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Porous polydimethylsiloxane (PDMS) films with special surface wettability have
potential applications in the biomedical, environmental, and structural mechanical
fields. However, preparing porous PDMS films with a regular surface pattern using
conventional methods, such as chemical foaming or physical pore formation, is
challenging. In this study, porous PDMS films with a regular surface pattern are
designed and prepared using 3D printing to ensure the formation of controllable
and regular physical structures. First, the effect of the surface wettability of glass
substrates with different surface energies (commercial hydrophilic glass and
hydrophobic glass (F-glass) obtained by treating regular glass with
1H,1H,2H,2H-perfluorooctyl-trichlorosilane) on the structural characteristics of
the 3D printed PDMS filaments is investigated systematically. Additionally, the
effect of the printing speed and the surface wettability of the glass substrate on the
PDMS filament morphology is investigated synchronously. Next, using the F-glass
substrate and an optimized printing speed, the effects of the number of printed
layers on both the morphologies of the individual PDMS filaments and porous
PDMS films, and the surface wettability of the films are studied. This study reveals
that regularly patterned porous PDMS films with distinct structural designs but the
same controllable surface wettability, such as anisotropic surface wettability and
superhydrophobicity, can be easily fabricated through 3D printing. This study
provides a new method for fabricating porous PDMS films with a specific surface
wettability, which can potentially expand the application of porous PDMS films.
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1 Introduction

Surface wettability, a typical material property that occurs
commonly in nature, is gaining increasing attention for both
scientific researches and biomedical applications in antifouling
materials (Xie et al., 2019; He et al., 2021a; He et al., 2021b;
Chang et al., 2022; Eloffy et al., 2022; Rasitha et al., 2022; Seli
et al., 2022; Selim et al., 2022; He et al., 2023a; He et al., 2023b; He
et al., 2023c), blood contacting materials (Yang et al., 2020; Li et al.,
2021; Li et al., 2022a; Li et al., 2022b), etc. (Wu et al., 2018; Li et al.,
2020a; Wang et al., 2020; Guo et al., 2021; Han and Gong, 2021; Saji,
2021; Zhang et al., 2021; Zhu et al., 2021; Al-Bishari et al., 2022;
Wang et al., 2022a; Luo et al., 2022; Yao et al., 2022; Yu et al., 2022;
Zhang et al., 2022; Gresham and Neto, 2023; Li et al., 2023; Liao
et al., 2023; Pan et al., 2023). Surfaces can be categorized according to
the water contact angle (WCA), as hydrophilic (for WCA <90°) or
hydrophobic (for WCA >90°) (Li et al., 2020b; Yang et al., 2022;
Zhao et al., 2022). In particular, a surface is considered
superhydrophilic or superhydrophobic when the WCA is lower
than 10° or higher than 150°, respectively (Ji et al., 2021; Cao et al.,
2022; He et al., 2022). Furthermore, according to the anisotropy of
the WCA, the surface wettability can be either isotropic or
anisotropic surface wettability (ASW). Various surface wettability
phenomena occur in nature, such as the isotropic
superhydrophobicity of lotus leaves (Zhang et al., 2009) and rose
petals (Feng et al., 2008), isotropic superhydrophilicity of snail shells
(Jiang et al., 2015), anisotropic superhydrophobicity of rice leaves
and butterfly wings, and slippery surface wettability of ice
(Rosenberg, 2005), pitcher plants (Bohn and Federle, 2004), and
loach skin (Seo et al., 2021). Inspired by nature, biomimetic
materials with special surface wettability characteristics have been
designed and fabricated by controlling the surface morphology and
chemical composition following the principles of Young’s equation
(Young, 1805), and the Wenzel (Wenzel, 1936) and Cassie–Baxter
models (Cassie and Baxter, 1944).

ASW has extensive applications, including in microfluidic
devices (Zhang et al., 2015), directional self-cleaning surfaces
(Zhao and Law, 2012), and printing industries (Xia et al., 2012).
It is typically realized using anisotropic chemical compositions and/
or anisotropic physical structures to vary the surface wettability
characteristics in different directions. Therefore, designing ASW is
significantly more complicated than designing isotropic surface
wettability. Thus, most reports have focused primarily on
isotropic surface wettability (He et al., 2011; He et al., 2012).
Moreover, several of the reported methods, such as vacuum
ultraviolet photolithography (Mor et al., 2005), optical
lithography (Bliznyuk et al., 2009), interference lithography (Wu
et al., 2010), unidirectional rubbing (Kusumaatmaja et al., 2008),
electrospinning (Wu et al., 2008), and replica molding (Zhang et al.,
2011; Xu et al., 2015), can be used to fabricate only two-dimensional
(planar) or simple three-dimensional (3D) structures. Therefore, the
fabrication of complex 3D porous surfaces with ASW using
controllable and regular physical structures remains a formidable
challenge. For example, the fabrication of such structures usually
requires complicated photomasks or molds, or special experimental
conditions. More importantly, different types of masks or molds are
required to realize different ASW characteristics, thus resulting in
additional costs and difficulty in fabricating the masks or molds with

designed structural characteristics. Moreover, the distortion of
anisotropic physical structures produced using the replica
molding method cannot be avoided. Therefore, the fabrication of
complex 3D porous surfaces with ASW using controllable and
regular physical structures is a significant challenge.

Recently, the remarkable advantages of additive manufacturing
(3D printing) in the fabrication of complicated structures have been
demonstrated by numerous studies (He et al., 2017; Mallakpour
et al., 2021a; Mallakpour et al., 2021b; Mallakpour et al., 2022;
Marovič et al., 2023). Porous and complex physical structures can be
easily fabricated via 3D printing because they can be designed and
printed in a layerwise manner using computer programs. This
process saves time and enables easy modification of the process
parameters as no molding is required. Polydimethylsiloxane
(PDMS) as one typical polymer material has been extensively
researched for various applications (Song et al., 2021; Wang
et al., 2022b; Ghahramani et al., 2022; Shinde et al., 2023).
Previously, we fabricated substrates with ASW and
superhydrophobicity by 3D printing parallel filaments of PDMS
to obtain porous, complex, and controllable physical structures;
subsequently, we demonstrated their potential application in air-
breathable waterproofing, water-repellent floating carriers, and no-
loss liquid transfer (He et al., 2017). The ASW and
superhydrophobicity of porous PDMS structures could be
tailored well by controlling the printing speed and filament spacing.

In this study, we focused on the effects of the wettability of the
substrate on which the designed structures are printed, the
number of printed PDMS layers, and the relative architecture
of the different layers in the PDMS film on the final surface
wettability and physical structures of the printed PDMS film.
ASW with a difference in WCA of approximately 30° between the
perpendicular and parallel directions of the porous PDMS film
was achieved by implementing anisotropic physical structures
without any special anisotropic chemical treatment and/or
complicated anisotropic molding process. Briefly, anisotropic
physical structures based on macroscale PDMS filaments were
fabricated using a one-step 3D-printing process, and Wenzel-
state superhydrophobicity with a WCA of approximately 156° in
the perpendicular direction was obtained. Interestingly, specific
ASW and superhydrophobicity could be obtained with the same
surface chemical composition but distinct regular physical
structures fabricated by 3D printing. This study demonstrates
that porous PDMS films with a specific surface wettability but
distinct regular physical structures can be obtained. Further, it
provides a new design concept for fabricating porous PDMS films
with a specific surface wettability and expands the application of
such films in the biomedical, environmental, and structural
mechanical fields.

2 Materials and methods

2.1 Materials

A polydimethylsiloxane adhesive (SE1700) with a curing agent
was purchased from Dow Corning, United States 3-Butyn-1-ol
(97%) and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane
(CF3(CF2)5CH2CH2SiCl3; PFTS, 97%) were purchased from
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Sigma-Aldrich. Toluene and absolute ethanol were purchased from
the Chengdu Kelong Chemical Company, China.

2.2 Sample preparation

The PDMS ink preparation and 3D-printing processes were
conducted as described in our previous report, with slight
modifications (He et al., 2017). Briefly, 30 g of PDMS and 3 g of
the curing agent were pre-mixed with 0.3 g of 3-butyn-1-ol for
30 min, and the resulting mixture was degassed for 2 h at room
temperature. This mixture was then loaded into a syringe barrel and
centrifuged at 8,000 rpm for 20 min before being used in 3D
printing. To investigate the effect of the surface wettability of the
glass substrate on the morphology and surface wettability of the

printed PDMS film, hydrophilic (commercial glass) and
hydrophobic glass substrates were used. The hydrophobic glass
(F-Glass) substrate was prepared by treating the hydrophilic glass
with 1.0 vol% PFTS in toluene for 1 min, as reported previously (He
et al., 2011). The PDMS ink was extruded from a micronozzle with
an inner diameter of 150 μm using a 3D printer. For printing PDMS
filaments on the glass substrates, the micronozzle was moved along
the X- and Y-axes at a programmed printing speed with a
presupposed center-to-center filament spacing (FS). To print
multilayer filaments for obtaining a porous PDMS film (area,
10 mm × 10 mm), the microneedle was shifted vertically (along
the Z-axis) by 0.25 mm after the first layer was printed, and the
subsequent layer was printed under the same conditions. Finally, the
film samples were thermally cured at 120°C for 1 h and were peeled
off the substrate for further characterization.

FIGURE 1
Water droplet profiles and WCAs on different glass substrates: (A) hydrophilic glass and (B) hydrophobic F-glass. (C) Optical image of the PDMS
filament during its 3D printing on an F-glass substrate. (D) FD statistics of the PDMS filaments printed on glass and F-glass substrates at different printing
speeds.

FIGURE 2
AFM images showing the surface morphologies of the PDMS filaments printed on (A–C) hydrophilic glass and (D–F) hydrophobic F-glass substrates
at different printing speeds: (A,D) 1.00 mm/s; (B,E) 6.00 mm/s; (C,F) 10.00 mm/s.
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2.3 Characterization

2.3.1 Surface wettability
Static WCAs were measured using a Krüss DSA100 (Germany)

contact angle goniometer using 5 μL droplets of deionized water at
ambient temperature. Five measurements were conducted at five
different locations on the PDMS surface, and the results were
averaged. The WCA of the printed filaments was measured in
both the perpendicular (θ⊥) and parallel (θ‖) directions, and the
difference (Δθ) between θ⊥ and θ‖ was used to evaluate the ASW of
the porous PDMS.

2.3.2 Physical structures
The surface morphology and average surface roughness (Ra) of

the PDMS film were characterized using a Seiko SPI4000 (Japan)
atomic force microscope (AFM) in the tapping mode. The physical
structures of the filaments and porous PDMS specimens were
imaged using a Nikon LV100D optical microscope (Tokyo,
Japan). The experimental PDMS filament diameter (FD) and FS
in the x- and y-directions were statistically averaged based on
measurements at five different locations.

3 Results and discussion

3.1 Effect of the wettability of the glass
substrate on the PDMS filament

The hydrophilic glass substrate cleaned with distilled water
and absolute ethyl alcohol in an ultrasonic cleaner for three times
exhibited a WCA of 38.6° ± 5.2° (Figure 1A). The cleaned F-glass
substrate obtained by PFTS treatment was hydrophobic and
exhibited a WCA of 113.5° ± 2.8° (Figure 1B), thus indicating
a lower surface energy, as expected. As shown in Figure 1C,
although the PDMS filament was printed at a high printing speed
of 8.00 mm/s on the hydrophobic F-glass substrate, the

straightness, FD, and FS of the PDMS filaments were uniform
during 3D printing. As demonstrated in our previous study (He
et al., 2017), the printing speed had a notable effect on the FD
statistics of the PDMS filaments. Therefore, the effect of the
printing speed (1.00, 2.00, 4.00, 6.00, 8.00, and 10.00 mm/s) on
the diameter of the PDMS filaments printed on the two types of
glass substrates was also investigated. The FD statistics for the
PDMS filaments printed on the hydrophilic glass and
hydrophobic F-glass substrates at different printing speeds
varied negligibly, except in the cases of the filaments printed
with an extremely high printing speed of 10.00 mm/s (Figure 1D).
The uniformity of the PDMS filament was almost unaffected by
the printing speed or surface wettability of the glass substrate, as
indicated by the small deviations in the FD values.

In general, the FD decreased with increasing printing speed
owing to the higher tensile force at a higher printing speed. When
the printing speed was as high as 10.00 mm/s, the FD on the
hydrophilic glass differed only slightly compared with that of the
sample printed at 8.00 mm/s. However, on the hydrophobic
F-glass, the FD obtained at a printing speed of 10.00 mm/s
was still lower than that obtained at a printing speed of
8.00 mm/s. This phenomenon can be attributed to the large
difference in the surface energy between the hydrophilic glass
substrate and hydrophobic PDMS filament. This result indicates
that the surface roughness of the PDMS filament on the
hydrophilic glass may be greater than that on the hydrophobic
F-glass. The AFM images of the PDMS filaments printed at
different printing speeds (1.00, 6.00, and 10.00 mm/s) on
hydrophilic glass (Figures 2A–C) and hydrophobic F-glass
(Figures 2D–F) substrates demonstrate that both the printing
speed and the surface wettability of the glass substrate can affect
the surface morphology of the PDMS filament. Moreover, the
quantitative Ra values of the filaments over 0.5 × 0.5, 1.0 × 1.0,
5.0 × 5.0, and 20.0 mm × 20.0 mm areas were statistically
evaluated to understand the effects of the printing speed and
substrate surface wettability on the surface morphology of the
PDMS filaments (Figure 3). For small statistical areas of 0.5 ×
0.5 and 1.0 mm × 1.0 mm, the Ra values of the samples obtained
using different printing speeds differed negligibly, regardless of
the substrate type. However, for larger statistical areas of 5.0 ×
5.0 and 20.0 mm × 20.0 mm, the Ra values of the different
samples differed significantly. As the printing speed increased,
the Ra of the PDMS filament increased for both the hydrophilic
and hydrophobic substrate cases. Therefore, a higher printing
speed is expected to increase the surface roughness (black dashed
circle in Figure 3), which might be the reason for the slight
decrease in the FD on the hydrophilic glass when the printing
speed was as high as 10.00 mm/s. Moreover, the Ra of the PDMS
filament on the hydrophilic glass was greater than that of the
filament on the hydrophobic F-glass at different printing speeds.
In addition, at a given printing speed, the Ra of the PDMS
filament on the hydrophobic F-glass was more controllable
compared with the Ra of the filament on the hydrophilic glass.
Considering that a substrate with a lower surface energy is
beneficial for peeling off the printed film, the hydrophobic
F-glass and a low printing speed are more suitable for
achieving better control over the FD and surface morphology
of the PDMS filament (red dashed circle in Figure 3).

FIGURE 3
Ra values of the PDMS filaments on hydrophilic glass and
hydrophobic F-glass substrates for samples printed using different
printing speeds.
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3.2 Effect of the number of printed layers on
the filament morphology and wettability of
the PDMS filament and porous PDMS film

PDMS films with different numbers of filament layers (Xie
et al., 2019; He et al., 2021a; He et al., 2021b; Eloffy et al., 2022;
Eloffy et al., 2022; He et al., 2023a; He et al., 2023b) were 3D
printed on hydrophobic F-glass substrates with a fixed FS of

0.8 mm along both X- and Y-axes at a printing speed of
0.75 mm/s, which is lower than the speed used to print the
samples presented in Figure 1. The optical images in Figure 4A
reveal that the PDMS filament in the single-layer film is straight
and smooth, similar to that in the image in Figure 1C. However,
the PDMS filaments in the multilayer films (Figures 4B–F) were
deformed owing to downward tensile bending at nonoverlapping
locations under the action of gravity (shown using a black double-

FIGURE 4
Optical images showing the surface morphologies of PDMS filaments in samples with different numbers of printed layers: (A) one, (B) two, (C) three,
(D) four, (E) six, and (F) eight layers. (G) FD and (H) FS values of the PDMS filaments printed on hydrophobic F-glass substrates as a function of the layer
number.

FIGURE 5
Water droplet profiles on PDMS surfaces in (A–F) parallel and (G–L) perpendicular directions for samples with different numbers of printing layers on
hydrophobic F-glass substrates: (A,G) one; (B,H) two; (C,I) three; (D,J) four; (E,K) six; (F,L) eight.
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headed arrow in Figure 4B). Consequently, the FD statistics of the
PDMS filaments at different measured positions were not the
same. Thus, the FDs reported here for films with two or more
layers (Figure 4G) are the averaged data of five specific positions,
as indicated by the white double-headed arrow in Figure 4B. The
decreased statistical FD with an increase in the number of PDMS
filament layers (Figure 4G) indicates that the number of printing
layers affects the morphology of the individual PDMS filaments
and, thus, the porous PDMS films composed of these filaments.
Although the PDMS filaments in the multilayer samples were
evidently deformed, the FS of the PDMS filaments was unaffected
by their deformation and could be measured precisely at any
position of the filament (indicated by white double-headed arrows
in Figure 4C). Remarkably, the measured FS of the PDMS
filaments was almost the same as the designed FS (0.8 mm),
regardless of the number of layers (Figure 4H). Thus, the
number of printing layers hardly affected the FS of the PDMS
filaments, and the FS was primarily determined by the precision of
the 3D printer (He et al., 2017).

In general, the wettability of a surface is exclusively affected by
the surface morphology when the chemical composition of the
surface is fixed. All samples were fabricated using hydrophobic
PDMS of the same chemical composition, which has been
extensively characterized in our previous studies (He et al.,
2017; Yu et al., 2018). Therefore, in this study, we focused on
the effect of the surface morphology of the individual PDMS
filament, which is affected by the number of printed layers, on
the surface wettability of the PDMS film. As shown in Figure 5, the
water droplet behavior in parallel (Figures 5A–F) and
perpendicular (Figures 5G–L) directions was characterized for
samples with one (Figures 5A, G), two (Figures 5B, H), three
(Figures 5C, I), four (Figures 5D, J), six (Figures 5E, K), and eight
(Figures 5F, L) printed layers of PDMS filaments. All film samples
were hydrophobic and exhibited clear ASW characteristics. The
averaged WCAs of different samples are presented in Figure 6A.
When the number of printed layers was ≤4, the WCAs in both the
parallel and perpendicular directions gradually increased with
increasing number of printed layers. This phenomenon can be

FIGURE 6
(A)WCAs and ASWof PDMS film surfaces in parallel and perpendicular directions for samples with different number of printed layers on hydrophobic
F-glass substrates. Optical images of [(B), 30 mm in length and width] larger-area 3D printed PDMS films with three layers and [(C), 20 mm in length and
width] four layers.

FIGURE 7
(A) Different structural designs of porous PDMS films with different shifted distances (ΔX) between the filaments in adjacent printed layers. (B–E)
Optical images showing the surface morphologies of the PDMS films with different ΔX values: (B) 0.1; (C) 0.2; (D) 0.3; (E) 0.4 mm.
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attributed to the following three factors: first, the deformation of
the PDMS filaments in the multilayer samples increases the
porosity of the PDMS film (Figures 4B–D). Second, the
significant decrease in the FD (Figure 4G) further increases the
porosity of the PDMS film. Based on the Cassie–Baxter model
(Cassie and Baxter, 1944), an increased porosity of a sample can
result in increased surface air fraction, thereby leading to improved
surface hydrophobicity. Third, as the number of printed layers
increases, the effect of the surface wettability of the glass substrate
on the PDMS film decreases. According to the Wenzel model
(Wenzel, 1936), because the glass substrate has a lower surface
roughness, water droplets on the porous PDMS films with a lower
number of printing layers are probably adsorbed by the smooth
glass substrate, thereby resulting in a lower WCA. As shown by the
red dashed rectangle in Figure 5, the adsorption behavior of water
droplets located between the PDMS filaments in a single-layer film
resulted in the deformation of the water droplet (Figure 5G), as
confirmed by the observation of a white ellipse in the center of the
water droplet profile, whereas the center of the droplet profile
appeared as a white circle in the other cases. However, the WCAs
of the samples with six and eight PDMS layers were almost
identical to those of the samples with four layers. This result
indicates that the final surface wettability of the PDMS film was
hardly affected by the deformation of the PDMS filament (Figures
4E, F), the slight decrease in the FD (Figure 4G), and the surface
wettability of the smooth glass substrate. Essentially, the surface
wettability of the 3D printed PDMS film remains stable when the
number of printing layers reaches four, as further demonstrated by
the ASW results (Δθ) in Figure 6A.

In addition, larger-area 3D printed PDMS films with three
(Figure 6B, 30 mm in length and width) and four (Figure 6C,
20 mm in length and width) layers were fabricated to investigate
the effect of the number of printed layers on the macroscopic surface
morphology of the film. The PDMS filaments in the films with three
and four layers maintained their stability and regularity, and no
evident defects were observed in the films. Thus, the number of

printing layers had a negligible effect on the macroscopic surface
morphology but a significant effect on the microscopic surface
morphology of the 3D printed PDMS films.

3.3 Effect of the structural design of layers
on the morphology and surface wettability
of porous PDMS films

As is well known, the surface morphology of a substrate can
significantly affect its wettability. Therefore, porous PDMS films
with different structural arrangements in different layers were
designed (Figure 7A), as they could be easily fabricated by 3D
printing (Figures 7B–E). As shown in Figure 7A, the eight-layered
samples with a certain shifted distance (a typical ΔX of 0.4 mm; see
the illustration in Figure 7A) both in the X- and Y-axes were 3D
printed on hydrophobic F-glass with an FS of 0.8 mm at a low speed
of 0.75 mm/s (FD of approximately 0.36 mm). The PDMS filaments
in layers 5–8 had the same arrangement as in layers 1–4. The shifted
distances (ΔX) of the PDMS filaments in layers 3 and 7 (Xie et al.,
2019; He et al., 2021b) were designed to be 0.1, 0.2, 0.3, or 0.4 mm
with respect to the filaments in layers 1 and 5 (He et al., 2021a; Eloffy
et al., 2022). The corresponding shifted distances (ΔX = 0.1, 0.2, 0.3,
and 0.4 mm) are shown as white double-headed arrows in the
optical images of the samples in Figures 7B–E. The FD and FS of
the PDMS filaments with different shifted distances (ΔX) were
similar to those of the sample in Figure 4F with no shifted
distance. Thus, the various structural designs in this study had a
negligible effect on the microscopic surface morphology of the
PDMS filaments but a notable effect on the macroscopic surface
morphology of the 3D printed porous PDMS film.

In general, distinct regular macroscopic physical structures
would result in different surface wettabilities. However, as shown
in Figure 8, the WCAs on the 3D printed porous PDMS films with
different shifted distances (ΔX) of 0.1 (Figures 8A, E), 0.2 (Figures
8B, F), 0.3 (Figures 8C, G), and 0.4 mm (Figures 8D, H) differed

FIGURE 8
Water droplet profiles and WCAs on porous PDMS films with different ΔX in (A–D) parallel and (E–H) perpendicular directions. ΔX = (A,E) 0.1; (B,F)
0.2; (C,G) 0.3; (D,H) 0.4 mm.
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negligibly not only in the parallel direction (Figures 8A–D) but also
in the perpendicular (Figures 8E–H) one. The WCAs of the samples
with different shifted distances (ΔX) were similar to those in
Figure 6A with no shifted distance. Therefore, the surface
wettability of the 3D printed porous PDMS film was determined
by the surface morphology of the top layer of the sample only and
not on the shifted distance (ΔX). This surprising phenomenon of
surface wettability makes the process versatile and various physical
structural designs of 3D printed porous PDMS films with
controllable and stable surface wettability can be prepared, such
as those exhibiting ASW and superhydrophobicity, thus resulting in
extensive applications in biomedical, environmental, and structural
mechanical fields.

4 Conclusion

Hydrophilic glass and PFTS-treated hydrophobic glass
(i.e., F-glass) substrates were used for the 3D printing of
PDMS filaments. The wettability of the glass substrate hardly
affected the FD in a single-layer film, except for the samples
obtained with an extremely high printing speed of 10.00 mm/s. In
general, the FD decreased with increasing printing speed. The
surface roughness of the PDMS filament increased with
increasing printing speed, regardless of the substrate type
(hydrophilic or hydrophobic). However, the surface roughness
of the PDMS film printed on the hydrophilic glass was greater
than that on the hydrophobic F-glass at different printing speeds.
Therefore, the hydrophobic F-glass and a lower printing speed
were more suitable for achieving better control over the FD and
surface morphology of the PDMS filament. In addition, the
number of printed layers significantly affected the morphology
of the PDMS filament and porous PDMS film and thus the surface
wettability of the film. The filament was straight in the single-
layer film but deformed in the multilayer film. Statistically, the
FD decreased with an increase in the number of printing layers.
However, the FS remained unaffected by the deformation of the
PDMS filament or the number of printed layers. For films with
four layers or less, the WCAs in both the parallel and
perpendicular directions gradually increased with the number
of printed layers. However, the WCAs of the samples with six and
eight printed layers were almost the same as those of the sample
with four layers. Structural designs with different shifted
distances (ΔX) led to negligible differences between the FD
and FS of the PDMS filaments. The WCAs of these samples
also showed negligible differences in the parallel and
perpendicular directions. Therefore, the surface wettability of
the 3D printed porous PDMS films was determined by the surface
morphology of the topmost layer, and it hardly varied with the
shifted distance (ΔX). This study provides a novel strategy for
producing 3D printed porous PDMS films of various physical
structural designs that exhibit controllable and stable surface
wettability, such as ASW and superhydrophobicity, which can be
extensively applied in biomedical, environmental, and structural
mechanical fields.
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