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Numerous elderly folks reside alone in their homes. Seniors may find it difficult to
ask for assistance if they fall. As the elderly population keeps growing, elderly fall
incidents are becoming a critical public health concern. Creating a fall detection
system for the elderly using IoT and blockchain is the aim of this study. Data
collection, pre-processing, feature extraction, feature selection, fall detection, and
emergency response and assistance are the six fundamental aspects of the
proposed model. The sensor data is collected from wearable devices using
elderly such as accelerometers and gyroscopes. The collected data is pre-
processed using missing value removal, null value handling. The features are
extracted after pre-processed data using statistical features, autocorrelation, and
Principal Component Analysis The proposed approach utilizes a novel hybrid
HSSTL combines Teaching-Learning-Based Optimization and Spring Search
Algorithm to select the optimal features. The proposed approach employs
TriNet, including Long Short-Term Memory, optimized Convolutional Neural
Network (CNN), and Recurrent Neural Network for accurate fall detection. To
enhance fall detection accuracy, use the optimized Convolutional Neural Network
obtained through the hybrid optimization model HSSTL. Securely store fall
detection information in the Blockchain network when a fall occurs. Alert
neighbours, family members, or those providing immediate assistance about
the fall occurrence using Blockchain network. The proposed model is
implemented in Python. The effectiveness of the suggested model is evaluated
using metrics for accuracy, precision, recall, sensitivity, specificity, f-measure,
NPV, FPR, FNR, and MCC. The proposed model outperformed with the maximum
accuracy of 0.974015 at an 80% learning rate, whereas the suggested model had
the best accuracy score of 0.955679 at a 70% learning rate.
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1 Introduction

The world’s expanding elderly population is known to be one of the main causes of
physical, psychological, and financial problems, and an exponential rise in falls is widely
acknowledged as one of these problems (Shahzad and Kim, 2018). The most effective
technique to lessen the severe effects of a fall while ensuring user convenience is through an
IoT-based wearable solution (Gia et al., 2018). Several wearable fall detection systems have
been developed on the basis of machine learning models to provide emergency alarms and
services to improve safety and health-related quality of life (Liu et al., 2018). Context-aware
systems and wearable technology make up the two kinds of fall detection (FD) systems. FD
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has been extensively studied using context-aware systems (video
systems). Wearable technology must be adopted, though, given the
large number of elderly people and their desire to live freely in their
own homes (Khojasteh et al., 2018). The most common direct effects
of falls are fractures and other chronic ailments, which can result in
disability and loss of freedom, as well as psychological fear of falling
again (Clemente et al., 2019). Elderly adults who fall suffer from
slight to serious injuries in addition to financial pressure and mental
stress (Chen et al., 2020). Falls are the most common accident cause
for senior citizens who live independently. Timely and accurate fall
detection is crucial to reducing injuries and preventing fatalities (Lee
and Tseng, 2019). Fall Detection Systems (FDSs) have as their
primary goal the implementation of online (continuous)
monitoring of vulnerable persons to detect happening falls and
thereafter issue automatic help requests so that timely assistance
may be provided (Musci et al., 2018). A significant public health
danger for senior people around the world is falling.

The system automatically responds by sending messages to the
organisations in charge of caring for the elderly when a fall is
detected (Yacchirema et al., 2018). According to US Centres for the
World Health Organisation (“WHO”), falls are the second greatest
cause of unintentional injury mortality, with an older patient being
admitted to the hospital every 11 s. Wearable devices, ambient
devices, and vision-based sensors are the three basic categories
into which automatic fall detection systems fall (Zitouni et al.,
2019). When an accident like a fall happens, fall detection aims
to automate the alarms and notification system and offer aid.
Automatic fall detection and alerting the designated carer are the
main goals of fall detection apps (Al-Rakhami et al., 2021). Over the
past 20 years, a number of fall detection techniques have been
investigated and discovered. For fall detection and prevention,
different algorithms and sensor types (such as wearable,
environmental, and visual) have been examined (Al Nahian et al.,
2021). The urgency of fall detection for senior safety is underscored
by alarming statistics revealing its substantial impact on public
health. Research indicates that falls are a leading cause of injury-
related hospitalizations and fatalities among the elderly population.
Each year, a significant percentage of senior’s experience fall
incidents, imposing not only physical harm but also burdening
healthcare resources. In light of these compelling facts, our research
endeavors to develop a robust fall detection system. The imperative
for fall detection systems among seniors gains further weight when
considering the sobering statistical landscape and its consequential
impact on healthcare resources. Statistics reveal that falls constitute a
significant public health challenge, with one out of every four older
adults experiencing a fall each year. These incidents lead to more
than 3 million emergency department visits, resulting in over
800,000 hospitalizations annually in the United States alone.

Elderly healthcare issues have received a lot of attention, particularly
fall accidents because they can result in fractures and have catastrophic
repercussions. Therefore, it is crucial for both older persons and those
who care for them to effectively detect fall accidents (Lu and Chu, 2018).
A collection of sophisticated fall detection systems for the elderly must
be created. Gyroscopes and accelerometers, which are inertial sensors,
are used to monitor old people’s movement. Some researchers
incorporate the sensors in shoes to make it easier to wear the sensor
and prevent it from interfering with daily living. Digital cameras are
typically employed to record falls in order to increase the detection

accuracy (Liu et al., 2020). In order to employ classifiers or other types of
AI to determine the patient’s present condition, wearable devices are
focused on the user wearing some sort of gadget with embedded sensors
that monitor changes in posture and bodymovement (Taramasco et al.,
2018). The rise in elderly living alone highlights the urgent public health
issue of fall incidents among them. Such falls have dire consequences,
leading to hospitalizations and fatalities. Existing fall detection systems
often suffer from delays, false alarms, and inadequate notifications. To
address these shortcomings, this study proposes an innovative solution
combining IoT, deep learning, and blockchain for accurate and timely
fall detection, significantly enhancing elderly safety.

The motivation behind developing the IoT-Blockchain
Empowered TriNet, an optimized fall detection system for elderly
safety, is driven by the pressing need to ensure the wellbeing and
security of older adults in an aging society. Falls among the elderly
population pose significant risks, including severe injuries, reduced
quality of life, and increased healthcare costs. As the population
continues to age, it becomes imperative to develop innovative
solutions that empower older adults to lead independent lives
while providing peace of mind to their families and caregivers.
The choice of the IoT-Blockchain Empowered TriNet system stems
from its unique features and capabilities, which make it a promising
solution in addressing the safety concerns of the elderly: Firstly, the
system integrates advanced sensors within the living environment of
older adults, utilizing the power of IoT technology. These sensors are
capable of detecting changes in motion, orientation, and
environmental conditions, enabling precise and real-time fall
detection. Secondly, the TriNet system continuously monitors the
data collected by the sensors, leveraging intelligent algorithms to
analyze patterns and identify potential falls. In the event of a fall,
immediate alerts are sent to caregivers, family members, and
emergency services, facilitating prompt assistance and reducing
response times. Thirdly, the system’s combination of IoT technology
with blockchain enhances accuracy and reliability. The distributed
ledger of blockchain ensures secure and tamper-proof data storage,
increasing trust among stakeholders and enhancing the overall reliability
of fall detection. Moreover, the TriNet system prioritizes privacy by
design, safeguarding sensitive health information through secure storage
and authorized access. The decentralized nature of blockchain
technology further strengthens security measures, reducing the risk
of data breaches and unauthorized access. Additionally, the vast amount
of data collected by the TriNet system can be utilized for long-term
analysis, providing valuable insights into fall patterns, risk factors, and
preventive measures. This data-driven approach empowers healthcare
professionals and researchers to develop tailored interventions and
improve the overall wellbeing of the elderly population.

This study has three primary objectives. Firstly, it aims to create
a robust fall detection system utilizing IoT sensor data and advanced
machine learning techniques, such as Long Short-Term Memory
(LSTM), optimized Convolutional Neural Network (CNN), and
Recurrent Neural Network (RNN). The system’s purpose is to
swiftly identify fall incidents, enhancing the safety of elderly
individuals. Secondly, the research strives to establish a secure
and efficient blockchain-based mechanism. This mechanism not
only securely stores fall detection data but also enables prompt
response and aid in case of falls. By leveraging this blockchain
network, emergency care providers, neighbors, and family members
can be quickly notified, allowing for timely intervention. Thirdly, the
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performance of the proposed model will be comprehensively
validated using a diverse dataset and an array of evaluation
metrics including accuracy, precision, recall, sensitivity,
specificity, F-measure, Negative Predictive Value (NPV), False
Positive Rate (FPR), False Negative Rate (FNR), and Matthews
Correlation Coefficient (MCC).

Additionally, this study pursues several secondary objectives. One
focus is on investigating the efficacy of various feature extraction
methods, encompassing statistical features, autocorrelation, and
Principal Component Analysis (PCA). These methods are explored
to effectively capture crucial information from wearable sensor data.
Furthermore, the research delves into a hybrid optimization approach,
merging the Spring Search Algorithm (SSA) and Teaching-Learning-
Based Optimization (TLBO), to conduct feature selection. The impact
of this approach on model performance is compared with traditional
feature selection methods. An in-depth analysis of the individual
contributions of components within the TriNetmodel, which includes
LSTM, optimized CNN, and RNN, will offer insights into their
distinct roles in bolstering fall detection accuracy. Lastly, the study
assesses the practical feasibility of implementing the proposed system
in real-world scenarios. This assessment factors in aspects such as
device compatibility, battery durability, and the mitigation of false
positives and negatives. Through these objectives, the study strives to
address the critical concern of fall incidents among the elderly using
innovative technology solutions.

The foremost contribution of the research work is:

• To identify the optimal features from the extracted set, the
feature selection phase utilizing a hybrid optimization model
HSSTL. The goal is to select the most relevant features for the
fall detection system using this hybrid model.

• The integration of TriNet, which includes the LSTM,
optimised CNN, and RNN models, is suggested as a means
of achieving accurate fall detection. In order to capture
temporal dependencies, the LSTM model is used, and in
order to extract spatial data, the optimised CNN is used.
Sequence modelling also makes use of the RNN model.

• To enhance fall detection accuracy, the optimized CNN is
obtained through the hybrid optimization model HSSTL.

The remaining sections of this essay are structured as follows:
The literature on fall detection systems for elderly safety is included
in Section 2. Section 3 goes over the suggested approach.
Additionally, Section 4 describes the results obtained using the
projected model, and Section 5 wraps up this research.

2 Literature review

Falls have drawn a lot of interest from the scholarly and business
areas. Accuracy of technological fall detection methods varies. In an
effort to reduce falls, monitoring everyday activities without body-
attached sensors has been investigated. Accelerometry-based
methods concentrate on identifying falls through modifications in
body alignment following a significant negative acceleration. There
is not, however, a fall detection system that is 100 percent accurate
and free of false alarms. The ability to predict falls in patients by
tracking and modelling their behaviour has received little research.

This section offers a thorough analysis of the research on fall
detection, highlighting numerous solutions from various angles.
The methods, datasets, and advantages/disadvantages of this
research are summarised in Table 1.

In 2022, Yang et al. (2022) proposed a highly accurate, fast real-
time fall detection technology that can protect user privacy. It uses
infrared array sensors. Additionally, it was advised to carry out a
feature fusion following the extraction of the four-dimensional
properties of centroid change, speed, area change, and variance
change from the temperature data captured by the infrared array
sensor. Şengül et al. (2022) developed a mobile application that
gathers accelerometer and gyroscope data from smartwatches for the
purpose of detecting falls in the medical field. To appropriately
identify activities, the gathered data was transmitted to the cloud to
be processed using a deep learning method, especially the bi-
directional long short-term memory (BiLSTM) neural network.

In 2021,Wang et al. (2021) used system named FallViewer has been
proposed that examines the channel state information (CSI) of Wi-Fi
signals. To acquire fine-grained data for deviation correction, phase and
amplitude calibration approaches were described. An antenna power
modulation technique was created to prevent multipath interference. In
order to increase FallViewer’s ability to adapt to various settings, a double
sliding window was also used to create a variable threshold. After
extracting characteristics from the cleaned-up Wi-Fi signal,
FallViewer used LibSVM for categorization. Waheed et al. (2021)
developed a reliable, noise-resistant fall detection system (FDS) that
can still function with missing data. Wearable sensors and Deep
Learning, specifically Recurrent Neural Networks (RNNs) with a
Bidirectional Long Short-Term Memory (BiLSTM) stack, are used to
implement the FDS. Vishnu et al. (2021) proposed a technique for
modelling the spatiotemporal elements of human fall detection using fall
motion vectors. The technique produces a Gaussian mixture model
(GMM) known as a fall motion mixture model (FMMM) using the
histogram of optical flow and motion boundary histogram
characteristics. This FMMM captures motion properties in both fall
and non-fall movies, producing a high-dimensional representation.
Zurbuchen et al. (2021) presented an expansion of our earlier work
on creating an FDS that makes use of an at-the-waist inertial
measurement device. The SisFall dataset, which contains information
on falls and activities of daily living, is used in the study. Techniques for
pre-processing and feature extraction were used, after which five
Machine Learning algorithms’ performance was compared.

In 2019, Martínez-Villaseñor et al. (2019) presented dataset
for detecting upfalls. The dataset consists of raw data and feature
sets that were gathered from 17 young, healthy persons who
underwent 11 activities and three falls and were free of any
impairments. The collection also gathers information from vision
devices, ambient sensors, and wearable sensors totalling more
than 850 GB. Van Thanh et al. (2019) proposed to develop a low-
cost fall detection system that is capable of precisely tracking
elderly people’s falls. The fall identification algorithm compares
the acceleration with the lower fall threshold and upper fall
threshold values in order to precisely identify a fall event. Our
device will promptly send the contacts’ whereabouts via SMS and
voice calls in the case of a fall. An app for a smartphone will
ensure that the notifications are delivered to the elderly person’s
family members so that immediate medical aid can be provided.
Hassan et al. (2019) introduced the MEFD framework, which can
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identify senior falls and aid family members and carers by quickly
locating them. The system uses a wireless access point in the
house to send outside SMS warnings to a hospital or carer using a
mobile network base station or inside sound alerts to family
members using a mobile access point.

3 Proposed methodology

In response to the increasing population of elderly individuals and
the growing concern for their safety, a novel approach is proposed that
utilizes Blockchain and IOT technology to develop smart and secure
virtual assistants for fall detection in elders. The system employs a
combination of LSTM, optimized CNN, and RNN models to achieve
accurate fall detection. Additionally, a hybrid optimization model is

introduced, integrating SSA and TLBO, to optimize the weights of the
CNN. This approach aims to improve the accuracy and efficiency of fall
detection, ultimately ensuring the safety and wellbeing of elderly
individuals. Data collection, feature extraction, feature selection, fall
detection using TriNet, and emergency response and assistance are
the five main steps of the proposed model. Figure 1 shows the overall
proposed architecture. Figures 2–4 shows the architecture of CNN,
LSTM and RNN.

3.1 Data acquisition

To address the requirement for precise fall prediction and
detection among older persons, the Elderly Fall Prediction and
Detection dataset (Kaggle, 2023a) was developed. While most

TABLE 1 Research gap.

Author Dataset Advantage Methodology Disadvantage

Musci et al. (2018) SisFall Prevent a senior from lying helpless for
hours or days

Fall Detection
System. (FDS)

Blind spots, which are owing to the presence
of a single camera, and the occlusion problem
because of a dynamic background

Al-Rakhami et al.
(2021)

SMARTWATCH and
SMARTFALL

“The proposed fall detection framework
combines DL algorithms and mobile edge
computing in 5G wireless networks,
resulting in improved accuracy for IoMT-
based healthcare applications”

“deep gated recurrent unit
(DGRU) neural network”

“While the framework achieves higher
accuracy rates, its reliance on DL algorithms
requires a significant amount of data and
processing power.”

Taramasco et al. (2018) Real time data It enables multi-tasking and eases the
workload for existing resources. Operates
24 x 7 without interruption or breaks and
has no downtime

Artificial intelligence (AI) The rapid progress of AI has raised several
concerns that 1 day, AI will grow
uncontrollably, and eventually wipe out
humanity

Martínez-Villaseñor
et al. (2019)

UP-Fall Detection
Dataset

“It keeps a check on the routers, firewalls,
key servers, and files and uses its database
to raise the alarm and send notifications.”

UP-Fall Detection Dataset Inconvenience due to wearing/attaching the
sensor on a part of the body

Hassan et al. (2019) MobiAct To alert when a fall event has occurred Mobile-enabled fall
detection (MEFD)

Increased false alarms

FIGURE 1
Overall proposed architecture.
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wearables currently on the market only focus on fall detection,
this dataset attempts to offer insights into foreseeing falls. The
dataset introduces the cStick, a revolutionary device that can help
older persons who are hard of hearing or visually challenged by
keeping track of falls and estimating their likelihood. The cStick

device has a number of sensors that can record important
information about falls and their forecast. These variables
include the following: the distance travelled, the pressure (low,
medium, and high) levels, the heart rate variability (HRV), the
blood sugar levels, the oxygen saturation levels (SpO2), and the
accelerometer readings. Each test offers valuable information
regarding the physiological state of the subject and their
immediate surroundings. In addition, the dataset divides the
falls into three groups according to the evaluation of the
cStick device. The classifications are: no fall detected,
individual slipped, stumbled, or predicted fall, and actual fall.
A thorough comprehension of the fall episodes is made possible
by this classification, which also makes it possible to make precise
predictions and identify slips and falls. 2039 data points
altogether make up the provided dataset, which has been split
into training and testing sets based on various learning rates.
1,427 data points are set aside for training and 612 for testing,
assuming a learning rate of 70%. 1,631 data points are used for
training with an 80% learning rate, while 408 data points are set
aside for testing. Following are the labels’ class distributions
across datasets: “No Fall” (690 occurrences), “Slip”
(682 occurrences), and “Fall” (667 occurrences).

FIGURE 2
LSTM.

FIGURE 3
CNN.

FIGURE 4
RNN.
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3.2 Pre-processing

In this research work, pre-process is carried out using Missing
Value Removal, and Null Value Handling.

3.2.1 Missing value removal
Preprocessing is essential for ensuring that fall detection

systems for the safety of the elderly are accurate and reliable.
The handling of missing values in the data is an essential part of
preprocessing. Missing values can occur for a number of reasons,
including sensor problems, transmission problems or lack of data
collection. It is crucial to properly handle this missing
information in order to produce robust research. In the
preprocessing step of fall detection for elderly safety, there are
numerous methods to take into consideration for missing value
removal. One easy technique is to remove all rows with missing
values. However, if the missing values are not spread randomly,
then using this method could lead to the loss of important data.
When there is little missing data and deleting a few rows will
not have a big impact on the data as a whole, rows should be
deleted.

3.2.2 Null value handling
Fall detection systems utilize various sensors and devices to

monitor the movements and activities of the elderly individuals,
aiming to detect and alert caregivers or emergency services in the
event of a fall. During the data collection process, it is common to
encounter missing or null values due to various reasons such as
sensor malfunction, data transmission errors, or absence of
relevant data.

3.3 Feature extraction

In this research work, features are extracted using statistical
features, autocorrelation, and PCA. The chosen feature extraction
methods–statistical features, autocorrelation, and PCA–are integral
due to their ability to capture nuanced movement patterns in sensor
data. Statistical features encapsulate data distribution, aiding
anomaly detection during falls. Autocorrelation identifies
rhythmic deviations, significant for fall disruption. PCA reduces
dimensionality, accentuating relevant variation. Collectively, these
methods enrich the model’s understanding of motion dynamics,
enhancing fall detection accuracy by discerning normal activities
from fall-related anomalies.

3.3.1 Statistical features
In this study, standard deviation, mean, variance, minimum,

maximum, skewness, and kurtosis of the data are extracted. These
characteristics offer important details regarding the distribution,
central tendency, variability, and shape of the data.

3.3.1.1 Mean
Mean is defined as the total number of elements divided by the

total number of elements in a set. Calculating the mean gives us a
good understanding of the entire set of data. Consequently, the
mean formula is calculated as per Eqs 1, 2.

Mean � Sumof all the elements

Number of elements
(1)

�D � ∑d

n
(2)

Where, �D = mean value, d = Items given, n = Total number of items

3.3.1.2 Standard deviation
The variance of the data is square-rooted to produce the

standard deviation as shown in Eq. 3. “The standard deviation is
a measure of variance from the mean that takes spread, dispersion,
and spread into account. The standard deviation displays an
ordinary deviation from the mean. It is a well-liked measure of
variability since it utilises the original units of measurement from the
data set”.

SD σ( ) �
���������∑ yi − μ( )2

N

√
(3)

3.3.1.3 Variance
The variance of a data set is the measure of numerical variation.

Variance, in particular, determines how far off each integer in the set
is from the mean and, consequently, from the other numbers in the
set. This is mathematically shown in Eq. 4.

Variance � ∑ rpre − μ( )2
X

(4)

3.3.1.4 Maximum
Maximum value the highest value observed in a given dataset or

a specific subset of data, the maximum value provides information
about the upper limit or peak of a particular variable or signal. When
extracting features from a dataset, the maximum value can be
calculated for individual data points, time windows, or specific
segments of interest.

3.3.1.5 Minimum
The minimum value represents the lowest value observed in a

given dataset or a specific subset of data, the minimum value
provides information about the lower limit or nadir of a
particular variable or signal. When extracting features from a
dataset, the minimum value can be calculated for individual data
points, time windows, or specific segments of interest.

3.3.1.6 Skewness
Ameasure of a distribution’s symmetry is its skewness. Actually,

calling it a measure of asymmetry would be more appropriate. A
typical normal distribution has zero skew and is entirely
symmetrical as shown in Eq. 5.

Skewnes � 3 Mea −Media( )
StandardDeviation

(5)

3.3.1.7 Kurtosis
“Kurtosis is a measurement that shows how heavily or thinly the

data are distributed in comparison to a normal distribution. To put it
another way, data sets with a high kurtosis are more likely to have
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huge outliers or heavy tails. Data sets with low kurtosis usually have
light tails or no outliers”. This is mathematically shown in Eq. 6.

Kurtosi high order( ) � 4thMomen

4thMomen2
(6)

3.3.2 Autocorrelation
Autocorrelation is a widely used mathematical operation in the

time domain that quantifies the similarity of a given time signal to
itself over a time scale. The autocorrelation of a time series, denoted
as au(n), can be computed using Eq. 7.

scs m( ) � ∑I−m−1
i�0 aui+maui m≥ 0

scs −m( ) m< 0
{ (7)

As per Eq. 9, the subscript cs represents the correlation sequences,
and the lag factor of the autocorrelation process, denoted bym, signifies
the time shift parameter. For a time, series with I finite data points, the
resulting autocorrelation sequence comprises (2I − 1) data points. In
this study, autocorrelation is utilized to measure the similarity of
vibration signals in the time domain.

3.3.3 Principal Component Analysis
PCA can be used as a feature extraction technique in a fall

detection system for elderly safety. By applying PCA to the dataset
containing various correlated variables related to fall detection, the
dimensionality of the data is reduced while retaining the most
important information.

1. Normalize the pre-processed data using min-max normalization
and is represented as per Eq. 8.

Xnorm � x − μ

σ
( ) (8)

2. Compute the covariance matrix and given as per Eq. 9.

c � xnorm − μ( ) xnorm − μ( )T
N − 1

(9)

Where X is the pre-processed data matrix, μ is the mean vector
of xnorm, and N is the count of samples.

3. Eigen Decomposition

To compute the eigenvalues and eigenvectors of matrix C, sort
the eigenvalues in ascending order, these steps are followed.

o Compute the eigenvalues and eigenvectors of matrix C.
o Sort the eigenvalues in ascending order.
o determine the optimal value of k, the count of principal

components.
o Select the top k eigenvalues.

4. Eigenvalue Thresholding

Define thresholding value λeig and threshold eigen vectorVvec to
separate eigen value from noise, discard eigen value small than λeig.
In eigenvalue thresholding, a threshold value λeig is chosen to
distinguish between significant eigenvalues and noise. Eigenvalues

smaller than λeig, along with their corresponding eigenvectors, are
discarded, while retaining the significant eigenvalues and
eigenvectors Vvec. This process effectively separates the
eigenvalues from noise, improving the representation of the
underlying data structure and given as per Eqs 10, 11.

λselect � λi, ifλi ≥ λeig; 0, if λi < λeig[ ] (10)
Vselect � Vi, ifVi ≥Vvec; 0, ifVi <Vvec[ ] (11)

Where λselect is the selected eigen values and Vselect is the selected
eigen vector.

Retained eigen values λselect and Vselect are used for feature
extraction and represented as per Eq. 12.

TF � DTpVselect (12)
Where DT represents the transposed data matrix, and TF is the

transformed feature matrix. The extracted features are passed as
input to the feature selection.

3.4 Feature selection

The proposed hybrid HSSTL technique combines (TLBO) and
(SSA) for feature selection. TLBO’s global exploration and SSA’s
localized search enhance the identification of relevant features,
addressing the challenge of identifying critical fall-related
attributes. This contribution ensures the most informative
features are chosen, improving system accuracy. To further refine
the feature set obtained through PCA, a feature selection mechanism
can be applied to identify the most optimal features. In this case, a
hybrid optimization model can be utilized for feature selection. The
integration of the hybrid HSSTL technique, which merges (TLBO)
with (SSA) for feature selection, is a deliberate choice rooted in the
desire to leverage the distinctive strengths of both algorithms. TLBO
excels in its global exploration capabilities, while SSA’s localized
search behavior allows for fine-tuning around potential solutions.
This blend aims to strike an optimal balance between exploration
and exploitation, enhancing the feature selection process’s efficiency
and effectiveness. The HSSTL hybrid approach introduces, however,
a degree of complexity and requires parameter tuning. In
comparison to conventional methods like (RFE) or (GA), the
HSSTL approach holds promise in uncovering intricate inter-
feature relationships, potentially leading to improved fall
detection models. Nonetheless, thorough empirical validation
across diverse datasets is essential to ascertain its robustness and
superiority over existing techniques.

3.4.1 Hybrid teaching-learning spring search
(HTLSS)

The Teacher Phase and the Learner Phase are the two stages of
the TLBOmethod. The teacher, who is the expert in the community,
shares knowledge with the students during the teacher phase. The
teacher’s objective is to raise the class’s average performance and
knowledge level. Interaction between learners occurs during the
learner phase, and they benefit from one another’s knowledge and
experiences. Their interaction improves their output and all-around
performance. A group of learners are modelled by the population in
the population-based optimisation technique known as TLBO. The
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outcomes of the learners are comparable to fitness value in other
optimisation methods. The TLBO process uses instructor direction
and student engagement to incrementally raise learners’ mean
performance in order to reach a global solution. SSA is an
optimization algorithm that simulates an artificial system using
the principles of spring force. It defines an initial configuration
of objects within the problem space and iteratively updates their
positions based on the governing laws and objective function. The
algorithm continues until a stopping criterion is met, aiming to find
the optimal solution within the problem domain. HTLSS combines
the population-based learning of TLBO with the spring force
dynamics of SSA. It leverages TLBO’s teacher-student interaction
and knowledge dissemination with SSA’s spring-based information
conveyance. This hybrid approach aims to enhance the optimization
performance by incorporating the strengths of both algorithms.

Step 1: Population Initialization: The number of students or
population size in the population initialization stage of the
optimisation process. A condition known as the stopping
criterion establishes when the algorithm should stop iterating. Its
purpose is to stop the algorithm from running endlessly. Generate
random opposition-based learning solutions for each individual in
the population.

x̂j � loj − upj − randpxj (13)

As per Eq. 13, x̂j represents the opposite solution, xj is the
current solution, loj and upj define the lower and upper bounds
respectively.

Step 2: Compute the fitness value for each individual in the
population based on the defined fitness function as per Eq. 14.

Fit � min e( ) (14)

Step 3: Sort the solutions in ascending order based on the
computed fitness values. The first best solution f(xbest) becomes
the chief teacher, while the remaining four best solutions are
assigned as other teachers, ranked according to the performance
of the best teacher as given by Eqs 15–17.

f xteacher( )1 � f x1( ), wheref x1( ) � f xbest( ) (15)
f xs( ) � f x1( ) − rand*, s � 2, 3, 4, 5 (16)

xteacher( )s � f x( )s (17)
If f(x1)≥f(xl)>f(x2),
The learners are assigned to the first teacher (chief teacher) for

instruction and guidance (i.e., f(x1)). Subtract the mean learner
result from the instructor result for each subject to calculate the
difference between the teacher result and the mean learner result for
each subject. The resulting difference indicates how the teacher’s
performance compares to the average performance of the learners in
each subject. At each iteration al, let Mal represent the mean
resultant of learners l in subject a and Tal represent the teacher.
The teacher Tal aims to adjust the mean Mal towards its own level,
resulting in a new mean denoted as x1. As per Eqs 18, 19, it is
given as,

diff meanal � qi x1( ) − TfMal (18)

xnew 2( ) � xold + diff meanal (19)
Here, Tf is a teaching factor that determines the extent of the

mean adjustment, and qi defines the random-number in the range
[0, 1]. Tf � round[1 + rand(0, 1)].

Step 4: Follow the strategy of pairing each learner with the
instructor whose fitness value is closest to the learner’s fitness
value to allocate learners to the teachers based on their fitness
function.

For l � 1: n − s( )
If

f x2( )≥f xl( )>f x3( )
Assign learns f(xl) to teacher 2, and update the position of the

teacher.

xnew 2( ) � xold + rand xteacher( )2 − Tf.mean (20)

In Eq. 20, xnew(2) is the position of learner based on the teacher’s
position x2, xold represents the old position of the learner, (xteacher)2
represents the position of the teacher (i.e., f(x2)), and mean is the
average count of search solution in the population.

Else.
Assign the learner f(xl) to teacher T.
End.

Step 5: Retain the best solution, or the elite solution, from each
group.

Step 6: Calculate the mean results of each group of learners.

Step 7:Determine the difference between the current mean and the
teacher’s related result for each group. Based on the adaptive
teaching factor, this calculation.

Step 8: Update the knowledge of the learners in each group by
incorporating the knowledge of the respective teachers as per Eqs
21, 22.

xnew 1( ) � xold 1( ) + rand 1 − t

T
( )xold 1( ) + t

T
( )xteacher 1( ) − xold 1( )[ ]*Tf

(21)
xnew 2( ) � xold 2( )

+ rand 1 − t

T
( )xold 2( ) + t

T
( )xteacher 2( ) − xold 2( )[ ]*diffmeanal

(22)

Step 9: Update the knowledge of the learners in each group by
leveraging the knowledge and interaction among the other learners
as per Eqs 23–25.

xnew 1( ) � xold 1( )

+ rand 1 − t

T
( )xnew 1( ) + t

T
( )xteacher 1( ) − ef · xold 1( )[ ]

(23)
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xnew 2( ) � xold 2( ) + randp diff mean( )
+ rand xteacher 2( ) − ef · xnew 2( )[ ] (24)

xnew 3( ) � xold 3( ) + rand xteacher 2( ) − xnew 3( )[ ]
+ rand xteacher 3( ) − ef · xnew 3( )[ ] (25)

Where ef represents the exploration factor
and ef � round(1 + rand)

Step 10: The elite solution, which stands for a highly appropriate
solution replaces the worst decision within each group. This process
aids in raising the general standard of each group’s solutions. The
worst solutions are changed, then all the groups are joined with the
modified solutions from each group. This makes it possible to
explore the problem space more thoroughly. The algorithm’s
outcome is the best result so far, taking into account all the
groups. The ideal solution discovered through the optimisation
process is represented by this solution. Finally, the algorithm is
terminated. The structure of HTLSS pseudocode is shown in
Algorithm 1.

Initialize number of students/population, stopping

criterion

Generate random opposition-based learning

Compute fitness as per Eq.

Sort solution in ascending order using Eqs 2, 3

Calculate mean using Eqs 5, 6

Assign learners to teachers using proposed Eq. 89

Identify the best solution

Calculate mean result of each group

Calculate difference between mean and result of group

Update knowledge of learners-based knowledge of

teachers using Eqs 7, 8

Update knowledge of learners-based knowledge of other

learners using proposed Eq. 7 and Eqs 9–11

Replace the worst solution

Combine all the groups

Return the best solution

End

Algorithm 1. HTLSS.

3.5 Fall detection via TriNet

The integration of (LSTM), optimized (CNN), and (RNN) as
TriNet creates a robust fall detection framework. LSTM captures
temporal dependencies, optimized CNN extracts spatial
information, and RNN models sequential patterns. These models
collectively address the complexity of fall detection, improving
accuracy. The optimal features are selected and the output from
feature selection is passed as an input to the detection phase. TriNet,
a fall detection system for elderly safety, integrates a combination of
LSTM, optimized CNN, and RNN models to achieve accurate fall
detection. The fall detection model, TriNet, comprises a synergistic
fusion of (LSTM), optimized (CNN), and (RNN) architectures,
strategically designed to capture temporal and spatial patterns
inherent in sensor data. The LSTM component handles

sequential dependencies, crucial for detecting falls characterized
by sudden changes. The optimized CNN extracts hierarchical
features from sensor data, identifying relevant patterns and
enhancing model discriminability. RNN augments the temporal
context, further refining fall detection accuracy. Hyperparameters,
including learning rates, batch sizes, and optimizer settings, are
meticulously tuned to strike a balance between convergence and
generalization. The training process involves forward and backward
propagation, iteratively refining weight parameters. The model’s
performance is validated through rigorous testing, ensuring its
efficacy in accurately identifying fall incidents among elderly
individuals.

3.5.1 LSTM
A form of RNN architecture called LSTM is created to address

the vanishing and exploding gradient problem, which is a typical
problem in conventional RNNs. LSTMs are excellent for processing
time-series data because they can identify long-term dependencies
in sequential data. Information can be stored in an LSTM cell’s
memory and converted from input to output while the cell is in
operation. An LSTM cell is made up of the input gate, update gate,
forget gate, and output gate. The input gate, as the system’s name
suggests, chooses which information the neuron will process, the
update gate changes the cell, and the output gate creates new long-
term memory. When the LSTM absorbs long-term memory, short-
term memory, and the input sequence at one time step and develops
new long-term memory, short-term memory, and new output
sequence at another time step, these four essential LSTM
components will function and interact in a unique way. Which
data must be delivered to the cell is decided by the input gate, which
is mathematically described in Eq. 26.

it � σ wip ht−1, Xt[ ] + bi( ) (26)
The operator * multiplies each element of the vectors

individually. The forget gate regulates which information from
the previous memory is to be disregarded, and it is
mathematically characterised by Eq. 27.

ft � σ wfp ht−1, Xt[ ] + bf( ) (27)

The update gate, represented theoretically as per Eqs 28, 29,
modifies the cell state.

c̃t � tanh wCp ht−1, Xt[ ] + bc( ) (28)
ct � ftpCt−1 + itp c̃t (29)

Eqs 30, 31 is also capable of updating the output as it is supplied
by the previous time step.

Ot � σ wop ht−1, Xt[ ] + bo( ) (30)
ht � Otp tan h Ct( ) (31)

3.5.2 Optimized CNN
Due to its ability to automatically extract spatial characteristics,

CNN, “an Artificial Neural Network (ANN) based on deep learning
theory, has found widespread usage in the field of detecting geriatric
falls. The activation function, convolutional layer, pooling layer, and
fully connected layer are the four primary layers that make up CNN.
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The proposed model optimizes CNN through HSSTL, fine-tuning
its feature extraction capabilities. This addresses the challenge of
feature representation in deep learning models, increasing the
sensitivity to fall patterns and reducing false positives. HSSTL’s
hybrid approach enhances CNN’s performance, contributing to
improved accuracy.

3.5.2.1 Convolutional layer
The matrix multiplication function in the traditional neural

network is replaced by the convolution operation in the
convolutional layer, which is utilised to extract picture
information and learn the mapping between the input and
output layers. Sharing parameters during the convolution
operation enables the network to learn just one set of
parameters, significantly cutting down on the number of
parameters and dramatically improving computing efficiency. A
convolution operation is defined as in Eq. 32.

fj,g � ∑h

i�o∑h

l�0ki,lmj+i,g+l (32)

where ki,l is the weight of convolutional kernel atmandl;mj+i, is the
pixel value of image at i and g; h is the height and width of
convolutional kernel.

3.5.2.2 Activation function
In order to avoid vanishing gradients and hasten training, CNN

typically uses Rectified Linear Unit (ReLU) activation functions.
Equation 33 provides a description of ReLU’s goal.

ReLU n( ) � ff> 0
0f≤ 0

{ (33)

3.5.2.3 Pooling layer
The network’s computational complexity can be reduced by the

pooling layer, which also concentrates the data into feature maps.
Max pooling is a common pooling layer shown in Eq. 34.

MxPl oot, kot( ) �
oot � floor

og + 2q − p( )
h

+ 1⎛⎝ ⎞⎠
kot � floor

eg + 2q − p( )
h

+ 1⎛⎝ ⎞⎠
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(34)

where floor(m) represents round up function, oot is the output
height, kot is the output width, oot is the input height, kg is the input
width, q is the padding, p is the kernel size, h is the kernel stride”.

3.5.3 RNN
Recurrent neural networks (RNNs), a type of artificial neural

network, are designed for processing sequential data, including time
series and natural language data. RNNs preserve a hidden state to
detect temporal correlations between inputs. They solve the
vanishing gradient problem by employing gates, which allow
them to recall or forget information. A chain of memory cells
makes up the RNN architecture. Input, output, and forget gates
are present in each cell. The output gate decides the current state
output, the forget gate regulates the retention of prior states, and the
input gate receives fresh input as in Eq. 35.

k s( )
t � σ u s( )

og . k
s( )
t−1, x

s( )
t[ ] +M s( )

r k s( )
t−1 + b s( )

og( ) (35)

Limited representation results from simple RNNs’ inability to
understand information from nodes further along the sequence. In
order to control information flow and solve the issue of long-term
stability, LSTM employs gates. The forward propagation process of
the LSTM is expressed in Eqs 36–41. The LSTM cell state is made up
of two parts: freshly learned information scaled by the input gate,
and long-term memory from earlier moments preserved by the
forget gate.

ie n( )
t � σ u n( )

ie . a n( )
t−1, x

n( )
t[ ] + b n( )

ie( ) (36)
fo n( )

t � σ u n( )
fo . a

n( )
t−1, x

n( )
t[ ] + b n( )

fo( ) (37)
og n( )

t � σ u n( )
og . a

n( )
t−1, x

n( )
t[ ] + b m( )

og( ) (38)
h n( )
t � o n( )

t .tanh Ll( ) (39)
~it

n( ) � tanh u n( )
i . a n( )

t−1, x
n( )
t[ ] + b n( )

i( ) (40)
i n( )
t � f n( )

t .i n( )
t−1 + e n( )

t .~it
n( )

(41)
Here ie(n)t , og(n)

t , fo(n)t and i(n)t are the input, output gate, forgotten,
and cell state of the nth RNN layer at time l, respectively; u(n)ie , u(n)fo ,
u(n)og , u

(n)
i are all weight coefficient matrices; and b(n)ie , b(n)fo , b

(m)
og and

b(n)i are all bias vectors.
In comparison to existing fall detection solutions, the TriNet

system offers distinct advantages. TriNet’s fusion of LSTM,
optimized CNN, and RNN empowers robust fall detection,
surpassing traditional methods. Its hybrid feature selection
approach optimizes accuracy by integrating TLBO and SSA.
Unlike single-method systems, TriNet’s multi-metric evaluation
enhances reliability in diverse scenarios. Moreover, its integration
with blockchain ensures secure data storage and swift alerts, setting
it apart in terms of accuracy, response times, and user-friendliness.

3.6 Emergency response and assistance

IoT sensors capture movement data from seniors, encrypted and
transmitted to the blockchain. Immutable and decentralized, the
blockchain securely stores data, enhancing fall detection reliability.
The integration ensures transparent, tamper-proof data flow,
bolstering TriNet’s credibility and robustness in detecting elderly
falls. Leveraging blockchain technology ensures secure and tamper-
proof storage of fall detection data. Blockchain addresses concerns of
data privacy, integrity, and accountability, providing a trustworthy
platform for storing sensitive information. This contribution
enhances the system’s reliability and trustworthiness.

After detecting a fall, the system takes the following actions. The
information relating to fall detection and other related data is safely
stored on the Blockchain network. Blockchain technology ensures
the integrity, immutability, and tamper resistance of the stored data,
providing a reliable record of the fall incidence. The Blockchain
network is used to communicate notifications about the fall
incidence to approved emergency care providers, neighbours, or
family members. The notifications may include details regarding the
location of the fall, the injured individual, and any other relevant
information that was gathered by the wearable technology or fall
detection system. The seriousness of the fall incident influences how
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it should be addressed, which may be done by taking into account a
variety of factors. If the system determines that the fall was severe or
if the victim is not responding, it can immediately request medical
assistance. This may require contacting emergency medical services
or an ambulance to provide immediate medical assistance. The
system can contact emergency services to notify them of the
occurrence and provide them with the information they need to
respond if the fall is deemed substantial but not immediately life-
threatening. The device can also alert nearby family members,
neighbours, or carers who can provide immediate assistance. This
can be done by sending direct notifications to their devices or by
setting off alarms close to the fall incident. Different emergency
response and assistance protocols may be utilised, depending on the
system’s architecture, local legislation, and available resources. The
goal is to provide a timely and appropriate response to the fall
incident, placing the security and health of the affected individual
first. The incorporation of a Blockchain network for secure fall
detection data storage introduces intriguing possibilities, but it also
demands careful consideration of data privacy and integrity. The
model’s design takes into account potential security concerns
through a series of measures. Data encryption prior to storage
safeguards against unauthorized access, while utilizing a private
or permissioned Blockchain restricts data visibility to authorized
participants. The immutability of the Blockchain ensures data
integrity. However, potential vulnerabilities, such as attacks and
data leakage, are addressed through consensus mechanisms and
access controls. Furthermore, smart contract vulnerabilities are
addressed through rigorous auditing. Data linkage concerns are
mitigated using techniques like zero-knowledge proofs. By
embracing these measures, the proposed model aims to establish
a robust and secure environment for the storage of fall detection
information, preserving both privacy and integrity.

Acknowledging potential limitations, sensor accuracy directly
influences fall detection precision. Balancing false positives and
negatives poses a challenge, impacting user trust and system
effectiveness. Additionally, real-time implementation with
blockchain might face technical constraints, like transaction
speed. Addressing these aspects ensures a comprehensive
understanding of the proposed system’s scope and applicability.

4 Result and discussion

Python was used to implement the suggested model. The
performance of the proposed method is analysed, and its results
are compared to those of other algorithms, such as Teaching-
Learning-Based Optimisation (TLO), Spring Search Algorithm
(SSA), Support Vector Machine (SVM), and Convolutional
Neural Network (CNN). Evaluation of the suggested model’s
efficacy in terms of NPV, FPR, FNR, AND MCC, as well as
accuracy, precision, recall, sensitivity, and specificity. In order to
learn more and comprehend the properties of the dataset,
exploratory data analysis (EDA) was carried out as part of the
research paper. This included looking at the variability of the
variables, spotting patterns, spotting outliers, and investigating
correlations between various aspects. EDA served as a foundation
for additional analysis and aided in the selection of data preparation
and modelling strategies.

4.1 Performance metrics

“The performance is compared using the confusion matrix like
accuracy, precision, sensitivity, specificity, f-measure, NPV, FPR,
FNR, AND MCC. The formula for calculating the metrics is
discussed in this section.

i. Accuracy

Accuracy is calculated as the fraction of correctly predicted cases
to all examples.

Accuracy � TP + TN

TP + FP + FN + TN

ii. Precision

Precision is a valuable indication of how exactly the positive
compounds are expected since it measures the percentage of
properly anticipated positive instances to all test findings.

Precision � TP

TP + FP

iii. Sensitivity

The sensitivity value may be obtained by disunion the total
positives by the proportion of true positive forecasts.

Sensitivity � TP

TP + FN

iv. Specificity

Specificity is defined as the proportion of accurately anticipated
negative outcomes over all negative outcomes.

Specificity � TN

TN + FP

v. F_Measure

The F-Measure number strikes a balance between ensuring that
each class only includes a single type of data item and fully
identifying all data bits.

F Score � Presision.Recall
Presision + Recall

vi. Matthew’s correlation coefficient (MCC)

MCC is a two-by-two binary variable association measure,
which is represented below,

MCC � TP × TN − FP × FN( )�������������������������������������
TP + FN( ) TN + FP( ) TN + FN( ) TP + FP( )√

vii. Negative Prediction Value (NPV)

A diagnostic test’s or another quantitative metric’s performance
is described by NPV.
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NPV � TN

TN + FN

viii. False Positive Ratio (FPR)

The false positive rate is deliberate by segmentation the total
number of negative events by the number of negative events that
were wrongly labelled as positive (false positives).

FPR � FP

FP + TN

ix. False Negative Ratio (FNR)

The false-negative rate, often known as the “miss rate,” is the
probability that the test may fail to detect a real positive”.

FNR � FN

FN + TP

4.2 Overall performance analysis

The proposed and existing models’ performance measures,
which both employ a 70% learning rate, are discussed in Table 2.
The suggested model received the best accuracy score, 0.955679,
demonstrating its excellent level of overall classification
accuracy. TLO, SSA, SVM, and CNN were among the current
models that performed well, with accuracies ranging from
0.886162 to 0.948079. With a precision score of 0.947812, the
suggested model outperformed TLO (0.965592) and SSA
(0.940286). Lower precision scores of 0.848839 and
0.866626 were obtained using SVM and CNN, respectively.
With a sensitivity of 0.963715, the suggested model was the
most sensitive, closely followed by CNN (0.950962) and SSA
(0.956063). The sensitivity ratings for TLO and SVM were
0.871625 and 0.931444, respectively. The proposed model
achieved a specificity score of 0.947749, comparable to the
precision score. The existing models showed varying levels of
specificity, with TLO having highest value of 0.967999, followed
by SSA (0.940202) and CNN (0.859112). SVM exhibited the

lowest specificity score of 0.841480. The proposed model
achieved an F-Measure score of 0.925902, indicating a good
balance between precision and recall. The existing models
achieved F-Measure scores ranging from 0.859521 to 0.918549.
The proposed model obtained an MCC score of 0.923724,
indicating a strong correlation between predicted and actual
labels. The existing models achieved MCC scores ranging from
0.820098 to 0.910007. (NPV), which measures the proportion of
true negative predictions among all negative predictions, ranged
from 0.811910 to 0.885927 across the models. The models
showed FPR values ranging from 0.019067 to 0.026348 and
FNR values ranging from 0.003342 to 0.006617.

The performance comparison of the proposed and existing
models with an 80% learning rate is summarized in Table 3. The
proposed model achieved the highest accuracy of 0.974015,
indicating its ability to classify with a high overall accuracy. The
existing models, including TLO, SSA, SVM, and CNN, also
performed well, with accuracies ranging from 0.875339 to
0.936500. SSA achieved the precision of 0.953798, followed
closely by the proposed model with a precision score of
0.965998. TLO and CNN obtained moderate precision scores of
0.928802 and 0.856041, respectively, while SVM had the lowest
precision of 0.838471. The proposed model demonstrated the
highest sensitivity score of 0.982206, indicating its ability to
correctly identify positive instances. TLO, SVM, and CNN also
achieved relatively high sensitivity scores, ranging from 0.920068 to
0.944386. SSA exhibited a lower sensitivity score of 0.860979. The
existing models showed varying levels of specificity. SSA achieved
the highest specificity score of 0.956176, followed by the proposed
model with a score of 0.965933. TLO, SVM, and CNN obtained
specificity scores ranging from 0.831202 to 0.928718. The proposed
model achieved a balanced F-Measure score of 0.943667. The
existing models showed F-Measure scores ranging from
0.849023 to 0.907331. The proposed model exhibited a high
MCC score of 0.971716, indicating a strong correlation between
the predicted and actual labels. TLO, SVM, and CNN achieved lower
MCC scores, while SSA had the lowest MCC score of 0.854074. NPV
scores ranged from 0.827779 to 0.931955 across the models, with
SVM achieving the highest NPV and SSA obtaining the lowest NPV.
In terms of (FPR) and (FNR), the models showed FPR values

TABLE 2 Proposed and existing model performance comparison: 70% learning
rate.

Metrics TLO SSA SVM CNN Proposed

Accuracy 0.920133 0.948079 0.886162 0.904731 0.955679

Precision 0.965592 0.940286 0.848839 0.866626 0.947812

Sensitivity 0.871625 0.956063 0.931444 0.950962 0.963715

Specificity 0.967999 0.940202 0.841480 0.859112 0.947749

F-Measure 0.889276 0.918549 0.859521 0.877531 0.925902

MCC 0.837701 0.910007 0.820098 0.837283 0.923724

NPV 0.811910 0.878872 0.855740 0.873672 0.885927

FPR 0.020208 0.026348 0.024195 0.024702 0.019067

FNR 0.004184 0.005642 0.006482 0.006617 0.003342

TABLE 3 Proposed and existing model performance comparison: 80% learning
rate.

Metrics TLO SSA SVM CNN Proposed

Accuracy 0.936500 0.908895 0.875339 0.893681 0.974015

Precision 0.928802 0.953798 0.838471 0.856041 0.965998

Sensitivity 0.944386 0.860979 0.920068 0.939347 0.982206

Specificity 0.928718 0.956176 0.831202 0.848619 0.965933

F-Measure 0.907331 0.878414 0.849023 0.866813 0.943667

MCC 0.927794 0.854074 0.836127 0.853648 0.971716

NPV 0.896050 0.827779 0.872466 0.890748 0.931955

FPR 0.026296 0.020168 0.024147 0.024653 0.019634

FNR 0.005631 0.004176 0.006469 0.006604 0.003441
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ranging from 0.019634 to 0.026296 and FNR values ranging from
0.003441 to 0.006604.

4.3 Overall Graphical Representation of
performance analysis

Based on the findings, a graphical representation that shows how
the proposed model and current articles compare in terms of
classification performance is provided in Figure 5.

Figure 6 shows the receiver operating characteristic curve, or
ROC curve, is a graphic depiction that shows how well a
classification model performs at various categorization criteria.

The True Positive Rate (TPR) and False Positive Rate (FPR) are
two important characteristics that are shown in connection to
one another. The fraction of genuine positive events that the
model properly classifies as positive is shown by the true positive
rate, also known as sensitivity or recall. The ratio of true positives
to the total of true positives and false negatives is used to compute
it. On the other side, the False Positive Rate quantifies the
percentage of real negative cases that the model misclassifies
as positive. The ratio of false positives to the total is used to
compute it. The trade-off between the True Positive Rate and the
False Positive Rate by putting different threshold values on the
ROC curve. The curve offers a visual depiction of the model’s
performance throughout the whole range of potential thresholds,
with each point on the curve denoting a different threshold. The
performance of binary classification models may be assessed, and
several models can be contrasted, using the ROC curve. It enables

FIGURE 5
Overall Graphical Representation (A) accuracy (B) f-measure (C)
FNR (D) FPR (E)MCC (F) NPV (G) precision (H) sensitivity (I) specificity.

FIGURE 6
ROC curve.

FIGURE 7
Correlation heatmap.
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us to evaluate the model’s capacity for differentiating between
favourable and unfavourable occurrences and to select an
acceptable classification threshold based on the desired
balance between sensitivity and specificity.

4.4 EDA analysis

The links, patterns, and distributions within a dataset can be
understood using EDA techniques including correlation matrix
analysis, correlation heatmap visualisation, and pie chart
depiction. They aid in understanding the data structure, locating
relationships between variables, and understanding category

proportions visually. Figure 7 shows the linear relationship
between pairs of variables in a dataset is measured by the
correlation matrix, which is shown graphically as a correlation
heatmap. The correlation’s strength and direction are visually
shown by color-coding. A quick and simple method of spotting
associations between variables is the heatmap. Darker colours are
often used to signify strong positive correlations, while lighter
colours are typically used to represent strong negative correlations.

The correlation coefficients between several variables in a
dataset are displayed tabularly as a correlation matrix as shown
in Figure 8. It offers a numerical analysis of the correlations between
the different variables, highlighting their strength and direction. The
correlation coefficients vary from −1 to 1, with a perfect negative
correlation of −1, a perfect positive correlation of 1, and no
connection at all at 0. Understanding the relationships and
potential multicollinearity between variables is aided by a
correlation matrix.

The proportion or percentage distribution of categorical
variables in a dataset is shown by a circular statistical graphic
with segments is called pie chart shown in Figure 9. The size of
each pie slice, which represents a particular category in the data, is
proportional to how frequently or how frequently relatively that
category appears in the data. Pie charts are frequently used to show
how categorical variables are composed or distributed and make it
simple to compare categories.

Table 4 compares the performance metrics of a model trained
with two different epoch sizes: 50 and 100. Epoch size refers to the
number of times the learning algorithm iterates over the entire
training dataset during training. The accuracy is 0.930878 for an
epoch size of 50, and it rises to 0.955679 with an epoch size of 100.
The precision increases from 0.930367 at an epoch size of 50 to
0.947812 at an epoch size of 100. With an epoch size of 50, the
sensitivity is 0.945977, and with an epoch size of 100, it is 0.963715.
The specificity is 0.930284 for an epoch size of 50 and rises to
0.947749 at an epoch size of 100. The F-measure is 0.908860 for an
epoch size of 50 and 0.925902 for an epoch size of 100. A 50-epoch
epoch has anMCC of 0.900408, and a 100-epoch epoch has anMCC
of 0.923724. The NPV is 0.869601 for an epoch size of 50 and rises to
0.885927 at an epoch size of 100. The FPR is 0.026070 for an epoch
size of 50, and it drops to 0.019067 with an epoch size of 100. At an

FIGURE 8
Correlation matrix.

FIGURE 9
Pie-chart.

TABLE 4 Epoch size impact on performance: analysis.

Metrics Epoch = 50 Epoch = 100

Accuracy 0.938078 0.955679

Precision 0.930367 0.947812

Sensitivity 0.945977 0.963715

Specificity 0.930284 0.947749

F-Measure 0.908860 0.925902

MCC 0.900408 0.923724

NPV 0.869601 0.885927

FPR 0.026070 0.019067

FNR 0.005583 0.003342
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epoch size of 50, the FNR is 0.005583, and at an epoch size of 100, it
is 0.003342.

On several datasets referred to as Dataset1, Dataset2, and
Dataset3, Table 5 offers a performance examination of various
models, and Proposed model. For each model and dataset
combination, the table gives measures like accuracy, precision,
sensitivity, and specificity. With the best accuracy (0.974015),
precision (0.965998), sensitivity (0.982206), and specificity
(0.965933) among all models for Dataset1, the Proposed model
exhibits outstanding performance. The Proposed model
outperforms the TLO, SSA, SVM, and CNN models in every
metric, while they all do rather well as well. The Proposed model
continues to dominate with the greatest accuracy, precision,
sensitivity, and specificity values across both datasets in Datasets
2 and 3. It outperforms other models, achieving accuracy scores of
0.958939 and 0.959167 for Datasets 2 and 3, respectively. All datasets
show that the proposed model regularly outperforms competing
models, proving its viability in reaching high performance metrics in
sensor network settings.

5 Discussion

The proposed system aims to address the safety concerns of
elderly individuals by developing a fall detection system empowered
by IoT-Blockchain technology. The system utilizes sensor data from
wearable devices, such as accelerometers and gyroscopes, to detect
falls accurately. It combines LSTM, optimized CNN, and RNN
models for fall detection and employs a hybrid optimization
model (SSA + TLBO) to optimize the weights of the CNN. As
shown in Table 1, there are currently few publicly accessible datasets
that include a variety of human activities, including falls. This

deficiency emphasises the need for fresh datasets that will enable
impartial assessments of various fall detection techniques. The
research community must also analyse and assess new machine
learning methods. In order to meet these needs, propose the Elderly
Fall Prediction and Detection dataset, a useful tool for carrying out
experiments with a range of goals. Researchers can investigate and
create novel fall detection strategies using this dataset. Wearable
devices equipped with accelerometers and gyroscopes are worn by a
diverse group of elderly participants. The data collection spans an
extended period to capture various activities and potential falls
comprehensively. Precise synchronization and timestamping are
achieved through synchronized device clocks, ensuring accurate
temporal alignment of sensor data streams. This meticulous
approach enhances the reliability and accuracy of fall detection
analysis. IoT sensors, including accelerometers and gyroscopes, are
strategically worn by elderly individuals to capture movement data.
Placed on wrists or belts, they communicate wirelessly via Bluetooth
orWi-Fi with a central system. This practical setup enables real-time
monitoring and fall detection, enhancing the proposed solution’s
viability for seamless integration into seniors’ living environments.
Deploying the TriNet system faces challenges such as costs, sensor
maintenance, user acceptance, privacy, and integration with
healthcare systems. Ensuring user comfort and technical
reliability, addressing cultural considerations, and providing
support are crucial. Energy-efficient design and adaptability to
real-world conditions are essential. Successful implementation
requires careful budgeting, user education, and collaboration with
healthcare providers to fully leverage the system’s benefits for elderly
fall detection.

The selection of features, dataset properties, and dividing between
training and testing data are some of the variables that affect how well
machine and deep learning algorithms work. Due to differences in
datasets, pre-processing procedures, classifiers, machine learning
algorithms, acquisition devices, and testing locations, comparing
studies becomes difficult. Two learning rates—70% and 80%—are
used to evaluate the performance of the proposed system with that
of the existing models. The suggested model performs better than the
current models in both scenarios in terms of accuracy, achieving
accuracy scores of 95.57% and 97.40% for the 70% and 80%
learning rates, respectively. The proposed model achieves high
precision scores of 94.78% and 96.59% for the 70% and 80%
learning rates, respectively. The proposed model demonstrates high
sensitivity scores of 96.37% and 98.22% for the 70% and 80% learning
rates, respectively. The proposed model achieves specificity scores of
94.77% and 96.59% for the 70% and 80% learning rates, respectively.
The proposed model achieves F-measure scores of 92.59% and 94.37%
for the 70% and 80% learning rates, respectively. The proposed model
achieves high MCC scores of 92.37% and 97.17% for the 70% and 80%
learning rates, respectively. Implementing the practical fall detection
system entails addressing tangible challenges. Battery life in wearables
requires optimization to avoid user inconvenience. Balancing accurate
fall detection with limited false alarms is crucial to prevent unnecessary
distress. Evaluating costs against benefits is vital for economic viability,
encompassing device expenses, network setup, and maintenance. User-
friendly wearables that prioritize privacy compliance and data security
ensure user acceptance. Seamless communication with emergency
responders is essential for timely assistance. Real-world
implementation hinges on effectively navigating these challenges,

TABLE 5 Performance analysis: varying dataset impact.

Metrics TLO SSA SVM CNN Proposed

Dataset1 (Kaggle, 2023a)

Accuracy 0.936500 0.908895 0.875339 0.893681 0.974015

Precision 0.928802 0.953798 0.838471 0.856041 0.965998

Sensitivity 0.944386 0.860979 0.920068 0.939347 0.982206

Specificity 0.928718 0.956176 0.831202 0.848619 0.965933

Dataset2 (Kaggle, 2023b)

Accuracy 0.922004 0.894827 0.861790 0.879848 0.958939

Precision 0.914425 0.939035 0.825493 0.842791 0.951045

Sensitivity 0.929768 0.847652 0.905826 0.924807 0.967003

Specificity 0.914343 0.941376 0.818336 0.835484 0.950982

Dataset3 (The MobiFall and MobiAct datasets, 2023)

Accuracy 0.922224 0.895040 0.861995 0.880058 0.959167

Precision 0.914643 0.939259 0.825690 0.842992 0.951272

Sensitivity 0.929990 0.847854 0.906042 0.925028 0.967233

Specificity 0.914561 0.941600 0.818531 0.835683 0.951208
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ensuring system usability, cost-effectiveness, and reliability, ultimately
enhancing the safety and autonomy of elderly individuals.

While accuracy is indeed a pivotal criterion for evaluating the
proposed model, a comprehensive assessment demands an array of
metrics. Precision, measuring the proportion of correctly identified
falls among predicted ones, and recall, capturing the fraction of
actual falls correctly detected, provide insights into the system’s true
positive performance. The F1-score harmonizes precision and recall,
offering a holistic measure of model effectiveness. Sensitivity,
specificity, and the Matthews Correlation Coefficient (MCC)
illuminate the model’s balance between true positives and
negatives. Furthermore, Negative Predictive Value (NPV), False
Positive Rate (FPR), and False Negative Rate (FNR) shed light on
error types and misclassifications. By embracing a multitude of
metrics, our study comprehensively evaluates the proposed system’s
performance across various scenarios and intricacies. This robust
analysis strengthens the validity of our research, providing a
nuanced understanding of how the fall detection model operates
and excels under diverse conditions, ensuring its practical relevance
and potential for widespread implementation.

The proposed fall detection system is evaluated using the
“Elderly Fall Prediction and Detection” dataset, split into training
and testing sets based on learning rates (70% and 80%). Data
augmentation techniques like time shifting, amplitude scaling,
and noise injection enhance dataset diversity. Performance
metrics include accuracy, precision, recall, specificity, F-measure,
NPV, FPR, FNR, and MCC, gauging system effectiveness. The
system’s success relies on high accuracy, swift fall detection, low
false positives/negatives. It is compared to existing methods,
highlighting its superiority. The evaluation ensures the system’s
ability to detect falls accurately, making elderly living safer.

In Table 6, the comparison of metrics between the base papers
IFADS (Lu and Chu, 2018), FallViewer (Wang et al., 2021), cStick
(Rachakonda et al., 2021), and the proposed approach is presented.
The proposed method outperformed FallViewer and IFADS in
terms of accuracy, obtaining a remarkable accuracy of 97.40%,
surpassing the accuracies of IFADS, FallViewer, and cStick,
respectively, of 95.96%, 95.8%, and 96.67%.

5.1 Limitation

This article’s main drawback is the lack of testing the suggested
method on actual fall incidents, which would validate its efficacy in
identifying falls in practical situations. A major time and complexity
cost are also added by extracting numerous cross-disciplinary time-
series features. The suggested system’s lack of performance testing in

actual fall circumstances, which restricts its ability to be applied
practically and its ability to be considered reliable, is an important
drawback.

5.2 Future scope

Future research must take into account the high time and
complexity costs involved in extracting a variety of cross-disciplinary
time-series features. It would be beneficial to look into ways to simplify
the feature extraction process and cut down on computational
overhead. Researchers can reduce the complexity and time demands
while preserving or enhancing the fall detection system’s effectiveness
by optimising feature selection and extraction methods.

6 Conclusion

Falling occurrences posed a serious difficulty for the many older
persons who lived alone in their houses since they frequently found it
difficult to ask for aid. Because of the increase in the number of senior
citizens, fall accidents have become a critical public health concern.
This study’s goal was to create a blockchain-based IoT fall detection
system for the elderly. Six key stages made up the suggested model:
data collection, preprocessing, feature extraction, feature selection, fall
detection, and emergency response and assistance. Elderly wearable
devices with accelerometers and gyroscopes had their sensor data
gathered. Preprocessing procedures were used to handle missing and
null values for the acquired data. Autocorrelation, Statistical
characteristics, and Principal Component Analysis (PCA) were
used to extract features following preprocessing. SSA and TLBO, a
novel hybrid technique, were used to choose the best features. The
goal of this strategy, known as HSSTL, was to enhance feature
selection. The proposed model also included TriNet, a network
made up of LSTM, an enhanced CNN, and RNN, for reliable fall
detection. The optimised CNN generated using the HSSTL hybrid
optimisation model was employed to improve fall detection accuracy.
Additionally, when a fall happened, the data for fall detection was
safely kept in the Blockchain network. Blockchain network was used
to warn nearby residents, family members, or other important parties
who needed immediate assistance. The system’s functionality and the
required outcomes were realised by implementing the proposed
model using the PYTHON programming language. At a 70%
learning rate, the suggested model excelled with an accuracy score
of 0.955679, while the proposed model outperformed at an 80%
learning rate with an accuracy of 0.974015. In conclusion, this study
introduces a novel fall detection system for the elderly, harnessing IoT,

TABLE 6 Base paper comparison.

Metrics IFADS (Lu and Chu, 2018) FallViewer (Wang et al., 2021) cStick (Rachakonda et al., 2021) Proposed

Accuracy 95.96 95.8 96.67 97.40

Precision 93.94 - - 96.59

Sensitivity - 97 - 98.22

Specificity - 93.4 - 96.59
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advanced machine learning, and blockchain technologies. Key
contributions include a hybrid feature selection approach, TriNet
architecture, and secure data storage. Future work could focus on
refining model robustness, extending to larger datasets, and
integrating more IoT devices to further enhance fall detection
accuracy and real-world applicability.
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