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Objective: This study presents an innovative articular fossa prosthesis generated
by the envelope surface of condyle movement, and compares its mandible
movements, muscle activities, and joint reaction forces with two
temporomandibular joint (TMJ) prostheses using multibody musculoskeletal
simulation.

Methods: A healthy 23-year-old female was recruited for this study. Cone-beam
computed tomographic (CBCT) was performed to reconstruct the mandibular
bone geometry. A customized TMJ fossa prosthesis was designed based on the
subject-specific envelope surface of condyle movement (ESCM). Mandibular
kinematics and jaw-closing muscle electromyography (EMG) were
simultaneously recorded during maximum jaw opening-closing movements.
To validate our prosthesis design, a mandibular musculoskeletal model was
established using flexible multibody dynamics and the obtained kinematics and
EMG data. The Biomet fossa prosthesis and the ellipsoidal fossa prosthesis
designed by imitating the lower limb prostheses were used for comparison.
Simulations were performed to analyze the effects of different fossa
prostheses on jaw opening-closing motions, mandibular muscle activation, and
contact forces.

Results: The maximum opening displacement for the envelope-based fossa
prosthesis was greater than those for Biomet and ellipsoidal prostheses
(36 mm, 35 mm, and 33 mm, respectively). The mandibular musculoskeletal
model with ellipsoidal prosthesis led to dislocation near maximal jaw opening.
Compared to Biomet, the envelope-based fossa reduced the digastric and lateral
pterygoid activation at maximal jaw opening. It also reduced the maximal
resistance to condylar sliding on the intact side by 63.2 N.

Conclusion: A customized TMJ fossa prosthesis was successfully developed using
the ESCM concept. Our study of musculoskeletal multibody modeling has
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highlighted its advantages and potential. The artificial fossa design successfully
achieved a wider condylar range of motion. It also reduced the activation of jaw
opening muscles on the affected side and resistance on the intact side. This study
showed that an ESCM-based approach may be useful for optimizing TMJ fossa
prostheses design.

KEYWORDS

articular fossa prosthesis, envelope surface, musculoskeletal simulation, flexible
multibody dynamics, temporomandibular joint, mandibular movement

1 Introduction

The temporomandibular joint (TMJ) is the only movable joint of
the human oral and maxillofacial region, and is actively involved in
several daily activities (Zheng et al., 2019). TMJ disorders, such as
tumors and ankylosis, can affect its integrity and cause joint dysfunction
(Mercuri, 2000). Total joint replacement is an effective method for TMJ
reconstruction and functional restoration (Sidebottom, 2008).

Currently, there are two commercially-available TMJ replacement
systems approved by the Food and Drug Administration, Biomet
Microfixation (Jacksonville, FL, USA) (Imola and Liddell, 2016) and
TMJ Concepts (Ventura, CA, USA) (Wolford et al., 1994). Both these
systems consist of condylar and fossa components (Kiehn et al., 1974).
The TMJ Concepts prostheses are constructed using patient-specific
cone-beam computed tomography (CBCT) data (Wolford et al., 2003).
Meanwhile, Biomet has three stock components with different lengths
and styles (Imola and Liddell, 2016). The Biomet artificial fossa is a flat
and ellipsoidal surface, and the TMJ fossa and mandibular ramus may
need to be trimmed in order to fit with it.

Existing TMJ prostheses were designed solely based on medical
imaging, and cannot completely restore the physiological condylar
kinematics (Zou et al., 2020). The natural condyle has sliding and
rotational movements (van Loon et al., 1999). Although TMJ
replacement significantly improves mandibular movement, the
condylar kinematics for the prosthesis are different compared to the
natural TMJ (Westermark, 2010; Gruber et al., 2015; Gonzalez-Perez
et al., 2016). In particular, condylar sliding may be completely lost after
TMJ replacement (Sonnenburg and Sonnenburg, 1985; Merlini and
Palla, 1988; Mercuri et al., 1995). This may be because the geometry of
the TMJ prosthesis restricts the condylar range of motion (ROM) (van
Loon et al., 1999). In vitro experiments performed by Celebi et al.(2011)
demonstrated that the artificial condyle is more deeply enclosed within
the articular fossa compared to the natural condyle. This makes
achieving the normal condylar ROM nearly impossible.

A function-based prosthesis may be designed by imitating the
artificial joints of the lower limb. For example, the instantaneous
center of rotation of the knee joint was considered when designing
artificial knee implants (Walker, 2001). It has been observed that the
physiological knee kinematics cannot be achieved by restoring its
anatomical morphology alone (Wang et al., 2021). Similarly, TMJ
fossa prostheses may also be custom-made based on the three-
dimensional (3D) condylar movement. According to the finite
element analysis using a canine model, this may result in a
reasonable strain distribution (Xu et al., 2017). Reconstruction of
the functional condylar surface, i.e., the envelope surface of condylar
movement (ESCM), in normal adults was proposed by Huang et al.
(2021). The use of the ESCM concept for designing TMJ fossa

prostheses can allow physiologically accurate kinematics (Chen
et al., 2022a; Chen et al., 2022b).

The ESCM surface concept has not yet been applied for the real-
world design of human TMJ fossa prostheses. An important reason
is the lack of systematic comparison of the effect of different TMJ
prostheses on mandibular biomechanics. Radiographic, ultrasonic,
magnetic, and optoelectronic tracking methods have previously
been used for in vivo quantification of the mandibular kinematics
(Woodford et al., 2020). Based on these measured kinematics data,
multibody dynamics modeling provided an in silico method to
investigate the hidden biomechanics of the mandibular
musculoskeletal system. This has proven to be effective and
reliable in quantifying the functional outcomes after mandibular
surgery and reconstruction (Hannam et al., 2010; Hannam, 2011).
Previous studies have also validated the feasibility of simulating
maximal jaw opening-closing movements based on flexible
multibody dynamics (Broser et al., 2021; Guo et al., 2022).

This study is the first to propose a TMJ fossa prosthesis design
based on the ESCM concept. Functional outcomes of this fossa
design, including mandibular movements, muscle activity, and joint
reaction forces, were predicted based on musculoskeletal multibody
simulations, and compared with those of the Biomet and ellipsoidal
fossa prostheses. We hypothesized that the customized envelope-
based fossa prosthesis would improve the functional outcomes,
including condylar ROM and jaw opening muscle activations.

2 Materials and methods

2.1 Subject

This study was approved by the Institutional Review Board of
Peking University School and Hospital of Stomatology, Beijing,
China (Pkussirb-201947091). A 23-year-old female volunteer
with no symptoms and signs of TMJ disorder or a history of
TMJ disorder or orthodontic treatment was selected. Written
informed consent to publish the findings was obtained.

2.2 CBCT

Skull base and mandibular CBCT scans (NewTom VG, NewTom,
Imola, Italy; Voxel size: 0.3 mm, Field of view: 16 cm × 16 cm) were
performed in the intercuspal position. The segmentation and 3D
reconstructions were performed in stereolithographic format using
CBCT data in the Proplan CMF software (version 3.0, Materialise,
Leuven, Belgium).
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FIGURE 1
Procedure of obtaining the ESCM. The coronal section (A) and sagittal section (B) of positions of the condylar functional surfaces at each moment.
The coronal section (C) and sagittal section (D) of ESCM generated by merging the condylar functional surface data.

FIGURE 2
The sagittal section (A) and cross section (B) of envelope-based fossa prosthesis. The sagittal section (C) and cross section (D) of the ellipsoidal fossa
prosthesis.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wang et al. 10.3389/fbioe.2023.1273263

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1273263


2.3 Mandibular movements and
electromyography (EMG)

The subject was instructed to perform twowarm-up cycles and one
test cycle of maximal opening-closing movements, beginning and

ending in the maximum intercuspal position (Baqaien et al., 2007;
Koeppel et al., 2015). TheWINJAWultrasound system (Zebris Medical
GmbH, Isny, Germany) was used to record the mandibular motion.
Mandibular position relative to the upper dentition was recorded using
the Trios intraoral scanner (3Shape, Copenhagen, Denmark).

FIGURE 3
Geometry of different fossa prostheses. (A) Ellipsoidal fossa prosthesis. (B) Envelope-based fossa prothesis. (C) Biomet fossa prosthesis. (D)
Comparison of the range of condylar motion.

FIGURE 4
The schematic overview of establishing the subject-specific mandible musculoskeletal model. MSD, Multibody System Dynamics.
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FIGURE 5
3D trajectories for the lower incisors with different artificial fossae. The axes were separated as two different panes, Left-Right (A) and Posterior-
Anterior (B).

FIGURE 6
Edgeloading (A) and condylar dislocation (B) near maximal jaw opening.
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FIGURE 7
Activation of the digastric (A) and lateral pterygoid (B) muscles on the affected side. The vertical dotted line demonstrates the time range for jaw
opening-closing movements. Act. = Activation. Lat. = lateral.

FIGURE 8
TMJ contact forces for different types of articular fossa types. (A) Intact side; (B) Affected side.
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The WINJAW EMG device (Zebris Medical GmbH, Isny,
Germany) was used to simultaneously record bilateral
stomatognathic muscle activities during each cycle of mandibular
movements. The electrodes were positioned on the anterior
temporalis and masseter muscle bellies bilaterally. The subject
was instructed to perform maximum voluntary contractions
(MVCs) thrice to obtain the maximal muscle force-generating
capacity for each muscle (Ferrario et al., 2004; Owashi et al.,
2017). Raw EMG signals were rectified and low-pass filtered
(Lloyd and Besier, 2003; Guo et al., 2020), and the data were
normalized using the MVC values (Quental et al., 2012). The
obtained dimensionless signal was used as input to analyze
muscular activation based on the first-order activation dynamics
equation (Thelen, 2003; Guo et al., 2022).

2.4 TMJ fossa protheses and ellipsoidal
condyle design

The TMJ fossa prothesis, based on the ESCM concept, was
designed as follows. The maxilla, mandible and mandibular border
movement trajectories were registered. Then according to the
trajectories, the mandibular border movement was simulated, and
the positions of the functional surfaces of the condyle at each
moment were saved in the same 3D coordinated system. The
condylar functional surface was defined as the coverage of the
transverse ridge 6 mm forward. Condylar functional surface data
was merged to construct the ESCM, as reported previously (Huang
et al., 2021). The procedure used to obtain the ESCM is shown in
Figure 1. Subsequently, the geometry of envelope surface was
smoothened and refined using the Geomagic Studio software

(version 2012, 3D Systems, Rock Hill, SC, USA). The envelope
surface was uniformly thickened by 1 mm, and the customized fossa
prosthesis was obtained (Figures 2A, B).

The Biomet fossa used in this study was obtained by
increasing the overall size of the stock fossa prosthesis by 25%
to fit the shape of the subject’s natural fossa. An ellipsoidal fossa
prosthesis was obtained by setting a hemi-ellipsoid to fit the
subject’s natural condyle (Figures 2C, D). The ellipsoidal fossa
prosthesis was designed by imitating the lower limb joint
implants and ignoring the condylar translation. The ellipsoidal
fossa prosthesis was used to demonstrate the importance of
condylar movements in TMJ prosthesis designing. Previous
studies (Oberg et al., 1971; Zhao et al., 2019) have reported
that the mandibular condyles of most adults are nearly
ellipsoidal. The major (mediolateral) axis of the condyle is
twice as long as the minor (anteroposterior) axis. Similarly,
the mediolateral to anteroposterior diameter ratio of the
ellipsoidal fossa prosthesis was 2:1.

The condylar ROMs for different fossa prostheses are shown in
Figure 3. A least-squares fit of the subject-specific CBCT was used
to determine the condylar radius, assuming the condylar surface to
be frictionless (Yao et al., 2011; Modenese and Kohout, 2020; Guo
et al., 2022). The condyle on the intact side was kept in the natural
shape.

2.5 Mandibular multibody musculoskeletal
model

Mandibular subject-specific musculoskeletal modeling and
simulation were based on a study by Guo et al. (2022). The subject-

FIGURE 9
Resistance to forward condylar translation on the intact (A) and affected (B) sides.
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specific mandibular and skull geometry was obtained from the
reconstructed CBCT data (Koolstra and van Eijden, 2005). The
mandibular model was driven by 24 muscle bundles (de Zee et al.,
2007), whichwere discretized by a flexiblemuscle element with a typical
Hill-type model. Muscle insertion contours within the generic model
weremapped onto the subject-specific bonemorphology using the non-
rigid iterative closest point algorithm.

The surface geometry of each fossa prosthesis type was
extracted, and their vertices were set as contact detection points.
Condylar contact geometry on the affected side was simplified as an
ellipsoid, and the TMJ contact was modeled as a group of contact
points to the rotating body. The normal contact force for the TMJ
was calculated using a frictionless contact force model for soft
materials (Flores and Ambrósio, 2010), with a friction coefficient
of 0.001 (Xu et al., 2017).

Numerical simulations were performed using the inverse-
forward dynamic coupling approach (Guo et al., 2022). The 3D
mandibular movements were selected as the kinematic inputs to
constrain the mandibular bone kinematics. Hyoid location in the
intercuspal and maximal opening positions were measured using
CBCT, and its movement trajectories were simplified through linear
interpolation (Silva and Ambrósio, 2003; Guo et al., 2022). The
musculotendon length for each muscle was calculated using the
inverse dynamics approach. Motion constraints were removed
during forward dynamics estimations. Mandibular muscle forces
were estimated via feedback control using their lengths as the target

value. A proportional derivative controller was used to calculate the
activations for each muscle bundle. The schematic overview of
establishing the subject-specific mandible musculoskeletal model
is shown in Figure 4.

3 Results

Lower incisor movements for different artificial fossa types are
shown in Figure 5. The maximum jaw opening magnitudes for the
envelope-based, Biomet, and ellipsoidal fossae were 36 mm,
35 mm, and 33 mm, respectively. With an ellipsoidal fossa
prosthesis implanted, the condyle of the affected side performed
joint dislocation (Figure 6). Condylar ROMs on the affected side
were nearly identical for the envelope-based and Biomet
prostheses.

We also compared the kinetic data during jaw-opening
motions. The activation of the digastric and lateral pterygoid
muscles during maximal jaw opening was reduced with
envelope-based fossa prosthesis compared to Biomet (Figure 7).
Bilateral contact forces for the envelope-based and Biomet fossae
were similar during and at maximal jaw opening. However, the
TMJ with the envelope-based fossa allowed greater normal contact
forces than Biomet (Figure 8). When the condyle traveled through
the apex, the resistance for forward condylar translation with the
envelope-based fossa decreased by 62.4 N (Figure 9). Moreover,
the condylar contact force was unevenly distributed for different
prostheses, and the maximal contact force for the envelope-based
fossa at maximal jaw opening was greater than that for Biomet
(Figure 10).

4 Discussion

Total joint replacement is commonly used to treat severe
degenerative conditions of the TMJ, particularly when
conservative treatment has been ineffective. A major goal of TMJ
reconstruction is the restoration of normal function. However,
current TMJ prostheses that conform to the anatomical shape of
TMJ cannot completely restore the physiological condylar
kinematics; the geometry of the prostheses reduces the condylar
ROM (van Loon et al., 1999; Zheng et al., 2019; Zou et al., 2019). The
present study combined the TMJ fossa prosthesis with a functional
condylar surface, which was different from the commercially-
available TMJ prostheses, allowing physiologically accurate
kinematics (Chen et al., 2022b).

The present study was the first to apply the ESCM concept to
TMJ fossa prostheses, and a subject-specific mandibular
musculoskeletal model was used to simulate mandibular
movements, muscle activation, and resistance forces with
different prostheses. As a subject-specific model for the human
mandibular musculoskeletal system, it had been validated for
predicting mandibular trajectories during jaw opening-closing
movements in two previous studies, one with seven healthy
subjects (Guo et al., 2022), and the other with the patients
suffering from oral and maxillofacial tumors (Guo et al., 2023).
Calculation precision of the musculoskeletal model would be
verified in the further study with patients of TMJ replacement

FIGURE 10
Distribution of TMJ contact forces with the condyles moving to
edges of different fossa prostheses.
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surgery. The kinematic results were compared among the envelope-
based, stock Biomet, and ellipsoidal fossa prostheses. The maximum
jaw opening magnitude for the stock Biomet fossa prosthesis was
35 mm, which was similar to the long-term outcomes for Biomet
following TMJ replacement reported in previous studies (Gonzalez-
Perez et al., 2016; Kanatsios et al., 2018). Compared to the Biomet,
the envelope-based artificial fossa reduced jaw-opening muscle
activation on the affected side and resistance on the intact side.
It also increased the maximum jaw opening magnitude while
maintaining the condylar ROM and bilateral contact forces.
These results suggested that in terms of restoring the natural
ROM of TMJ, the ESCM-based TMJ fossa prosthesis did show
advantages and potential.

We developed the ellipsoidal fossa prosthesis based on the lower
limb joint implants, such as the artificial hip joint (Hernigou et al.,
2017). For the ellipsoidal fossa prosthesis design, we only considered
condylar rotation and ignored its forward translation.We found that
the ellipsoidal fossa limited the postoperative ROM of the TMJ. This
indicates the importance of considering all condylar movements
while designing prostheses, and reflects the rationale for envelope-
based fossa prosthesis.

As showed in the results, there were advantages of the ESCM-
based fossa prosthesis. It could not only improve the maximal jaw
opening magnitude and condylar ROM, but also increased the
efficiency of the jaw-opening process, as shown by the significant
decrease in lateral pterygoid activation at maximum jaw opening.
These indicated that the ESCM-based artificial fossa successfully
replicated the functional anatomy of the mandibular
musculoskeletal system. The physiological movement of TMJ
could be affected by many factors, such as the posterior slope of
articular eminence, the shape and deformation of articular disc, and
traction of muscles (Mack, 1989). The articular eminence could
provide a stable fulcrum for anterior condyle rotation (Van Eijden
et al., 1997), while significant volume of the articular fossa and
eminence bone has to be sacrificed for commercial condylar
prostheses (Bai et al., 2015). In a study of 165 TMJs
reconstructed using the Biomet stock prosthesis, Zhao et al.
(2018) found that some patients required significant bone
trimming or grafting to adjust the condyle-ramus angle and fossa
for stable prosthesis implantation. As a result, the complete structure
of articular eminence was damaged. On the other hand, the ESCM-
based fossa prosthesis generated by the condylar functional surface
data would provide physiological support and guidance for the
condylar movement (Chen et al., 2022b; Chen et al., 2023). It
may play a combined role of articular eminence, articular disc,
capsule, ligament and so on, which could also provide the stable
fulcrum for anterior condyle rotation as same as articular eminence.
That increased the moment arms of the jaw-opening muscles
(Spencer, 1998) and so could explain the significant decrease in
digastric activation at the maximal jaw opening. Moreover, the
guidance of ESCM-based fossa prosthesis for the condyle to slide
forward could explain the significant decrease in lateral pterygoid
activation at maximum jaw opening.

This study also had some limitations. First, the data used were
obtained from a single subject. Studies with larger sample sizes will
be required in the future. In addition, the subject of this study had
no history of TMJ diseases, while total TMJ replacement is a
biomechanical treatment option for patients with end-stage TMJ

diseases (Sidebottom, 2008). For the patients whose articular fossa
is damaged by the tumor and the condyle is intact and the condylar
movement is normal, their envelope surfaces of condylar
movement can still be obtained by the method used in this
study. Moreover, in the case where the unilateral condyle is
damaged but the patient could still perform normal mandibular
movements, the mirroring of the intact side could be applied using
the same method. This method could not be applied to those
patients who were unable to perform normal mandibular
movements, such as, patients with TMJ ankylosis. A method for
predicting the shape of ESCM based on the facial morphology had
been proposed in the previous study (Chen et al., 2023). Although
further research was needed, it may be helpful in future ESCM data
collection of patients with TMJ diseases whose normal mandibular
movements could not be performed. Second, the complex TMJ
morphology and loading patterns were simplified for our
musculoskeletal models. TMJ cartilage and articular disk of the
intact side were not modelled, which may have influenced the
contact mechanics of the intact side. Besides, given that the
mandibular kinematics would change for different other
positions, more mastication loading conditions other than the
maximum intercuspal position should be considered in the further
study. Third, the condylar geometry on the affected side was
simplified as an ellipsoid. An articular fossa prosthesis should
be matched with a suitable condylar prosthesis based on the
patient-specific functional anatomy. ESCM-based fossa
prostheses still require some improvements. For example, the
peak contact force for the envelop-based fossa was greater than
that for Biomet at maximum jaw opening. This may have been
because of the uneven distribution of contact forces, resulting from
the bistable shape of the envelope-based fossa prosthesis, which
could be influenced by the articular eminence morphology (Huang
et al., 2021; Chen et al., 2022b). Compared with the envelope-based
artificial fossa, the surface geometry of the Biomet fossa was flatter,
making the contact force distribution more even. The uneven
geometry of the envelope-based fossa prosthesis reduced the
contact area with the condyle, resulting in an increased contact
force. This would increase the potential for component wear,
material failure, and TMJ dislocation (Kent et al., 1986;
Giannakopoulos et al., 2012). Moreover, an anterior stop of the
ESCM-based fossa prosthesis may be needed to avoid TMJ
luxation, which will be considered in the further study. Despite
these limitations, the study offers a novel perspective for TMJ fossa
prostheses design. The customized envelope-based fossa prosthesis
described in this study may allow the optimization of TMJ fossa
prosthesis design.

5 Conclusion

A customized TMJ fossa prosthesis was successfully developed
using the ESCM concept. Our study of musculoskeletal multibody
modeling has highlighted its advantages and potential. The artificial
fossa design successfully achieved a wider condylar ROM. It also
reduced the activation of jaw opening muscles on the affected side
and resistance on the intact side. This study showed that an ESCM-
based approach may be useful for optimizing TMJ fossa prostheses
design.
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