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Bone defects represent a challenging clinical problem as they can lead to non-
union. In silico models are well suited to study bone regeneration under varying
conditions by linking both cellular and systems scales. This paper presents an in
silicomicro-multiphysics agent-based (micro-MPA) model for bone regeneration
following an osteotomy. Themodel includes vasculature, bone, and immune cells,
as well as their interaction with the local environment. The model was calibrated
by time-lapsed micro-computed tomography data of femoral osteotomies in
C57Bl/6Jmice, and the differences between predicted bone volume fractions and
the longitudinal in vivo measurements were quantitatively evaluated using root
mean square error (RMSE). The model performed well in simulating bone
regeneration across the osteotomy gap, with no difference (5.5% RMSE, p =
0.68) between the in silico and in vivo groups for the 5-week healing period– from
the inflammatory phase to the remodelling phase – in the volume spanning the
osteotomy gap. Overall, the proposed micro-MPAmodel was able to simulate the
influence of the local mechanical environment on bone regeneration, and both
this environment and cytokine concentrations were found to be key factors in
promoting bone regeneration. Further, the validated model matched clinical
observations that larger gap sizes correlate with worse healing outcomes and
ultimately simulated non-union. This model could help design and guide future
experimental studies in bone repair, by identifying which are the most critical in
vivo experiments to perform.
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1 Introduction

Bone is one of the few tissues that can fully regenerate after an injury (Marsell and
Einhorn, 2011). During healing, bone remodelling is responsible for a scarless regeneration
that involves three key processes: tissue formation, tissue differentiation, and tissue
resorption (Einhorn and Gerstenfeld, 2015). In hypertrophic non-unions, characterized
by robust callus formation and effective vascularization, the healing process is hampered by
inadequate mechanical stability (Wildemann et al., 2021). Mechanical loading plays a pivotal
role in these processes, directing and stimulating osteogenic cells for a hypertrophic healing
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response supported by vasculature growth (Bahney et al., 2015; Liu
et al., 2019). Conversely, in atrophic non-unions, impaired
biological potential leads to limited callus formation and
hindered healing, emphasizing the critical role of mechanical
stability and vascular invasion in facilitating nutrient and cell
transport to the injury site (Wildemann et al., 2021). Therefore,
understanding how microenvironmental cues such as mechanical
strain and cellular signalling regulate bone regeneration and the
growth of blood vessels can provide valuable insights into the
pathways that are responsible for restoring function following
injury. Cross-sectional and longitudinal experimental studies have
shown correlations between tissue types and micromechanical
environment during healing but are limited in their ability to
investigate processes and regulatory pathways (Morgan et al.,
2014; Wehrle et al., 2019). Cross-sectional studies of bone
regeneration are unable to track changes in protein expression or
cell populations over time for an individual sample (Morgan et al.,
2012; Liu et al., 2019). Longitudinal studies on the other hand can
track changes in bone density over time for an individual sample but
are very limited in providing data on individual cells or even soft
tissues, particularly throughout the full thickness of the callus
(Wehrle et al., 2019; Tourolle né Betts et al., 2020). As a
complement to experimental studies, computational studies can
be conducted by designing in silico models based on
phenomenological and cellular processes.

Early computational studies identified mechano-regulation
algorithms of tissue differentiation using finite element (FE)
analysis to estimate the mechanical microenvironment during
fracture healing. Two-dimensional models by Carter et al. (1998),
Claes and Heigele (1999), Lacroix and Prendergast (2002), and
Prendergast et al. (1997) predicted important aspects of tissue
differentiation and maturation during bone regeneration, using
“rules” based on mechanical signals such as strain, pressure, and
fluid flow (Isaksson et al., 2006). Although Lacroix and Prendergast’s
(2002) model also included tissue resorption, that model was only
able to capture periosteal resorption and not endosteal resorption
within the marrow cavity. Byrne et al. (2011) were able to simulate a
fully regenerated diaphysis by adapting the mechano-regulation
algorithm (Lacroix and Prendergast, 2002) to include bone
resorption within the marrow cavity in a three-dimensional
model. Also using FE analysis, Vetter et al. (2012) proposed a
model based on thresholds for mechanical strain associated with
tissue differentiation and maturation. Repp et al. (2015) expanded
the model by Vetter et al. to include bone resorption in late phases of
regeneration, which resulted in the cortex to be restored to its intact
shape. These FE studies have laid the foundation for identifying rules
pertaining to tissue differentiation and resorption; however, they are
suited only for phenomenological modelling of the bone
regeneration process. Specifically, the existing FE modelling
approaches were unable to directly simulate cellular interactions
and processes, and they stopped short of simulating remodelling. To
achieve this, FE elements which were removed via resorption would
have to be added again to increase the tissue modulus, a feature
typically not included in FE models (Byrne et al., 2011; Repp et al.,
2015).

With advances in computational power and memory, agent-
based models (ABM) have grown favourable in the realm of
computational biology since they allow discrete modelling of

cells. As a result of many cells acting with simple rules, a system
can become complex – a phenomenon known as emergence, which
ABMs can simulate. In an ABM, each cell is represented by an agent
that has its own state and set of rules defining its interactions with its
surrounding microenvironment and other cells. Checa and
Prendergast (2009) leveraged a mechanobiological ABM to
simulate development of vascular networks via angiogenesis and
tissue growth during bone healing under different loading and cell
seeding conditions. The simulations produced spatially
heterogeneous patterns of tissue differentiation, due to the
morphology of the vascular networks, similar to those found in
experimental studies. The revascularisation algorithm of Checa and
Prendergast (2009) was incorporated by OReilly et al. (2016) into
their own mechanobiological ABM to simulate the effect of
disrupted angiogenesis on endochondral ossification during bone
regeneration. Their model provided additional evidence that the
presence of vasculature and thus sufficient oxygen availability
regulates the fate of skeletal stem and progenitor cells in favour
of the osteogenic lineage (Bahney et al., 2015). However, the
mechanisms at the cellular and tissue scale that link osteogenesis
and angiogenesis, known as osteo-angio coupling, are still
incompletely understood (Morgan et al., 2012; Liu and Castillo,
2018).

Moreover, the ABM developed by Checa and Prendergast (2009)
also incorporated bone resorption as a result of using previously
described mechano-regulation rules (Lacroix and Prendergast,
2002) based on shear strain and fluid velocity. The bone
resorption stimulus threshold was used to determine the
termination of the simulations as the model did not include bone
remodelling. Borgiani et al. (2021), using the same mechano-
regulation rules, implemented the resorption of cartilage, fibrous
tissue, and bone in their ABM of bone regeneration. Tissue
resorption was not reported in the study, nor were there any
considerable resorption volumes identifiable from the results
(Borgiani et al., 2021). In contrast, Jaber et al. (2022) reported
the relative bone resorption signal predicted from the applied
mechanical loading and successfully demonstrated resorption of
volumes of bone experiencing low strain. Unfortunately, the
maximum theoretical bone resorption rate (BRR 0.17%/day)
predicted by the applied mechanical loading was not
representative of in vivo BRR observed via micro-computed
tomography (micro-CT) during the final bone remodelling phase
of bone regeneration (0.52% ± 0.25%/day) (Wehrle et al., 2019).
Notwithstanding this limitation, ABMs are indeed capable of bone
resorption, in addition to tissue formation and differentiation. These
three essential processes should be at the heart of bone regeneration
models if they aim to simulate the entire regeneration process
starting with inflammation, callus formation, and finishing with
remodelling of the callus. To our knowledge, however, no model of
bone regeneration has captured bone remodelling of either the
fracture callus or surrounding bone during the final stages of
fracture healing.

In this paper, we present an in silico micro-multiphysics ABM
which simulates remodelling during bone regeneration by
incorporating the key processes of tissue formation,
differentiation, resorption, and revascularisation. The in silico
micro-multiphysics agent-based (micro-MPA) model is an
ABM in which agents emulate single-cell behaviour and interact

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Kendall et al. 10.3389/fbioe.2023.1289127

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1289127


with multiple physical aspects of the microenvironment, defined
by cytokine concentrations, oxygen tension, mechanical strain,
and tissue mineralisation. The proposed micro-MPA model was
based on the initial framework described by Tourolle (2019) that
included both skeletal and immune cells with their respective
paracrine signalling. This initial implementation was mainly
concerned with development of the callus as a result of
osteoblast polarisation. Adaptions of this framework
successfully simulated homeostatic bone remodelling in ageing
mouse populations (Boaretti et al., 2023) and human biopsies
(Tourolle et al., 2021). By focusing on bone regeneration, we

adapted the framework to include revascularisation and the
remodelling of the fracture callus via resorption and de novo
tissue formation. To validate the extended model, in vivo time-
lapsed micro-CT data of femoral osteotomies in mice were used as
the ground truth (Wehrle et al., 2019). The aim of this study was to
quantitatively assess the ability of the micro-MPA model to
simulate inflammation, callus formation, and finally bone
remodelling within the context of bone regeneration. Then, the
proposed micro-MPA model’s sensitivity to varying in silico
osteotomy gap sizes was demonstrated by reporting the healing
outcomes. We hypothesise that the proposed in silicomodel, which

FIGURE 1
(A) Configuration of the loading setup where the global peak force Fw from ambulatory loading is applied to the femur. Due to the presence of the
external fixator, the distributed load fw across the osteotomy gap depends on the distance to the external fixator d, the callus stiffness kc, and the fixator’s
stiffness kf. By converting the mineral density to Young’s modulus and assigning it to a “voxel”mesh, the micro-FE model is generated. Two outputs are
generated: the effective strain (EFF) distribution and the strain-energy density (SED) which are used to model the strain magnitude within soft tissue
and bone, respectively. (B) Illustration of the micro-MPA model’s simulation pipeline. The three-dimensional lattice contains many properties, including
cells, mechanical signal, mineral, cytokines, and oxygen concentration. (i) The mechanical signal is updated by converting the mineral density to Young’s
modulus which is given as input for the micro-FE analysis. (ii) The cytokine concentrations are solved iteratively using a reaction-diffusion-decay
paradigm which includes receptor-ligand kinetics. (iii) The vascular network grows either via chemotaxis by following the VEGF gradient, continuing in a
previously determined or randomdirection. (iv) Cell behaviour is predefined based on the local cytokine, oxygen, andmineral concentrations. OCL resorb
both mineral and osteoid simultaneously whereas OBL only synthesize osteoid. Although the skeletal cells (OBL, OCY and lining cells) secrete OPG and
RANKL, OCY synthesize significantly more than the two other cell types combined. The strain threshold for osteoid formation (FOR) is the same for the
SED and EFF signals. The oxygen threshold is defined as the presence of sufficient oxygen, i.e., more than is consumed per iteration.
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was calibrated to simulate successful healing, can simulate a non-
union as a result of a critical osteotomy gap size.

2 Materials and methods

2.1 In vivo input data

The in vivo datasets consisted of time-lapsed in vivo micro-CT
(vivaCT 40, Scanco Medical AG, Brüttisellen, Switzerland) scans of
femoral osteotomies in female, 20-week-old C57Bl/6J mice from a
prior study (Wehrle et al., 2019). Briefly, osteotomies were created
with a 0.66 mm Gigli wire resulting in a mean osteotomy width of
0.85 ± 0.09 mm. The femur defect was stabilised with a polyether
ether ketone external fixator (MouseExFix, RISystem AG,
Davos, Switzerland) with an ex vivo apparent construct stiffness
of 23.8 N/mm (Tourolle né Betts et al., 2020) across the defect gap
(Figure 1A). The in vivomicro-CT images were acquired every week
for 5 weeks at an isotropic voxel resolution of 10.5 μm. The repeated
anaesthesia, handling and radiation associated with the scans did not
have a measurable impact on callus formation and remodelling
(Wehrle et al., 2019). The calibration-validation split was assigned
randomly a priori to fit the micro-MPA model’s output to the
calibration group (n = 4) and provide an unbiased evaluation of the
calibrated model using the validation group (n = 5). The dataset
presented a large variation in gap widths spanning each osteotomy
for each sample and their assignment to the group is shown in
Supplementary Figure S1. This study design was essential to tune
and adjust the parameters of the model, while also ensuring that the
model remained generalisable, i.e., could be readily applied to
different samples and expect a similar outcome.

2.2 Micro-multiphysics agent-based model

The micro-MPA model is based on an earlier version (Tourolle,
2019) and was expanded in this study to investigate the
contributions of revascularization and remodelling to bone
regeneration. The overview of the current model is depicted in
Figure 1B. Briefly, the micro-MPA model coupled micro-finite
element (micro-FE), micro-finite difference, and agent-based
modelling to simulate revascularisation, bone formation,
resorption, and tissue differentiation in a mouse femoral
osteotomy defect. The micro-FE and micro-finite difference sub-
models of the micro-MPA model run on open-source libraries
(Boaretti et al., 2023) which are widely adopted and maintained
by the high-performance computing community. The model was
highly repeatable as all random seeds were fixed, i.e., two identical
models running on different cores produced the same outcomes.

2.2.1 Micro-finite element model
The micro-FE model was generated as a hexahedral (voxel)

mesh from the input image. For each iteration of the micro-FE step
within the micro-MPA model, each element’s stiffness was
updated based on the mineral density (see Figure 1A). The
conversion of mineral density to Young’s modulus was achieved
via linear interpolation where 720.0 mg HA/cm3 and 395.0 mg
HA/cm3 corresponded with 14.0 GPa and 4.0 GPa, respectively

(Shefelbine et al., 2005; Mulder et al., 2007). Elements with a
mineral density below 395.0 mg HA/cm3 were considered soft
tissue and were given a value of 3.0 MPa (Simon et al., 2011;
Tourolle né Betts et al., 2020). Both soft and mineralised tissue
were modelled as linear elastic materials with a Poisson’s ratio of
0.3 (Claes and Heigele, 1999; Flaig and Arbenz, 2011). The stiffness
of the osteotomy was determined by applying a simple uniaxial
compression of 1% displacement to the cortical bone and the
marrow cavity. The computed value of compressive apparent
stiffness was then used to derive the loading boundary
conditions, assuming combined bending and compression from
ambulatory loading with an external fixator (Tourolle né Betts
et al., 2020). The computed strains were then linearly scaled so that
the resulting force was 10.5 N which represented the peak force
determined via habitual loading (Paul, 2020). The micro-FE
models were solved across 2 nodes on Piz Daint, a Cray XC30/
40 system at the Swiss National Supercomputing Centre (CSCS),
using ParOSol, a parallel solver optimised for micro-CT images
(Flaig and Arbenz, 2011). The mechanical stimulus used for the
cells within the soft tissue was effective strain (EFF), calculated as
described by Pistoia et al. (2002), whereas the mechanical stimulus
for the osteocytes within the mineralised tissue was strain-energy
density (SED) (Schulte et al., 2013a). Both mechanical signals were
Gaussian-filtered (sigma = 1.0, support = 0.8) to mitigate partial
volume effects following the standard approach when evaluating
micro-CT images (Bouxsein et al., 2010; Ohs et al., 2020). This
signal regularisation was also previously applied to micro-FE
analysis on in vivo micro-CT images (Schulte et al., 2013b;
Tourolle né Betts et al., 2020; Paul et al., 2022). The presence of
these two mechanical signals allowed tissue-independent
standardisation of the various strain-related thresholds
concerning the cell behaviours (Kendall et al., 2022a). This was
especially relevant for this study where the osteotomy gap
developed into a hard callus which presented a porous surface,
resembling a trabecular structure. The mechanical signal predicted
by SED alone within the soft tissue niches of these porous
structures was too low to induce osteoid production (see
Supplementary Figure S2). Having taken this into consideration,
we used EFF to predict the mechanical stimulus for the soft tissue
(Pistoia et al., 2002), assuming small strains and that the Young’s
modulus of mineralised tissue was orders of magnitude greater
than that of soft tissue. The osteogenic (SEDFOR > 0.008 MPa or
EFFFOR > 0.008) and osteolytic (SEDRES < 0.015 MPa or EFFRES <
0.015) strain thresholds (Figure 1) were used globally, for all cells
either occupying mineralised or soft tissue.

2.2.2 Micro-finite difference model
The cytokine and oxygen concentrations were simulated using a

linear backward time-centred space (BTCS) finite-difference solver.
The details of the solver are described in more detail by Tourolle
(2019) and Boaretti et al. (2023). The reaction-diffusion-decay
(RDD) step of the micro-finite difference model consisted of
many sub-steps, which were scaled with the global update
interval. The stability of the RDD step was ensured for each
chemical species and verified prior to the start of the study
(Boaretti et al., 2023). The simulation domain was discretised at
the same resolution as the micro-FE model where each element
(voxel) was assigned isotropic diffusivity for each cytokine. Oxygen
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was assumed to have an equal diffusivity constant for soft tissue and
bone. For all cytokines, we assumed mineralised tissue to be less
diffusive by two orders of magnitude than non-mineralised tissue.
The diffusion constant was determined to be the same for all
cytokines in soft tissue since all proteins were soluble (Yu et al.,
2009) and not membrane-bound (Supplementary Table S1). The
distal and proximal concentrations were constant at the domain
boundaries (Dirichlet) with the other boundaries being set to
reflective (Geris et al., 2008). Further, cytokine binding was
modelled in a reaction step that captured receptor-ligand kinetics
and ligand-ligand, e.g., osteoprotegerin (OPG) and receptor
activator of nuclear factor kB ligand (RANKL), interactions. The
linear reaction kinetics and implementation thereof were described
previously (Tourolle, 2019; Boaretti et al., 2023). The finite-
difference model also included cytokine decay where each
cytokine was assigned an exponential decay constant (see
Supplementary Table S1). With every RDD step, the isotropic
diffusivity for each element and chemical species was updated
based on the mineral concentration at the respective element.
The mineral concentration was determined by the mineralisation
rate of the local osteoid secreted by osteoblasts, resulting in a time-
delay which governs the dynamics of matrix mineralisation
(Supplementary Material).

2.2.3 Agent-based model
The agent-based sub-model of the micro-MPA model was

implemented in C++. The biological cells were represented as
independent, discrete agents with pre-defined behaviours
(proliferation, differentiation, apoptosis, migration, protein, and
extracellular matrix synthesis) based on conditions in their
surrounding environment. The discretisation of the ABM was
equal to the micro-FE model, i.e., each 10.5 μm isotropic voxel
could be occupied by a single cell only. Voxels were considered as
soft tissue if their mineral content was below 395 mg HA/cm3

(Tourolle né Betts et al., 2020) and could be occupied by skeletal
stem and progenitor cells (SSPC), hematopoietic stem cells (HSC),
vascular endothelial cells, immune cells, osteoclasts (OCL),
osteoblasts (OBL) and bone lining cells. The ABM assumed that
all cells were of the same size except for active OCL which were
multi-nucleated clusters consisting of 3 or more OCL (Tourolle,
2019). Mineralised voxels (>395 mg HA/cm3) could be occupied by
only pre-osteocytes or osteocytes (OCY). Since the in vivo
conditions of the osteotomies were classified as gap healing
(Shapiro, 2008), also referred to as direct transformational bone
repair, the micro-MPA model did not include chondrocytes and
thus fibrocartilage formation. The differentiation of SSPC along the
osteogenic lineage was only permitted in silico if the SSPC were
saturated with oxygen and within a preferable mechanical
environment (SEDFOR > 0.008 MPa or EFFFOR > 0.008) (Li et al.,
2019). Cell migration for OBL and OCL is illustrated in
Supplementary Figure S3 whereas all other cell types, except
(pre-)osteocytes, migrated randomly. Cell migration was possible
only in soft tissue and if a voxel was already occupied, the migrating
cell would swap positions with the resident cell. Only OBL were not
able to swap positions with OCL, as this would result in a continuous
loop of formation and resorption. The parameters pertaining to
migration behaviour can be found in Supplementary Table S1. Based
on the discretisation of the model, the update interval for the agent-

based model (dtcells = 20 min) was calibrated to achieve the mean
target speed of 31.5 μm/h for cell migration (Appeddu and Shur,
1994).

All cells either expressed cytokines, or synthesised extracellular
matrix, or both as stated in Supplementary Table S1. The cytokines
vascular endothelial growth factor (VEGF), OPG, RANKL and
sclerostin (Scl) diffused, decayed, and reacted within the
extracellular volume. Additionally, transforming growth factor
beta 1 (TGF-beta) was either synthesised by immune cells and/or
stored within the mineralised tissue to be released upon bone
resorption by OCL (Wu et al., 2016). Also, all cells had cytokine
receptors (RANK, VEGFR, TGFBR1, LRP5/6) which allowed the
binding of free cytokines (RANKL, VEGF, TGF-beta, Scl) via
reaction kinetics computed as part of the micro-finite difference
model of the RDD steps. All signalling was modelled with receptor-
ligand kinetics, with the respective receptors located on each cell’s
surface. Furthermore, a free ligand could also bind to a
corresponding free ligand, e.g., OPG could bind with RANKL to
form RANKL-OPG. These pathways are visualised in Figure 1B.

The population of each cell type was dependent on proliferation,
apoptosis, and differentiation. SSPC, HSC, OCL, OBL and immune
cells spontaneously underwent apoptosis during any cell behaviour
timestep. Only SSPC and HSC proliferated in the presence of
sufficient oxygen tension and a favourable mechanical
environment. Proliferation and apoptosis rates are given in
Supplementary Table S2. In general, cell differentiation was
possible if the precursor cell was sufficiently oxygenated with the
cell’s fate depending on the mechanical environment depicted in
Figure 1B (Morgan et al., 2010) or receptor binding. For example,
the mechanical environment directly dictated the differentiation of
OBL from SSPC (EFFFOR) or the inhibition of lining cells being
formed from mineral lining SSPC/OBL if the EFFFOR threshold was
surpassed. Whereas the molecular signalling pathways especially
affected the differentiation and migration of OCL including their
respective pre-cursors (Nelson et al., 2012; Warren et al., 2015): The
immune cells, which represented macrophages of the
M2 phenotype, were able to differentiate to OCL even in a
hypoxic environment (Ono and Nakashima, 2018) if 50% of
RANK binding sites were occupied. Similarly, differentiation of
HSC to OCL was driven by the presence of occupied RANK
receptors (>50%). The differentiation of lining cells to OBL
(Matic et al., 2016) was regulated, i.e., inhibited, by the presence
of Scl (Ominsky et al., 2015). The differentiation of OBL to OCY was
further regulated by the surrounding mineral concentration and an
embedding rate which was calibrated to achieve an osteocyte density
of 44′800 cells/mm3 (Mader et al., 2013).

Osteocytes acted as mechanosensors and synthesised cytokines
that stimulate the catabolic (RANKL), anti-anabolic (Scl) or anti-
catabolic (OPG) pathways according to the local SED (Klein-Nulend
et al., 2013) whereas OBL and bone lining cells secreted OPG and
RANKL based only on the local effective strain (Pistoia et al., 2002).
The cytokine production was modelled as a linear function of the
perceived mechanical signal with the parameters listed in a previous
implementation (Tourolle, 2019) and the production values listed in
Supplementary Table S1. Thus, VEGF and TGF-beta were
independent of the mechanical environment. The expression of
VEGF was modelled as a function of the cellular oxygen fulfilment
which is shown in detail for each cell type in Supplementary Figure
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S4. OCL were the only cell type to resorb mineral and osteoid.
Furthermore, OCL could only resorb as a multi-nucleated cluster
consisting of 3 or more OCL (Tourolle, 2019; Boaretti et al., 2023).
Resorption occurred only if more than 50% of RANK binding sites
were occupied whereas osteoid production by OBL occurred only
above EFFFOR. The directionality of osteoid synthesis and mineral
resorption was defined by a polarisation function which biased the
deposition of osteoid in favour of voxels with relatively high effective
strain, whereas mineral resorption was biased by minimal gradients
of strain energy density (Van Oers et al., 2008; Kendall et al., 2022a).
Osteoid was also deposited in the same voxel the OBL occupied
whereas voxels occupied by vasculature was void of osteoid. The
polarisation function was previously described by Tourolle (2019).
Behaviour of OBL and OCL are depicted in Supplementary Figures
S3B, C.

A final set of agents, vascular endothelial cells, represented the
vasculature. Vessel sprouting, extension, branching and anastomosis
depended on the local concentration of VEGF, which was secreted
by SSPCs, OBL, OCL, pre-osteocytes, bone lining cells, and immune
cells. The VEGF-dependent growth of the vasculature was similar to
an algorithm described by Checa and Prendergast (2009), in that
vessel extension and sprouting may follow the VEGF gradient, a
random direction or a previous direction; however, in our
adaptation, vessel growth could also occur via bifurcation at pre-
existing vessels (Carlier et al., 2012; Kusumbe et al., 2014). This
implementation of revascularisation was previously validated where
the vascular volume (Supplementary Figure S5) agreed with data
obtained via micro-CT angiography at 0, 3, and 14 days post-
operation in a 1.5 mm defect (Kendall et al., 2022b). Vascular
growth was not mechanosensitive, and the parameters were
tuned such that the oxygen tension at week 5 agreed with
experimental measurements of oxygen tension in the periosteal
volume adjacent to the fracture gap (Epari et al., 2008). Although
the oxygen tension data was derived from an ovine study, we
assumed that the physiological response between ovine and
mouse models was similar (Brighton and Krebs, 1972).

2.2.4 Model initialisation
The raw micro-CT scans were automatically pre-processed as

described in a previous study (Wehrle et al., 2021) where the image
at post-operative day 0 (POD 0) served as the initial geometry for the
micro-MPA model. Initial cell seeding was defined according to
Supplementary Table S3 where a uniform random distribution
within all free positions in physiologically relevant regions was
assumed for each cell type. SSPC and lining cells were
predominantly placed on the periosteal surface and within the
periosteum which was modelled as a 52.5-μm-thick layer
(Chartier et al., 2018). The haematoma within the osteotomy gap
was also initially occupied by SSPC albeit at a lower density. The
haematoma was modelled by dilating the defect centre mask by
210 μm. Immune cells were also randomly seeded within the
haematoma whereas the HSC occupied the endosteal cavity.
Vascular endothelial tip cells were initialised within the
periosteum and endosteum at both the proximal and distal ends.
The number of tip cells was kept constant (n = 200) across all
simulations and samples. Osteocytes were randomly seeded within
the mineralised tissue. OBL and OCL were not present at POD 0.
VEGF and oxygen concentrations were set to be 5 times greater

within the initial haematoma than within the surrounding tissue
(Epari et al., 2008). The surrounding tissue was assumed to be
normoxic at 0.065 molO2/m

3 (Collins et al., 2015). To mitigate any
initialisation effects resulting in simulation artifacts, the RDD was
run for 48 iterations (1 day) prior to cell seeding. All cell receptors
were then initialised as unbound. The summary of the initial
conditions is defined in Supplementary Tables S2, S3.
Importantly, all random seeds were fixed such that the
initialisation step was repeatable.

2.2.5 Model parameters
In Supplementary Table S1 we report the parameters that define

the micro-MPA model and its initial conditions. These parameters
capture the probability of randommovement of the cells, their binding
site numbers, oxygen consumption, individual cytokine production and
binding sites, etc. Relevant literature was searched to identify parameter
values. In lieu of missing literature values, assumptions for variables of
indeterminate functions and/or values from calibration simulations
were made. These assumptions were optimised via grid-search in cases
when multiple parameters were dependent, and a parameter sweep
when the parameters were independent. The optimal parameters were
evaluated using root mean square error (RMSE) of the differences
between in silico and in vivo calibration datasets. This model calibration
was performed by identifying optimal parameters byminimising RMSE
(Supplementary Table S1): The error was calculated independently for
each volume of interest across all time points at every tissue mineral
density threshold. Important examples would include bone formation
and resorption which were not only determined by osteoid production
and mineral resorption rates, respectively, but also OBL and OCL
population size and migration. The mineralisation rate of 30 mg HA/
cm3/day was determined by fitting the changes in between the
multidensity thresholds between time points.

2.3 In silico study of osteotomy gap sizes

The original OG was randomly selected from the calibration
dataset (mouse 5) and had a median gap size of 0.86 mm
(minimum = 0.40 mm and maximum = 0.98 mm) along the
longitudinal axis. By segmenting the distal cortical fragment, its
position could be manipulated relative to the proximal fragment
thereby changing the width of the osteotomy gap in silico. The distal
cortical fragment was moved in steps of 0.15 mm, resulting in
11 models where the median OG sizes ranged from 0.41 mm to
1.91 mm. The smallest OG was limited by defect geometry whereas
the largest OG was already limited by computational memory. Thus,
a workaround for 1.91 mm OG was found by cropping the image
ends, thus resulting in the same overall volume of the 1.76 mm
model. The cell densities were identical for all models at
initialisation. The setup and course of the regeneration were
identical to the previous simulations.

2.4 Postprocessing analysis: bone
morphometry and visualisation

Bone volume (BV) was calculated by counting the number of
voxels above a tissue mineral density threshold and multiplying it
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with the voxel volume. For the analysis leveraging a multidensity
threshold approach, thresholds started at 395 mg HA/cm3 and
increased by steps of 25 mg HA/cm3 until the maximum
threshold of 720 mg HA/cm3 (Tourolle né Betts et al., 2020). The
maximum threshold represents the density threshold for cortical
bone (Bouxsein et al., 2010). The binary thresholds were computed
at the lowest mineral threshold of 395 mg HA/cm3 (Tourolle né
Betts et al., 2020; Wehrle et al., 2021), which represented initial
woven bone. To measure the degree of mineralisation and its
progression, a higher mineral threshold of 645 mg HA/cm3 was
applied and the ratio of lowly mineralised to highly mineralised
tissue (BV645/BV395) was determined (Tourolle né Betts et al.,
2020). Volumes of formation, quiescence, and resorption (FQR)
were calculated by the difference between two thresholded images of
consecutive time points to establish the respective bone formation
rate (BFR) and bone resorption rate (BRR) (Paul et al., 2022).
Importantly, the postprocessing analysis pipeline was equal for
both in vivo and in silico samples.

Cortical bone morphometry was expressed using medullary area
(Ma.Ar), cortical bone area (Ct.Ar), cortical thickness (Ct.Th), and
intracortical porosity (Ct.Po). These values were computed for the
samples of the validation group at POD 35 following the guidelines
for the assessment of bone microstructure using micro-CT
(Bouxsein et al., 2010). For the evaluation of bone regeneration,
four volumes of interest were created automatically based on the
approach outlined by Tourolle né Betts et al. (2020) from the post-
operative measurement: initially void of bone, the defect centre (DC)
and defect periphery (DP) spanned the osteotomy gap (OG),
containing the endosteal and periosteal callus. The fragment
centre (FC) initially contained both medullary cavities and
cortices, whereas the fragment periphery (FP) tracked the
bone formation periosteal to the old cortices. For the
quantification of BV/TV, the bone volumes within each volume
of interest were normalised to the respective central volume of
interest, i.e., DC/DC, DP/DC, FC/FC, FP/FC. OG widths were
calculated via tracing rays starting at the femur’s longitudinal
axis in a perpendicular direction. The number of rays which fit
entirely between the cortices were then multiplied with the voxel
height of 10.5 μm, resulting in an OG width for each direction (see
Supplementary Figure S1). The median distance was reported from
the sampled distribution of all rays across the gap. Vascular volume
in each volume of interest was measured by counting the number of
connected vessel cells and multiplying with the corresponding voxel
volume. The renderings of the three-dimensional data were obtained
using ParaView (Kitware, Version 5.10; Clifton Park, NY,
United States).

2.5 Model evaluation and statistical analysis

By comparing the micro-MPA model of bone regeneration with
time-lapsed in vivomicro-CT data, the similarities and differences in
healing patterns could be identified and quantitatively evaluated. To
validate the model, we reported the goodness of fit of the micro-
MPA model’s predictions with the in vivo data using RMSE. The
same statistical evaluation was applied from a previous study
between two in vivo groups (Wehrle et al., 2019): repeated
measurements two-way ANOVA with Geisser-Greenhouse

correction and Bonferroni correction was performed in Python
(statsmodels, 0.13.5) between the in vivo and in silico groups.
The comparison of morphological parameters between groups
was performed with one-way ANOVA analysis followed by
Tukey’s multiple comparisons test. Values are given in mean ±
standard deviation unless indicated otherwise. p-values smaller than
0.05 were considered significant.

3 Results

All in silico samples of the calibration and validation groups
showed bridging and healing of the OG. The simulations of 5 weeks
of healing took up to 12h, with 12 Mio elements and 776 thousand
cells, on average. A single cell and reaction-diffusion-decay step took
up to 20 s, whereas solving a single micro-FE analysis took around a
minute on average. The in silico micro-MPA model simulated the
presence of bone, immune and vascular cells and their interaction
with the local environment, the interaction between the cells at the
same isotropic voxel resolution of the micro-CT image. In the
sections below, the progression of bone regeneration observed in
vivo and in silico for a representative sample (mouse 7) is presented
from the calibration group. Then, the outputs of the in silico model
are reported and quantitatively compared to the in vivo
measurements for the calibration and validation datasets. This
comparison yielded the model’s accuracy in simulating bone
regeneration based on the bone volume fraction. Finally, the
model’s sensitivity to osteotomy gap sizes is shown and the
hypothesis regarding non-union evaluated.

3.1 Progression of bone regeneration:
representative sample

As shown in Figure 2A, the course of bone regeneration for the
in vivo osteotomy defect model was mainly characterised by early
formation of osteoid which subsequently mineralised, bridging the
defect gap. Bone resorption was active as of the first week (week one
to two, BRRFC 0.45%/day) and became more prominent as the bone
regenerated, significantly increasing to peak resorption between
week 2–3 (BRRFC 0.62%/day, p < 0.05). Bone formation coupled
with resorption resulted by week 5 in a regenerated structure which
was mechanically optimised: a 11.1% decrease in bone volume
fraction (BV395/TVOG) from maximum only resulted in a 3%
decrease from maximum apparent stiffness (Figure 2B) for
mouse 7. The in silico model also demonstrated a similar
progression where the defect gap is bridged by week 2 and the
final apparent stiffness at week 5 only marginally decreased (4.6%) to
3.50 kN/mm from the maximum at week 4. Whereas the simulated
bone volume fraction (BV395/TVOG) at week 5 decreased by 12.4%
from its maximum at week 4. Qualitatively, the simulated structures
shared several common features with the in vivo data: namely, larger
bone volume in regions further from the external fixator, the
formation of pores within the regenerated cortex, the reduction
of stress concentrations and intramedullary trabecular structures.
Interestingly, the in silico micro-MPA model was able to simulate
bone remodelling between weeks 4 and 5 (Figure 2A) as a result of
emergent behaviour where OCL assembled to clusters
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(Supplementary Material Supplementary Figure S6) to resorb the
bone in response to high RANKL (Figure 5). In contrast to
phenomenological models where the clustering behaviour is
strictly enforced on the tissue level (Van Oers et al., 2008), this
was observed in the micro-MPA model as a result of a large
collection of cells with simple rules. Since the magnitude of
external mechanical loading was assumed constant during the
regeneration period and no new stimulus was introduced, the in
silico model approached a steady state as it had adapted to the
mechanical stimulus by week 5. The initial haematoma within the
osteotomy gap was populated with immune cells and SSPC
(Figure 2C) which represented the inflammatory phase of bone
regeneration. Although the haematoma was modelled as hyperoxic,
the large presence of stem cells rendered the environment hypoxic
after POD 1, triggering a spike in hypoxia-induced VEGF synthesis,
followed shortly by vascular infiltration (Figure 2A, week 0–1). The
production of TGF-beta by the immune cells and the presence of
sufficient oxygen close to the cortices permitted the SSPC to
differentiate to OBL (Figure 2C, week 0–1) which in turn started
synthesising osteoid. By POD 2, the OBL population had peaked at

57′040 cells for mouse 7 across the OG. This differentiation along
the osteogenic lineage resulted in a steep loss of SSPC across the OG,
however, a large concentration of SSPC remained in the periosteum
(65% by POD 3). As vessels began to cross the OG, the osteoid
producing cells shortly followed. By day 3, OBL constituted just over
50% of the cell population within the OG.With a growing callus, the
proliferating OBL population either differentiated to pre-osteocytes
and were embedded within the mineralising osteoid or underwent
apoptosis (Figure 2C, week 0–3). As of post-operative week 3, the
osteocyte population outgrew the pre-osteocyte population and
represented 58.9% of the total cell population. The OBL trans-
differentiated (Figure 2C, week 3–4) to lining cells which retained
the ability to re-differentiate to OBL given sufficient mechanical
stimulus (Figure 2C, week 3–4). At the final timepoint there were
3 lining cells for each OBL (6.2%), however OCY were still by far the
most prevalent cell type (52%) across the OG.

Meanwhile, either the immune cells fused, or HSC differentiated
directly to form OCL (Figure 2C, week 0–1) which lined the non-
loaded fragments and slowly began resorbing the mineralised tissue
due to high RANKL concentration. However, the contribution of the

FIGURE 2
(A)Qualitative comparison of bone regeneration using representative time-lapse images (threshold: 720 mg HA/cm3) of the osteotomy gap of the
same animal in vivo and in silico. Visualisation of bone quiescence (grey), formation (orange), and resorption (purple) was obtained via registration of
micro-CT data and Boolean operations. New vessels (blue) formed as a result of revascularisation which then connected to other vessels andmatured to
red vessels at the later time point. The bone volume of the later timepoint (quiescence and formation) was rendered opaque to provide a visual
reference. (B) Apparent stiffness of the regenerating simulated (red) and in vivo (grey) femurmeasured viamicro-FE. (C)Cell populations during simulated
bone regeneration which include the skeletal cell lineage (left) and the hematopoietic cell lineage (right).
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HSC remained limited to the population of OCL in the osteotomy
gap since they were seeded within the FC region. The OCL resorbed
volumes high in RANKL, which until the fracture gap was bridged,
would be mainly around the cortices due to the absence of
mechanical stimulation (Figure 2A, week 0–2). Once the
synthesised osteoid began to mineralise, trabecular structures
formed which then gradually increased in thickness until the
osteotomy gap was fully bridged. Due to the time-delay in
mineralisation, an overproduction of osteoid resulted in a large
hard callus (Figure 2A, week 1–2). The embedded (pre-)osteocytes
started RANKL synthesis due to minimal mechanical loading, and
the mineralised tissue was gradually removed until the structure was
of similar outer diameter to the pre-existing cortex (Figure 2A,
week 2–5).

3.2 Model validation via comparison to in
vivo data

The micro-MPA model’s parameters and cell rules were
determined by fitting the model’s output during the development
stage to a calibration dataset (Supplementary Table S1). The results
of this process are shown in Figure 3A. Importantly, there was no
statistically significant difference in bone volume fraction (720 mg
HA/cm3, p = 0.82) between the in vivo calibration and validation
datasets (Figure 3B). As part of the calibration efforts, we
investigated the effect of varying the random seeds and found

that the model was not sensitive to random perturbations in the
initial distributions. The validation dataset (n = 5) was chosen a
priori with the aim to determine the model’s ability to fit to the in
vivo bone volume during bone regeneration. The RMSE was
calculated for each tissue mineral density (TMD) threshold
within the specified range of 395 and 720 mg HA/cm3 in
increases of 25 mg HA/cm3 and averaged across the 6 time
points. The minimal error in the FC volume was achieved at
TMD threshold of 595 mg HA/cm3. However, this threshold
resulted in a near maximum RMSE of 8.2% within the DC
volume (max RMSE of 8.5% at 570 mg HA/cm3). Both the DP
and FP volumes presented similar characteristics regarding the
RMSE which was inversely correlated (Pearson correlation
coefficient of −0.997 and −0.996, respectively) with the TMD
threshold. Thus, the minimum cost was achieved for the volume
spanning the OG by selecting the highest TMD threshold 720 mg
HA/cm3 resulting in an overall RMSE of 5.5%.

From week 1 to week 2 a significant increase in bone formation
was detected (Figure 4A) in the total VOI (TOT = DC + DP + FC +
FP) in silico (p < 0.0001) and in vivo (p < 0.0001), as a result of the
successful transition from the inflammatory to the regenerative
phase. However, the progression from the repair to the
remodelling phase as indicated by the BRR occurred in vivo at
week two to three in the DC region and at week three to four in the
DP region. Similar trends were obtained in silico for the BFR and
BRR within the DC and DP volumes, albeit the progression to the
remodelling phase occurred at week three to four in the DC region.

FIGURE 3
The development and kinetics of bone formation and mineralisation in the four volumes of interest for the calibration (n = 4) and validation (n = 5)
groups. (A) Time course of bone volume fraction and mineralisation which are both threshold dependent. (B) Bone volume fraction for the validation
group which includes the RMSE scoring with respect to the in vivo data. The error was evaluated across all time points at each threshold for all four
volumes.
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Lower BFR was calculated from the in silico samples for the initial
3 weeks than was for the in vivo samples in both DP and FP volumes
whereas the BRR closely tracked each other. BFR and BRR followed
different trends in the FC volume which resulted from significant
differences between the bone volume fractions of the in silico and in
vivo samples (p < 0.05) as of week 1 until week 3 (Figure 4B).
Similarly, bone volume fraction in FP was significantly higher (p <
0.05) from week 1 to week 3 for the in vivo samples. Importantly,
when considering the OG volume (DC + DP) no significant
difference in bone volume fraction could be observed between
the in silico and in vivo samples (p = 0.68). The mineralised bone
fraction or relative bone mineralisation (BV645/BV395) (Figure 4C)
indicates the maturity of the mineralised tissue as it progresses from
osteoid to compact bone. No significant differences were observed
between the two groups at POD 0. Early resorption of the FC in silico
resulted in a significantly lower bone mineralisation up until week
2 when compared to the in vivo group. Both the DC and DP volumes
reported similar bone mineralisation trends for both groups which
thus also resulted in significant differences between groups at weeks

1, 2, 3 and 5. The mineralisation modelled by the micro-MPA
appears more dynamic whereas the in vivo data suggest a more
bounded behaviour that targets a mineralised bone volume fraction
of 85%. The mineralised bone volume fraction was significantly
lower in the in silico group at week 5 than in the in vivo group. The
vascular volume fraction (VV/TV) (Figure 4D) reports the growth
and extent of the vascular network and includes both vascular
endothelial tip and stalk cells. Revascularisation precedes bone
formation in the DC and FP regions by a week and reaches a
maximum average volume fraction of 3.7% and 5.9%, respectively, at
week 3. Little vasculature is present within the DP volume due to an
overall low VEGF concentration which results from a low cell
population resulting in a VV/TV of 0.6%. Vascular growth had
little effect on the bone formation and resorption in the FC volume,
however, had a large effect on initial bone formation in the DC and
DP volumes by providing the necessary oxygen for stem cell
differentiation in the in silico model.

When comparing the morphology (Table 1) of the regenerated
structures at POD 35, the in silico model reported a significantly

FIGURE 4
Evaluation of in silico (dark) and in vivo (light) bone regeneration via micro-CT parameters in the four volumes of interest: fragment centre (FC),
defect centre (DC), defect periphery (DP), and fragment periphery (FP). (A) Bone formation rate (solid line) and bone resorption rate (dashed line) reported
in percent per day. (B) Bone volume (BV) normalised to the centre TV, i.e., DC for DC andDP, FC for FC and FP. (C)Degree of bonemineralisation reported
as a ratio of highly mineralised bone (≥645 mg HA/cm3) to the total mineralised volume (≥395 mg HA/cm3). (D) Vascular volume (VV) normalised to
the centre TV. *indicates p-value <0.05 determined by repeated measurements two-way ANOVA with Geisser-Greenhouse correction and Bonferroni
correction. N = 9 for both groups.
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smaller mean cortical area (Ct.Ar) than the in vivo group. Due to the
relatively large variance in the datasets, the mean medullary area
(Ma.Ar) was not significantly different. Interestingly, the cortical
thickness (Ct.Th) was significantly greater in the in vivo dataset than
the simulations. Given the nearly identical intracortical porosity
(Ct.Po), this indicated that periosteal and endosteal surfaces were
structured with voids which also effectively reduced the mean
cortical thickness.

3.3 Mechanical stimulation of newly
mineralised tissue mediates the dynamics of
cytokine expression involved in bone
remodelling

During the inflammation phase (week 1), which was
characterized by high concentration of TGF-beta as a result of
the large population of active immune cells, RANKL and Scl
concentrations were increased within the cortical regions, while
OPG was decreased, on account of the low SED in the
osteotomized cortices (Figure 5). As the simulation progressed
into tissue differentiation and formation (week 2), concentrations
of RANKL and Scl decreased, and that of OPG increased, due to
the partial bridging of the cortices that allowed strain to be
transmitted across some parts of the osteotomy gap. However,
the phenomenological association between SED and the
production of these three cytokines changed as formation
peaked and remodelling began (weeks 3 and 4): RANKL and
Scl increased, and OPG decreased, because by this point in
time, the osteoblasts had become embedded in the newly
formed mineralized tissue and had differentiated into osteocytes
which began producing RANKL. This coincided with an increase
in Scl and a decrease of OPG production within the callus.
Importantly, newly mineralised tissue had yet to contain
embedded osteocytes and thus this tissue was not capable of
secreting cytokines in response to mechanical stimulus. This
introduced a time-delay in the system, which was most
apparent during week 3, especially for RANKL (Figure 5). An
increase in TGF-beta concentration was observed during this time
due to the release of latent TGF-beta within the mineral matrix as
the tissue begins to remodel. The high concentration of TGF-beta
induced a small osteogenic response measured by a small increase
of the osteoblast population. This population growth was primarily
limited by low SSPC numbers that late into the regeneration
period. Week 5 was characterised by a resorption of the hard
callus and importantly, the embedding RANKL-producing

osteocytes. During this late stage of healing, RANKL and Scl
production was limited to local regions. Across all timepoints,
RANKL was the most dominant cytokine and most closely linked
with the solid tissue mechanics. RANKL is followed by Scl in
potency, with OPG being the least responsive to mechanical strain.

3.4 Simulation of non-union

Varying the gap size of the defect resulted in different healing
outcomes, with ultimately non-union occurring at the largest gap
size of 1.91 mm. Bridging of the defect gap after 5 weeks was seen for
all ten gap sizes below 1.91 mm; however, the extent of bridging
(Figure 6A) and overall amount of bone formed (Figure 6B) differed.
The simulations above a median gap size of 1.46 mm presented
reduced bone formation of the medial cortex, arising from the
variance in gap size within the defect. The DC volume presented
non-linear response to the defect gap size where larger gaps resulted
in greater bone density, however only up to 1.46 mm. In the FC, DP,
and FP volumes, the larger the gap size the lower the bone volume
fraction. Similar to the bone volume fraction, the response of the
vascular volume fraction was also non-linear across the osteotomy
gap (Figure 6C). The largest vascular volume fraction of 4.59% was
observed in the 1.46 mm sample, whereas the 1.91 mm sample had
the lowest vessel density with just 0.24%. Larger defect sizes also
resulted in reduced OG stiffness of the final construct (Figure 6D).
Overall, there was a high negative linear correlation of −0.971
(Pearson correlation coefficient) between the median OG size
and apparent stiffness after 5 weeks.

4 Discussion

The proposed in silicomicro-MPAmodel successfully simulated
bone regeneration comparable to in vivo regeneration across the
osteotomy gap. We demonstrated that our model could simulate the
bone regeneration process from a phenomenological perspective
and was validated for predictions of bone volume fraction.
Importantly, the model captured the process of remodelling
where the regenerated structure changed in form in response to
mechanical loading, by allowing resorbed voxels to re-differentiate
or mineralise de novo, and predicted non-union for critical gap size.
As a result, the model included all key processes by covering tissue
formation, differentiation, and resorption.

To date, only a handful of computational studies on bone
regeneration have attempted to validate their simulation results

TABLE 1Morphological parameters evaluated across the original defect gap region at POD 35 for the validation group. The parameters are calculated as described
by Bouxsein et al. (2010). Values are given in mean ± standard deviation. p-values were computed between the in vivo and in silico groups where a value smaller
than 0.05 was considered significant.

Parameter IN VIVO IN SILICO p-value

MEDULLARY AREA (MA.AR) 0.61 ± 0.31 mm2 0.42 ± 0.22 mm2 0.442

CORTICAL AREA (CT.AR) 0.92 ± 0.10 mm2 1.33 ± 0.15 mm2 0.016

CORTICAL THICKNESS (CT.TH) 0.25 ± 0.01 mm2 0.21 ± 0.01 mm2 0.028

INTRACORTICAL POROSITY (CT.PO) 9.03% ± 4.80% 7.96% ± 5.10% 0.815
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based on the comparison of in silico data of individual animals to in
vivo data. To our knowledge, none have leveraged longitudinal in
vivo data to compare their results. This is a consequence of past
studies assuming idealised geometries for their models instead of in
vivo data (Borgiani et al., 2021). We would like to mention studies
which drew comparisons to the underlying data, albeit still
considering the absence quantification of error and statistical
tests of their simulations: Byrne et al. (2011) plotted the apparent
bending stiffness obtained from an experimental study against the
simulation results. Importantly, the experimental study defined
clinical healing by measuring a bending stiffness of 15 Nm/deg;
however, the in silico results severely overestimated the rate of
healing by 17 weeks. OReilly et al. (2016) instead compared the
area of mineralised tissue simulated by their in silico model to
histological data. The study by Repp et al. (2015) stands out, as they
quantitatively compared simulation outcomes with reference

experimental data. However, by fitting to averaged experimental
data, they were unable to score their predictions against novel data,
falling just short of validation. We scored the simulation output
using RMSE since it is intuitive to interpret, and it enables predictive
precision. However, the RMSE is sensitive to the scale of the data and
is biased to favour results of smaller magnitude. The identification of
a more optimal cost function remains an open task, especially since
the proposed model of bone regeneration is the first to be
quantitatively scored. Furthermore, the proposed micro-MPA
model’s spatial discretisation ensured that spatial relationships
were accurately represented at the same scale of the in vivo data
and facilitated seamless communication between the sub-models.
The presented micro-MPA model closely approximates the tissue
continuum with resolution of 10.5 μm. Prior state-of-art reported a
resolution of 10 μm for their agent-based models (OReilly et al.,
2016; Jaber et al., 2022). Thus, the micro-scale resolution of the

FIGURE 5
Renderings of the simulated cytokine concentrations - namely, Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL), sclerostin (Scl),
Osteoprotegerin (OPG), and Transforming Growth Factor-beta (TGF-beta)—for a representative sample (mouse 7) are shown for each post-operative
week. The mineral structures were thresholded at 720 mg HA/cm3 and for visualisation purposes, the strain-energy density (SED) i.e., the mechanical
signal only within themineralised tissue is shown in the second row. The osteogenic threshold was set to 0.008 MPawhereas the threshold for bone
resorption was 0.015 MPa.
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micro-MPA model contributes to the effort of approximating the
intricate spatial dynamics involved in bone regeneration. The
temporal discretisation of the sub-models, i.e., the timesteps for
each iteration, also required careful consideration. The timestep
governing the cell and vasculature update was determined by the
migration speed and the voxel size whereas the timestep for the RDD
was limited by its stability. The timestep of the micro-FE of 8 h
(24 cell updates) was based on previous work and results in a finer
temporal discretisation when compared to other models (Repp et al.,
2015; OReilly et al., 2016; Jaber et al., 2022). Further research should
consider the time interval of each micro-FE analysis iteration and
consider asynchronicity to also better reflect the diurnal cycle of
mice (Bains et al., 2018).

From a quantitative perspective, the model performed well in
simulating bone regeneration across the osteotomy gap, as no
difference was observed between the in silico and in vivo groups
for the volume spanning the osteotomy gap. Regarding the pattern
of the bone volume fraction across the samples in both the

calibration and validation groups (Figure 4), the model simulated
similar bone changes across samples. Evidently this characteristic
led to amplified differences between the in silico and in vivo data in
some volumes of interest, as shown in Figure 3B. The divergence of
bone volume fractions within the FC region was explained by the
elevated BRR for the in silico group. Although the fragment ends are
known to resorb, especially for human patients presenting a fracture
which is treated conservatively to promote endochondral
ossification, we did not see any resorption in the in vivo model.
This discrepancy is probably explained by either the mouse model
itself or the quality of surgery where the vascular supply was not
disrupted near the fragment ends. This finding would warrant
further study to elucidate bone resorption during the
inflammatory phase and identify which pathways suppress this
catabolic phenomenon.

The temporal predictions of cell populations within the
osteotomy gap reported in Figure 2 qualitatively agreed with
the literature (Wilsman et al., 1996; Marsell and Einhorn, 2011):

FIGURE 6
(A) Representative renderings of the investigation of the osteotomy gap size (n = 11) on regeneration outcomes. The initial geometries are shown for
5 configurations (median gap size 0.41 mm, 0.86 mm original, 1.46 mm, 1.76 mm, and 1.91 mm) for mouse 5. The distribution of effective strain (EFF) is
shown across the cut plane in microstrain. The osteogenic threshold was set to 0.008 whereas the threshold for bone resorption was 0.015 in the soft
tissue. The final structures at POD 35 are shown (cut and full image; threshold: 720 mg HA/cm3) including the simulated vasculature (purple-red)
which is qualitatively mapped based on vessel length. (B) Development and kinetics of bone formation in the four volumes of interest for the 11 samples.
The 0.86 mm in vivo sample is represented by the dashed line. (C) Vascular volume fraction within the osteotomy gap. (D)Development of the osteotomy
gap’s apparent stiffness.
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The inflammatory phase, identified by the presence of immune
cells expressing TGF-beta in the micro-MPA model had subsided
by POD 7 (Cho et al., 2002). Liu et al. (2019) reported osteoblast
precursors (Osx+) within the defect centre in mouse model of
bone regeneration as early as POD 3 with the peak remaining
until POD 7. This peak was present in the micro-MPA model as
early as POD 2, albeit lasting for 2 days. Remodelling in gap
healing models was observed after bridging of the defect gap
(week 3, Figure 2) which is accompanied by the resorption of
woven bone segments by multi-nucleated osteoclasts (Shapiro,
2008). However, we identified a gap in the literature whereby the
density and spatial distribution of various cell types, historically
referred as histodynamics, during bone regeneration have not
been completely investigated or are not applicable for osteotomy
gap healing. OBL account for 4%–6% of total resident cells in
bone whereas OCY account for up to 95% of all bone cells (Capulli
et al., 2014). Our results on average show a final OBL population
of 3.2% and an OCY population of 92.7% within the mineralised
tissue across the osteotomy gap. The other resident cells in the
simulated bone were lining cells and pre-osteocytes. Since the
vasculature was not accounted for by Capulli et al. (2014) it was
also not included in this analysis. Nonetheless, the predicted
vascular volume of the in silico 1.46 mm osteotomy gap agreed
qualitatively with experimental data obtained via ex vivo micro-
CT angiography (Morgan et al., 2012; Kendall et al., 2022b) of a
1.5 mm osteotomy performed in mice. However due to the
inherent size of capillaries (<7 μm) the contrast agent is not
guaranteed to perfuse along the capillaries let alone be of
sufficient contrast where imaging is possible (Weber et al.,
2008). Furthermore, not all capillaries are perfused when the
specimen is at rest (Secomb et al., 1995). These limitations in
addition to biocompatibility issues makes in vivo time-lapsed
micro-CT angiography images of the vascular network including
capillaries extremely hard (Bouxsein et al., 2010; Nebuloni et al.,
2013; Wälchli et al., 2021). Additionally, the micro-MPA model is
only able to simulate capillaries and not larger vessels which
would result in an overestimation of vessel number yet
simultaneously underestimated vessel volume. This is why the
vascular volume was calibrated such that the oxygen tension
across the osteotomy gap also agreed with the literature
(Brighton and Krebs, 1972; Epari et al., 2008). The proposed
model does not include mechanosensation of the endothelial tip
cells (Peiffer et al., 2011; Carlier et al., 2012) which contrasts with
other revascularisation algorithms (Checa and Prendergast, 2009;
OReilly et al., 2016). With the introduction of an inhibitory strain
threshold for the tip cell, the micro-MPA model would have
needed to include a tissue type which could be synthesised in a
hypoxic environment, i.e., cartilage (Burke and Kelly, 2012;
OReilly et al., 2016). Since we did not see any atrophic non-
unions in the in vivo data (Wehrle et al., 2019), we assumed the
mechanical environment was permissive to vascular growth. In
addition to the addition of inhibitory strain thresholds, further
research will explore the impact on vessel growth rates in
response to mechanical stimuli as the vasculature has been
shown to be mechanosensitive (Lu et al., 2011; Ruehle et al.,
2020).

The final phase of our study delved into exploring the impact of
osteotomy gap size on regeneration outcomes in silico by simulating

a range of distraction lengths. Notably, larger osteotomy gaps were
associated with inferior outcomes, as evidenced by a decline in the
apparent stiffness of the regenerated structure. While this
correlation aligns with the literature and corroborated by a
previous study investigating osteotomy gap sizes at 0.85 mm and
1.45 mm (Tourolle né Betts et al., 2020), our approach is novel
within the context of in silico agent-based modelling of bone
regeneration. It is important to acknowledge that the presented
micro-MPA model, while hinting at the influence of larger
osteotomy gaps, was not validated for these scenarios. Despite
this limitation, the model predicted typical experimental
outcomes without altering any parameters. The adverse effects
observed in larger gaps may be attributed to factors like potential
shortcomings in mechanical and cytokine signalling cues. One
plausible explanation is that as the osteotomy gap size increases,
the distance from the centre of the gap to the cortices also grows,
which raises the likelihood of cytokines decaying before reaching
their intended receptors. This greater diffusion distance not only
diminishes the magnitude of cytokine signalling but also introduces
a temporal delay in the process. Furthermore, when we applied a
force-controlled loading of the femur with a 10.5 N load along a
larger osteotomy gap, it resulted in lower local mechanical strains in
the soft tissue compared to the same load applied along a shorter
osteotomy gap. However, when we increased the force boundary
condition for the 1.91 mm osteotomy gap sample until we eventually
observed a union, the local strains were classified as inhibitory to
bone regeneration. This observation leads us to posit that, in the
proposed micro-MPA model’s prediction of a non-union, the SSPC
and lining cells near the fragment ends experienced sufficient
mechanical stimulus, while the central area of the defect gap
received insufficient mechanical stimulus and oxygen. An
interesting avenue for future exploration could involve the
inclusion of adipocytes and chondroblasts, which have been
known to differentiate from SSPC in low-strain environments
(Sen et al., 2008) and high-strain environments (Checa et al.,
2011), respectively. In addition, by including cartilage the model
could demonstrate the similarity of using SED and EFF for
thresholds governing tissue differentiation, resorption, and
formation. Although the thresholds presented in this study were
based on research by Li et al. (2019) and are in support of the study
on biophysical stimuli by Isaksson et al. (2006), they fall short of
fitting into the bigger picture set by previous in silico models.

One of the strengths of our proposed micro-MPA model was
the ability to simulate the influence of the local mechanical
environment on cellular processes of bone regeneration. By
using micro-FE analysis, our model was able to capture the
mechanical loading of the bone during the healing process at
the tissue level. This allowed the simulation of the effect of
mechanical stimulus, driving the differentiation of SSPC to
OBL and eventually the production of osteoid. Another key
advantage of our proposed model was the ability to simulate
the interactions among different cells and cytokines during the
healing process. By incorporating a range of cellular and
molecular processes, including cytokine binding, receptor-
ligand kinetics, and ligand-ligand interactions, and simulating
these processes in a dynamic environment, our model was used to
examine the complex spatial and temporal dynamics of the
regeneration processes. We were able to simulate
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physiologically relevant cellular interactions and processes such
as hypoxia-induced revascularisation and resorption events by
OCL clusters (Supplementary Figure S6) in response to RANKL.
This strength was presented in Figure 5 where the cytokine
concentrations were rendered and compared with the local
mechanical environment. By varying the size of the osteotomy
gap, we showed the importance of these local mechanics in
driving regeneration as the increased diffusion lengths and
impacted cytokine concentrations led to worse healing
outcomes. In our simulations, we observed the resorption of
the cortices in response to inadequate mechanical stimulation.
For example, if the resorption of the cortices outpaced the cell
differentiation and bone formation, the simulation resulted in
structures with inadequate stiffness: the 1.76 mm sample
exhibited an apparent stiffness of only 25.7% compared to the
0.86 mm in vivo sample. The different healing patterns illustrated
how the micro-MPA model could provide insights into cellular
and mechanobiological mechanisms leading to non-union.

The micro-MPA model presented limitations that need to be
highlighted. Firstly, there was a discrepancy in bone
mineralisation, with the in vivo bone mineralisation outpacing
that seen in silico. Although the mineralisation speed was
calibrated from the time-lapsed in vivo data of the calibration
group, the model’s output was not in agreement. This
discrepancy was illustrated in Figure 4 where the in silico
model performed best at a tissue mineral density threshold of
720 mg HA/cm3 and the RMSE increased as the tissue mineral
density threshold decreased. Furthermore, the model could have
a bias to favour higher thresholds, overall favouring smaller
fractions of volumes of interest. This could be addressed by
including an accuracy measurement such as the
Sørensen–Dice coefficient to take spatial distribution into
account. It is important to acknowledge that newly
mineralised tissue in the proposed model lacked embedded
osteocytes and therefore could not secrete cytokines in
response to mechanical stimuli, potentially limiting the
model’s ability to fully represent the biological processes
involved in bone regeneration. A different approach to
modelling in vivo mineralisation should perhaps consider the
effects of the local vascular supply, interstitial fluid flow, or
mechanical loading which have all been shown to affect
mineralisation (Liu et al., 2019; Miyamoto et al., 2021).
Another limitation is a consequence of the dataset used to
calibrate the micro-MPA model which, e.g., only includes
histology of the final time point. Since no cartilage was
observed within the histology slices (Wehrle et al., 2019), the
assumption was made that the osteotomy gap did not experience
excessive strains to induce a chondrogenesis and underwent
direct transformational bone repair, i.e., gap healing (Shapiro,
2008). However, previous studies of bone regeneration have
identified cartilage tissue even with external fixation of the
femur in similar gap healing murine models (Morgan et al.,
2010; Marsell and Einhorn, 2011; Borgiani et al., 2019). Thus, by
not modelling cartilage, the micro-MPA model misses important
mechanical cues early in the regeneration process. Also, the
validation of the bone volume fraction does not capture the
early inflammation dynamics nor the deposition of osteoid. Due
to the longitudinal study design of the underlying dataset,

validation of these important phases of bone regeneration was
not possible. Intravital imaging could address this limitation by
allowing the inflammatory and early callus formation to be
imaged in vivo and used for validation similar to the bone
volume fraction for this study. Due to these limitations, this
model may only serve for future investigations of rigidly
stabilised defect gaps which only present successful healing
outcomes. Furthermore, the micro-FE analysis was based on
the assumption of linear elastic material properties, which
may not fully capture the precise behaviour of soft tissue or
osteoid under loading. In addition, our revascularisation
algorithm did not consider intra-cortical vasculature, a
simplification which was compensated by increasing the
oxygen diffusivity within the mineralised tissue to ensure
sufficient oxygenation of the cortical bone. However, the
greatest limitation of the revascularisation algorithm was the
initial conditions and the absence of data to sufficiently validate
the results. Although previous research had shown good
agreement of the predicted vascular volume with experimental
data, the model’s tip cells had been seeded using micro-CT
angiography images of distraction osteotomies (Kendall et al.,
2022b). Thus, the inclusion of the same revascularisation
algorithm in this study limits the validity of the simulated
vasculature. Future investigations should include a more
rigorous approach to acquire sufficient data to provide
boundary, initial and final conditions of the vasculature.

In conclusion, we present a model of bone regeneration that
encompasses bone formation, differentiation, and tissue
resorption across all phases of bone regeneration. The
simulated changes in bone volume fraction over time were
validated against an in vivo osteotomy model and predicted
regeneration outcomes given different sizes of simulated
osteotomy gaps with a maximum of 5.5% RMSE. The micro-
MPA model can contribute to collective initiatives aimed at
advancing the 3R principles (reduce, refine, replace) and
steering forthcoming experimental investigations on bone
repair. Experimental proposals, such as those exploring early
mechanical loading of conservatively treated fractures or
elucidating non-union mechanisms, could benefit from initial
scrutiny using the micro-MPA model. This preliminary
evaluation would help identify critical examination timepoints
and assess the overall feasibility of testing central hypotheses
before progressing to in vivo experimentation. In this manner,
the micro-MPA model constitutes a new evaluative tool that can
accelerate research in bone regeneration.
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