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Introduction:Chronic myelogenous leukemia (CML) is a clonal myeloproliferative
disorder caused by the BCR-ABL chimeric tyrosine kinase. Vincristine (VCR) is
widely used in leukemia therapy but is hindered by multidrug resistance (MDR).

Methods:We prepared DNA nanoflower via self-assembly for the delivery of VCR
and P-glycoprotein small interfering RNA (P-gp siRNA).

Results and Discussion: The as-prepared nanoflower had a floriform shape with
high loading efficiency of VCR (80%). Furthermore, the nanoflower could deliver
VCR and P-gp siRNA into MDR CML cells and induce potent cytotoxicity both in
vitro and in vivo, thus overcoming MDR of CML. Overall, this nanoflower is a
promising tool for resistant CML therapy.
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1 Introduction

Chronic myelogenous leukemia (CML), also called as chronic myeloid leukemia, is a
kind of clonal hematopoietic stem cell disease (Kantarjian et al., 1988; Cortes et al., 1996;
Faderl et al., 1999a; Faderl et al., 1999b; Egan and Radich, 2017). CML is caused by the
formation of oncogenic BCR-ABL gene fusion and accounts for nearly 15% of the adult
leukemias (Kalidas et al., 2001; Jin et al., 2016; Bellavia et al., 2017; Zhang et al., 2018).
Vincristine (VCR) is a derivate of Madagascan periwinkle, which could bind to tubulin and
disrupt microtubules, thus inhibiting cell division (Johnson et al., 1963; Moncrief and
Lipscomb, 1965; Rosenthal and Kaufman, 1974). VCR as an efficient chemotherapeutic drug,
has been widely used for various tumor therapy including leukemia (Tsuruo et al., 1981;
Buckner et al., 2016; Mora et al., 2016; Hawkins et al., 2018). However, like other
chemotherapy, VCR is prone to induce the emergence of multidrug resistance (MDR),
which could over-express the P-glycoprotein (P-gp) (Feng et al., 2020; Wang et al., 2021).
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Thereby, chemotherapeutic agents would be outflowed from the
cancer cells and leading to the failure of chemical therapy.

To overcome the resistance problem, small interfering RNA
(siRNA) has been extensively used for MDR gene silencing (Meng
et al., 2013; Shen et al., 2014; Yhee et al., 2015; Subhan and Torchilin,
2019; Wang et al., 2019). For example, Wang et al. and Liu et al.
separately prepared mesoporous silica or polymer nanoparticles to
co-deliver P-gp siRNA and doxorubicin for overcoming drug
resistance (Yuan et al., 2021; Liu et al., 2022). Hence, it is
believed that the combination of VCR and P-gp siRNA might be
useful for reversing the drug resistance of chronic myelogenous
leukemia.

Recently, oligonucleotide-based probes, also known as
aptamers, have been widely used due to the affinity and
specificity (Tuerk and Gold, 1990; Keefe et al., 2010). Like
antibodies, aptamers could specifically recognize a variety of
objectives from small molecules to cells (Shangguan et al.,
2006; Geiger et al., 1996). Moreover, aptamers have more
advantages compared with antibodies, such as better
permeability, no immunogenicity, and easy to chemical
synthesis (Xiong et al., 2013). Thus in this study, we designed
a self-assembly based delivery platform modified with aptamer
for synergistic therapy in drug resistant CML (Figure 1). The
drug-loaded nanoflower, namely, KNf-pV, was decorated with
CML cell K562-specific aptamer to allow selective recognition
and enhanced internalization of tumor cells. Chemical therapy
drug VCR and gene silencing drug siRNA (siP-gp) were loaded by
interaction and hybridization with rolling circle amplification
(RCA)-produced DNA strand. The siP-gp delivered by drug-
loaded delivery system (KNf-pV) with stimuli-responsive linker
could significantly inhibit the expression of drug resistant-related
P-gp, which consequently enhanced the chemosensitivity of CML
cells in cancer therapy and reverse the drug resistance. Using the

VCR-siRNA co-loaded nanoflower, we realized the reversal of
drug resistance and synergistic cancer therapy both in vitro and
in vivo. This delivery platform provides a promising strategy for
resistant cancer therapy.

2 Materials and methods

2.1 Materials

All the oligonucleotides in this work were obtained from
Huzhou Hippo Biotechnology Co., Ltd. (Huzhou, China), and
the oligonucleotides used in this work are listed in
Supplementary Table S1. T4 DNA ligase and Phi29 DNA
polymerase were purchased from New England BioLabs (Beverly,
MA, United States). Dulbecco’s modified Eagle’s medium (DMEM),
and fetal bovine serum were purchased from Gibco. Cell culture
dishes/plates, round coverslips, and centrifuge tubes were obtained
from NEST Biotechnology Co. Ltd. (Wuxi, China). Hoechst
33,342 was purchased from Abbkine Scientific (Wuhan, China).
Calcein-AM staining kit was purchased from Solarbio kit (Beijing,
China). Annexin V-fluorescein-5-isothiocyanate (AV-FITC)/PI
double staining kit was purchased from Elabscience
Biotechnology Co., Ltd.

2.2 One-pot synthesis and characterization
of the KNf-pV

The phosphorylated linear ssDNA (0.6 μM) and primers
(1.2 μM) were annealed to form a circular DNA template.
T4 DNA ligase (5 U/μL) was added and incubated at 16°C for
8 h. Then, the circular template was incubated with Phi29 DNA

FIGURE 1
Schematic illustration of the self-assembly nanoflower for the reverse of drug resistance in chronic myelogenous leukemia treatment.
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polymerase (1 U/μL), dNTP (2 mM), and reaction buffer for 8 h at
37°C to synthesis the nanoflower. For the preparation of the
drug-loaded KNf-pV, different ratio of VCR and siP-gp was
added in the reaction mixture. Then the NFs were diluted in the
ultrapure water and centrifuged to get the precipitate. The
morphologies of NFs were determined using scanning electron
microscopy (SEM, JEOL, JSM-7500F) and atomic force
microscope (AFM, MultiMode 8, Bruker).

2.3 Relative drug release efficiency

The co-loaded nanoflower was dispersed in PBS buffer with or
without adding GSH (5 mM). The mixture was kept at 37°C with
continuous shaking. The buffer containing released VCR was separated
by Amicon stirred cell at different time points for quantification. The
concentration of VCR was analyzed by high performance liquid
chromatography (HPLC, SPD-20A, Shimadzu, Kyoto, Japan) with
ultraviolet detection at 298 nm (Ling et al., 2010; Xu and Qiu,
2015). Chromatographic separation was carried out on a
C18 column (250 mm × 4.6 mm, 5 μm) using methanol-ammonium
acetate (5 mM)-acetic acid (60:40:0.1, V/V/V) as mobile phase.

2.4 Cellar uptake

To analyze the uptake of nanoflower in vitro. K562 and K562/
VCR cells were seeded in 24-well plates at 1 × 105 cells per well and

incubated with nanoflower for 4 h. The cells were then washed with
PBS for three times and fixed in 4% para-formaldehyde for 15 min.
Lysosome was stained with Lysotracker, Nuclei were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI). The cells were imaged
under a confocal laser scanning microscopy (CLSM, IX81; Olympus,
Tokyo, Japan).

2.5 MCSs

Multicellular tumor spheroid (Friedrich et al., 2009) was
rendered for testing the internalization of nanoflower. The K562/
vcr cells were seeded and cultured overnight. The T75 flask was pre-
covered by 10 mL of hot agarose (1 w/v %) and cooled to completely
solidified. 106 cells were seeded in a flask and incubated for 72 h. The
MCSs were treated with NF-PV (without aptamer) or KNf-PV (with
aptamer). The drug concentration was 100 μg/mL based on VCR.
After 4 h of incubation at 37°C, the spheroids were collected, washed
with PBS for three times, and stained by Calcein-AM for 1 h at room
temperature. The spheroids were fixed with PFA 4% (w/v) in PBS for
1 h at room temperature and observed with confocal laser scanning
microscopy (LSM 710 CLSM, Carl Zeiss, Jena, Germany).

2.6 In vitro cytotoxicity

Cell viability was determined by Annexin V/PI staining and
MTT assay. For Annexin V/PI staining, K562 and K562/VCR cells

FIGURE 2
(A) SEM images of KNf-pV. Scale bar: 1 μm. (B) AFM image and size distribution of KNf-pV. (C) VCR loading efficacy analysis. (D)Release of VCR under
different conditions.
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were seeded in 24-well plates at 1 × 105 cells per well for overnight.
After 24 h of treatment with free VCR, Nf-pV, or KNf-pV. Cells
were further stained with Annexin V and propidium iodide (PI) for
10 min. Subsequently, cells were washed with PBS and analyzed
using a confocal laser scanning microscope. For MTT assay,
K562 and K562/VCR cells were seeded in 96-well plates at 2 ×
104 cells per well and cultured overnight. After 24 h of treatment
with Nf, free VCR, Nf-pV, KNf-V, or KNf-pV, MTT solution was
added. After an additional 4 h incubation, the supernatants were
removed carefully and followed by the addition of 150 μL per well of
DMSO. Absorbance was measured at 570 nm using the SpectraMax
M5 microplate reader.

2.7 qRT-PCR

Total RNA was extracted from the cells using Trizol reagent
following the protocol suggested by the manufacturer. Then,
cDNA was synthesized using the Reverse Transcription System
(Promega, Madison, WI, United States). Real-time PCR was
performed with SYBR Green probe on a Mx3005PQPCR

instrument from Agilent Technologies. rRNA was used as the
input reference.

2.8 Western blotting

Cell lysates were resolved on 12% SDS-PAGE and incubated
with antibody, developed by an enhanced chemiluminescence
detection kit from Thermo Fisher Scientific (Waltham, MA,
United States). Antibodies used for Western blotting including
those against P-gp (1:1,000, Abcam) and β-actin (1:1,000, Abcam).

2.9 In vivo anti-tumor effect

BALB/c nude (female, 5–6 weeks, SPF level) with tumors that
were xenografted by injecting 5 × 106 cells per mouse in the upper
right blanks. When tumor volume reached 60 mm3, PBS, free VCR,
or KNf-pV were administrated by tail vein injection (0.5 mg/mL
VCR) on day 0, 3, and 6. Mice were weighted regularly. At 18 days
after tumor inoculation, tumors were collected and weighed.

FIGURE 3
(A) Confocal images of K562 and K562/VCR cells treated with KNf-pV. Nanoflower was labeled with Cy5, red; Lysosome was stained with
Lysotracker, green (B) Confocal images of K562/VCR MCSs. Cells were stained with Calcein-AM, green; Nanoflower was labeled with Cy5, red. (C) VCR
accumulation analysis in K562 and K562/VCR MCSs.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Zhao et al. 10.3389/fbioe.2023.1265199

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1265199


3 Results and discussion

3.1 Construction of the KNf-pV

The programmability of DNA nanoflowers enables the
incorporation of functional DNA moieties into nanoflowers
through rational design of the DNA templates. In this study,
anti-K562 aptamer (KK1B10) was chosen for CML recognized
(Yang et al., 2011; Ge et al., 2015). VCR was chosen for CML
therapy. To generate DNA nanoflower by the rolling circle
amplification, phosphorylated linear templates were circularized
using DNA ligase. Efficient production of DNA leads to an
increased local DNA concentration and resulted in the

construction of the drug-loaded delivery system, namely, KNf-Pv.
Scanning electron microscope (SEM) observed that KNf-pV were
floriform in shape with a size of about 1 μm (Figure 2A), which was
similar to the images of atomic force microscopy (AFM, Figure 2B).
In addition, the loading efficiency of VCR in KNf-pV was nearly
80% (Figure 2C). The release of VCR from KNf-pV was analyzed by
dialysis. As shown in Figure 2D, KNf-pV showed obviously
sustained-release property in PBS solution, and almost half of
VCR was released in 48 h. The siRNA loaded in the delivery
system was released after the addition of GSH (Supplementary
Figure S1). Excellent release performance is crucial for
nanoparitcles as drug delivery system used for cancer treatment
(Wu et al., 2019; Zhu et al., 2023a; Zhu et al., 2023b; Zhu et al.,
2023c).

3.2 Cellular uptake of cells and multicellular
tumor spheroids (MCSs)

To test whether KNf-pV could enter into CML cells. Cellular
uptake was performed. K562 cells or drug-resistant K562/VCR cells
were treated with Cy5-labeled KNf-pV, and lysosome was stained
with Lysotracker. As shown in Figure 3A, the fluorescence of KNf-
pV was not co-localized with lysosome, and distributed throughout
the cytoplasm of both K562 and K562/VCR cells. These results
demonstrated the lysosome escape of KNf-pV. The confocal images
of multicellular tumor spheroids (MCSs) of K562/VCR also showed
enhanced accumulation and permeability of KNf-pV (Figure 3B).

To further demonstrate VCR uptake in K562 and K562/VCR
cells, the in vitro quantitative accumulation study was performed.
Nf-pV group increased the cell uptake of VCR compared with
free VCR group both in K562 and K562/VCR cells. After aptamer
decoration, the VCR uptake was further improved in KNf-pV
group (4.8 μg/mL in K562 cells, 4.2 μg/mL in K562/VCR cells,
Figure 3C). Moreover, similar results were observed in
normalized data (Supplementary Figure S2). These data
suggested that KNf-pV can realize lysosome escape and deliver
VCR in both K562 and K562/VCR cells.

FIGURE 4
(A) Cell apoptosis imaging. Cells were stained with Annexin
V-FITC and PI after being cultured with drugs. (B) Cell viability analysis
of cells after the indicated treatments. (**p < 0.01).

FIGURE 5
(A) Quantitative RT-PCR analysis of relative P-gp mRNA level to β-actin (an internal control). (B) Western blots detection of the expression level
of P-gp.
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3.3 In vitro cytotoxicity analysis

To test the cell death mechanism, the annexin V/propidium iodide
(PI) assay was performed in K562 and K562/VCR cells (Figure 4A).
When the cells were treated with free VCR, moderate changes in the
morphology and fluorescent signals from annexin V/PI were observed,
especially in K562/VCR cells, which demonstrated that free VCR did
not cause considerable damage to K562 and K562/VCR cells. Whereas,
the fluorescent signals were significantly enhanced in Nf-pV group,
proving that the cell membrane was damaged. Furthermore, the
fluorescent signals of KNf-pV group were obviously stronger than
any other groups, indicating the most powerful cytotoxicity.

Next, the in vitro cytotoxicity was further carried out
through methyl thiazolyl tetrazolium (MTT) assay. As
expected (Figure 4B), moderate cytotoxic effect was observed
in free VCR group, more than 75% of the K562/VCR cells were
alive. In contrast, Nf-pV group and KNf-V group exhibited
increased cytotoxic effect, which killed nearly 50% of the K562/
VCR cells. Notably, KNf-pV group showed the strongest
cytotoxicity (only 12% of the K562/VCR cells was alive),
indicating the synergistic effect of siP-gp and VCR after
aptamer modified. Overall, these data clearly proved that the
KNf-pV could induce cytotoxicity in K562 and K562/VCR cells.

3.4 The drug resistance reversal of KNf-pV

To study the drug resistance reversal effect of KNf-pV, we
measured the expression of P-gp by quantitative RT-PCR and
western blots. P-gp expression levels of KNf-pV group were
significantly downregulated both in quantitative RT-PCR and
western blots results (Figures 5A, B).

3.5 Tumor inhibitory effect in vivo

Encouraged by the excellent antitumor effects in vitro of
KNf-pV, we evaluated the antitumor efficacy in vivo through a
xenografted mouse model. When the subcutaneous tumor
reached 60 mm3, three doses of PBS, free VCR, or KNf-pV
were administrated through tail vein injection at 0.5 mg/mL
VCR dose every 3 days. After 18 days, all mice were sacrificed

and tumors were removed for imaging. Compared with PBS
(0.8 g) group, free VCR group (0.7 g) showed lower tumor
weight. Furthermore, KNf-pV group has the least tumor
weight (0.4 g) without significantly reducing the body weight
(Supplementary Figure S3; Figures 6A, B). By contrast, the body
weight of free VCR group was markedly decreased due to the
systemic toxicity of free VCR (Figure 6B). Altogether, these
results indicated that the synergistic effect could be realized in
vivo by KNf-pV.

4 Conclusion

In this study, we have developed a novel K562-specific
aptamer decorated DNA nanoflower to realize the co-
delivery of VCR and P-gp siRNA (KNf-pV) for overcoming
drug resistance in CML therapy. DNA nanoflower was self-
assembled from DNA during RCA, which could avoid the
complicated sequence design and incorporate functionalities
including aptamers for specific recognizing, and drug-binding
DNA sequences for specific drug delivery. Specifically, the VCR
loading efficiency of KNf-pV was as high as 80%. The KNf-pV
could effectively enter into CML cells and induce therapeutic
effect both in vitro and in vivo. Moreover, our KNf-pV could
reduce the expression of P-gp thus overcoming the drug
resistance of VCR. Taken together, our designed DNA
nanoflower provides a platform for MDR cancer therapy.
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FIGURE 6
(A) Tumor weight of each group. (B) Body weight changes of each group during the therapy.
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