere

promotes the biogenesis of exosomes

Ultra-low attachment tissue
culture flask

HDFc VEGFd and other cytokines↑ Hu et al. (2019)

Flask coating with poly
HEMAe

HDF yield↑ specific property↑ Kim M et al. (2018)

Hydrogel Simulate the biological niches of stem
cells

GelMAf MSCsg improve the cell stemness,
yield of 3D-Exo↑

Han et al. (2023)

Microcarriers Adhesion to microcarriers in
suspension cultures promotes the

production of exosomes

3D TableTrix™ AD-hMSCsh Operating costs↓ Yan et al. (2020)

Bioreactor Systems Suspension-Cultivation of iPSCs in
bioreactors with controlled conditions

Hollow fiber bioreactor
FiberCell System

MSCs Increase the total yield by
19.4 times

Cao et al. (2020)

BioBLU 1c disposable
bioreactor

iPSCs-MSCsi larger amounts of MSC
exosomes were produced

over time

Ivirico and Sha (2020)

The Rotary Cell Culture
System

synovial fluid
mesenchymal stem

cells

Obtained large-scale
exosomes

Duan et al. (2022)

Gene modification Overexpression of exosomal
biogenesis-related genes

Overexpression of ALIXj iPSCsk Manipulate iPSCs for
production of exosomes

Sundar et al. (2019)

HSP20l-transgenic Cardiomyocytes Promotes the production of
protective exosomes with

TSG101m

Zhu et al. (2022)

Overexpression of
TSPAN6n

Non-neuronal cells Size of endosome↑ Number
of ILVo↑

Blanchette and Rodal
(2020)

Stimulation Mimics the microenvironment of
injured tissues, enhancing exosome

production

Hypoxia MSCs Production efficiency of
exosomes↑

Kim M et al. (2018)

Serum-free culture iPSCs-MSC Large-scale production of
exosomes

Kim S et al. (2018)

Acoustic stimulation mammalian cells 8–10 fold enrichment in the
number of exosomes

Ambattu et al. (2020)

Ion-oxide magnetic
nanoparticles

MSCs Interfering with the
endocytosis process and
stimulating exosome

secretion

Park et al. (2020)

Molecular
Interference

Chemical Inducers

Regulating mechanisms of exosome
secretion, trigger specific signaling
pathways and enhancing exosome

production

LPSP, N-methyldopamine,
noradrenaline and

adiponectin

MSCs yield↑ specific property↑ Ti et al. (2015), Wang
et al. (2020), Kita and
Shimomura (2021)

aECs: endothelial cells.
bEV: extracellular vesicles.
cHDF: human dermal fibroblast.
dVEGF: vascular endothelial growth factor.
eHEMA: 2-hydroxyethyl methacrylate.
fGelMA: gelatin methacryloyl hydrogel.
gMSCs: mesenchymal stem cells.
hAD-hMSCs: adipose-derived hMSCs.
iiPSCs-MSCs: mesenchymal stem cell derived from induced pluripotent stem cells.
jALIX: Apoptosis-linked gene-2, interacting protein X.
kiPSCs: induced pluripotent stem cells.
lHSP20: heat shock protein 20.
mTSG101: tumor susceptibility gene 101.
nTSPAN6: Tetraspanin-6.
oILV: intraluminal vesicles.
pLPS: lipopolysaccharide.
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of F-actin of exosomes was significantly reduced, resulting in the
docking of the membrane fusion site and the fusion of the vesicle
membrane with the plasma membrane for exocytosis, attributed to
the depolymerization of F-actin (Kim M et al., 2018). The change in
cell morphology within the 3D cultured spheres, where some cells
transitioned from narrow strips to round shapes, led to a decrease in
cell culture density and consequently higher exosome production.

2.2 Gene modification

Exosomes contain CD63, CD9, CD81, Apoptosis-linked gene-2
interacting protein X (ALIX), heat shock protein 70 (HSP70) and
tumor susceptibility gene 101 (TSG101), which can be used as
molecular markers for detection (Kalluri and LeBleu, 2020).
ALIX overexpression in iPSCs was achieved by CRISPR-Cas9 and
lentiviral transduction, resulting in exosomes that were more
effective in enhancing cell viability (Sun et al., 2019).
Overexpression of Tetraspanin-6 (TSPAN6) in non-neuronal cells
increased the size of endosomes and the number of intraluminal
vesicles (ILVs), which are related to exosome biogenesis (Blanchette
and Rodal, 2020). Exosomes derived from HSP20-transgenic
cardiomyocytes protect the heart against stress-induced
cardiomyopathy and promote the production of exosomes in
combination with TSG101 (Zhu et al., 2022).

2.3 Stimulation

Simulating the damaged microenvironment activates stem cells to
obtain exosomes with enhanced production and therapeutic
functions. Specifically, hypoxia, serum-free cultivation, and other
means are conducive to large-scale production (Kim S et al., 2018).
Physical stimulation such as the shear stress of bioreactors and
acoustic stimulation also activate cells (Feng et al., 2022). In
addition, liposome-cell collisions and endocytosis of magnetic
nanoparticles combined with magnetic fields promote exosome
secretion (Debbi et al., 2022). Certain viewpoints propose that
mild hypoxia caused by cell accumulation in the spheroids leads to
increased exosome secretion and angiogenesis potential of MSCs
(Hazrati et al., 2022). Exosome production is most efficient as the
size of the spheroid increases, as reported. This may be due to hypoxia
in the center of the sphere, and hypoxic conditions can stimulate stem
cells to secrete exosomes. However, the efficiency of exosome
production decreases when the sphere size is too large, meaning
spheroid cells cannot grow without restriction (Kim M et al., 2018).

2.4 Molecular interference

Maintaining the pluripotency of iPSCs is related to the type and
concentration of cytokines in the culture medium, such as the
transforming growth factor-beta (TGF-β) superfamily proteins,
including TGF-β protein, activins, and bone morphogenetic
proteins (BMPs), which also play a crucial role in maintaining
the pluripotency of iPSCs. However, some studies have pointed
out that more than a certain limit of activin A can induce iPSCs
differentiation (Horiguchi and Kino-oka, 2021). In addition, the

antagonist Noggin, together with bFGF, inhibits the differentiation
induction of BMP4 and maintains pluripotency (Xu et al., 2005).
Soluble cytokines like lipopolysaccharide (LPS),
N-methyldopamine, noradrenaline and adiponectin can affect the
size and production of exosomes (Ti et al., 2015; Wang et al., 2020;
Kita and Shimomura, 2021). However, the agents may be
internalized into exosomes and cause otential physiological
hazards (Attili et al., 2020).

3 Extraction and purification

After large-scale production of exosomes, they also need to be
extracted, purified and properly stored, which will greatly affect the
yield of exosomes. Therefore, the optimization of downstream
processes is necessary to improve their efficiency (Kimiz-
Gebologlu and Oncel, 2022). Currently, the common separation
and purification methods include differential ultracentrifugation,
ultrafiltration, Size Exclusion Chromatography (SEC),
Immunocapture and microfluidic technology (Wang et al., 2021).
It is important to note that the extraction process needs to maintain
a low temperature to inhibit enzyme activity and prevent the
dissociation of exosomes. Differential centrifugation is widely
used for general exosome separation. However, it is time-
consuming, requires expensive equipment, and has the defect of
co-precipitation of non-exosome particles (Li P et al., 2017).
Exosome surface proteins specifically bind to cognate antibodies
such as CD63, on functionalized magnetic beads to achieve targeted
separation. Specific subgroups can be separated, but the sample
volume is low. Haraszt et al. extracted exosome CM using tangential
flow filtration (TTF) technology, filtered it through a 0.2 mm
polyethersulfone (PES) membrane, and passed it through a 500-
kDa cutoff TFF cartridge (MidiKros mPES 115 cm2, D02-E500-05-
S) further increased the production of exosomes produced by 3D
cultured cells by 7 times, and the efficacy of siRNA delivery was also
increased by seven times (Haraszti et al., 2018). Large-scale
collection of natural and synthetic exosomes can be
accomplished by microfluidic technology, which can also be
applied to hydrogels and bioinks (Amondarain et al., 2023)
(Amondarain et al., n. d). An integrated chip combining
microfluidics and acoustics can automate rapid exosome
separation and can be coupled with downstream exosome quality
assessment units, significantly enhancing exosome production
efficiency and quality control (Wu et al., 2017). For now, quality
control revolves around aspects such as size distribution, protein
analysis, and RNA quantification. Ultimately, after undergoing
structural and biological stability evaluation, “GMP-grade
exosomes” can be obtained (Yao et al., 2019).

4 Preservation

Currently, the preservation methods for cells and exosomes
mainly include freezing, freeze-drying and spray drying (Li Y
et al., 2017). Cryopreservation leads to a substantial decline in
the viability and pluripotency of iPSCs cells, along with the loss
of exosomes, resulting in reduced yield and limitations in
production scale.
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Many studies on exploring new cryoprotectants (CPAs) to
reduce toxicity and improve the survival rate are carried out (Liu
et al., 2021). Disaccharide CPA is the safest solution for exosomes,
and trehalose is considered the most effective (Zhang et al., 2020).
Recently, trehalose has been proposed as a cryoprotectant, and the
morphology and function of EVs after cryopreservation have been
greatly improved (Budgude et al., 2021). Mohamed Bahr et al. utilize
sodium carboxymethylcellulose (NA-CMC) as a carrier and CPA for
exosome-containing medium. This approach demonstrates effective
protection even when stored at −20°C, serving as a promising
method for the cryopreservation and transportation of exosome
products (Bahr et al., 2021). Meanwhile, embedding Dopamine
neurons derived from iPSCs into microcapsules can effectively
improve the survival rate of cells after cryopreservation, which
will be a potential solution for the large-scale cryopreservation of
iPSCs (Konagaya and Iwata, 2015).

5 Conclusion

With the development of biotechnology, the clinical application of
iPSCs and exosomes has gradually dawned. We have described and
discussed the critical steps involved in the large-scale production of
iPSCs and exosomes, including biogenesis, extraction, purification, and
preservation. Additionally, we have summarized the current advances
in optimizing these steps. The utilization of 3D culture within a
bioreactor tank offers promising opportunities for the mass
production of both cell therapy and cell-free therapy based on iPSCs
and iPSCs-derived exosomes, but also, with the assistance of gene
editing technology, molecule interference, the provision of physical
stimulation, and the development of downstream processes that
integrate techniques like TTF and microfluidics for separation and
purification, along with novel cryopreservation strategies, further
expands the prospects for the development of iPSCs-derived
exosomes. Nevertheless, there is currently no universally accepted

standard specification for the industrialization process of 3D culture.
It is anticipated that this approach will be implemented within the
biopharmaceutical industry to increase yield and decrease costs. These
efforts will contribute to the development of iPSC-related screening
models and the market of iPSCs and exosomes.
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