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Introduction: Photothermal therapy (PTT) holds significant potential for the
treatment of malignant tumors. However, conventional single PTT often struggles
to effectively inhibit tumor metastasis and recurrence. In this study, we constructed a
MOF nanoparticle with a synergistic therapeutic effect combining photothermal and
immunotherapy, enabling selective blocking of the PD-1/PD-L1 pathway within the
tumor microenvironment.

Methods: Firstly, MOF nanoparticles were synthesized using NH2-TPDC as ligands
and Zr+4 as metal ions. Subsequently, NH2 was modified to N3 via azide transfer
reagents. Through a copper free catalytic click chemical reaction, the PD-1/PD-
L1 blocking agent AUNP-12 functionalized with disulfide bonds of DBCO was
covalently introduced into MOF nanoparticles which were then loaded with the
photothermal agent indocyanine green (ICG) to successfully obtain uniformly
sized and stable ICG-MOF-SS-AUNP12 nanoparticles.

Results and discussion: ICG-MOF-SS-AUNP12 exhibited GSH-triggered release
of PD-1/PD-L1 blockers while demonstrating potent photothermal effects
capable of efficiently killing tumor cells. Under 808 nm near-infrared (NIR)
irradiation, ICG-MOF-SS-AUNP12 effectively promoted the maturation of DC
cells and activated immune responses. This study presents a novel method
for constructing MOF-based nanodrugs and offers new possibilities for
the synergistic treatment of tumors involving photothermal combined with
immunotherapy.
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1 Introduction

Photothermal therapy (PTT), as a non-invasive cancer treatment
strategy, utilizes external illuminants to convert light energy into heat
for the purpose of eradicating tumor cells (Hao et al., 2017; Hao et al.,
2020a; Yin et al., 2023). The suppression of tumor metastasis and
recurrence remains a formidable challenge for single PTT (Chen et al.,
2019; Chang et al., 2021). Although thermal ablation of tumor tissue
can generate endogenous antigens, which can be presented to lymph
nodes through antigen-presenting cells (APCs) and activate cytotoxic
T cell-mediated cellular immunity, the tumor-associated antigens
induced by PTT are insufficient for effective APC presentation and
immune response activation (Yu et al., 2021; Huang et al., 2023).
Therefore, in order to overcome the limitations of photothermal
therapy (PTT) and enhance tumor immunotherapy, it is
imperative to develop novel nanomedicines that can synergistically
combine PTT with immunotherapy for effective tumor treatment.

The utilization of the human immune system in immunotherapy to
combat diseases has garnered significant attention, particularly in the
field of tumor immunotherapy (Tan et al., 2020). The immune
checkpoint blockade represents an exceptionally efficacious
immunotherapeutic approach for the treatment of tumors (Li et al.,
2018; Zhang et al., 2022). Among them, programmed cell death
protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) are
commonly employed in tumor immunotherapy (Hu et al., 2021).
PD-1 is a cell surface receptor expressed in activated B and T cells;
however, the tumor microenvironment could induce infiltrating T cells
to overexpress PD-1molecules. Thesemolecules bind to the ligand PD-
L1 on the surface of tumor cells, transmitting immunosuppressive
signals that inhibit T cell activity, and lead to immune escape of tumor
cells (Leone and Emens, 2018; Wong et al., 2021). Therefore, blocking
the interaction between PD-1 and PD-L1 on the surface of tumor cells
is an essential strategy for preventing immune escape, thus activating
T cell activity to inhibit proliferation and metastasis of tumors (Liu

FIGURE 1
The schematic diagram of (A) the construction and (B) the anti-tumor activity of ICG-MOF-SS-AUNP12 nanoparticles for synergistic photothermal
and immunotherapy.
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et al., 2021). Currently, there exist several monoclonal antibodies
capable of inhibiting the PD-1/PD-L1 pathway, including
pembrolizumab, navuzumab, bavensia, devaluzumab and others.
Nevertheless, these antibodies not only exhibit a high cost and
significant inter-individual variability but also elicit substantial
toxicity and immune reactions. It is noteworthy that Aurigene and
Pierre Fabre have jointly developed the PD-1 inhibitory polypeptide
AUNP12 (AUR-12/Aurigene-012), which exhibits specific binding to
PDL-1 and effectively blocks the PD-1/PD-L1 pathway in preclinical
investigations (Zhan et al., 2016). Compared withmonoclonal antibody
therapeutics, AUNP12 demonstrates cost-effectiveness and a favorable
side effect profile. By impeding the PD-1/PD-L1 pathway, it exerts
potent antitumor effects across various malignancies, thereby
displaying promising prospects for broad application in tumor
immunotherapy.

Metal Organic Framework (MOF) is an organic inorganic hybrid
material with micro/mesoporous formed by self-assembling organic

ligands and inorganic metal ions or clusters through coordination
bonds (Ding et al., 2022). The MOF nanoparticles exhibit several
advantages over conventional drug delivery carriers, including their
cost-effectiveness, excellent biodegradability, high drug loading
capacity, and facile functionalization (Zhuang et al., 2017; Feng
et al., 2019). Currently, they have found extensive applications in the
fields of drug delivery, biosensing, and bioimaging (Wang et al., 2022).
Copper, iron, zinc, and zirconium are commonly employed as metal
ions for constructing MOF structures with specific organic ligands.
Notably, zirconium ions can react with ligands to generate MOF
carriers featuring amino groups on their surfaces (Cavka et al.,
2008). In comparison with other MOF carriers, zirconium-based
MOF carriers exhibit remarkable biocompatibility, thermal stability,
and chemical stability. Moreover, the carrier can be easily modified
through amino groups. Chen et al. functionalized the surface amino
groups of MOF carriers with azide and employed click chemistry to
attach nucleic acid aptamers onto the MOF surface. The loading

FIGURE 2
The synthesis route of NH2-TPDC.

FIGURE 3
The synthesis route of DBCO-SS-NHS.

FIGURE 4
The preparation diagram of MOF-SS-AUNP12.
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performance and release behavior were investigated by incorporating
anti-tumor drugs doxorubicin (Chen et al., 2017). In this study, we
modified the surface of MOF by introducing a tumor
microenvironment-responsive PD-1 inhibitory polypeptide
AUNP12 with a disulfide bond through click chemistry. The
photothermal agent indocyanine green (ICG) (Jiang et al., 2021) was
also loaded into AUNP12 modified nanodrug (ICG-MOF-SS-
AUNP12) for melanoma treatment (Figure 1). The use of MOF
nanocarrier improved the stability of ICG and enabled photothermal
therapy to kill tumor cells effectively. Additionally, the high
concentrations of glutathione (GSH) in tumor tissues responsively
broke the disulfide bond, leading to the release of AUNP12 at the
tumor sites and achieving synergistic photothermal and
immunotherapy for melanoma. This study further demonstrates the
promising application of MOF nanocarrier in tumor therapy.

2 Materials and methods

2.1 Materials

2,5-Dibromoaniline, 4-methoxycarbonylphenylboronic acid,
cesium fluoride, palladium acetate, triphenylphosphine, tert butyl
nitrite, and azide trimethylsilane were purchased from Shanghai
Titanchem Co., Ltd. N-hydroxysuccinimide, 1-(3-dimethylamino

propyl)-3-ethylcarbodiimide hydrochloride, zirconium chloride,
indocyanine green were purchased from Sigma Aldrich Company.
PD-L1 inhibitory polypeptide AUNP-12 (sequence: H-SNTSESFKF
(H-SNTSESF) RVTQLAPKA QIKE-NH2) was purchased from Anhui
Qiangyao Peptide Technology Co., Ltd.

2.2 Preparation and characterization of
aminotriphenylenedicarboxylic acid (NH2-
TPDC)

502mg of 2,5-dibromoaniline, 1.44 g of 4-methoxycarbo
nylphenylboronic acid, and 2 g of cesium fluoride were dissolved in
40 mL of anhydrous tetrahydrofuran (THF), then added 150mg
palladium acetate (Pd(OAc)2) and 400mg triphenylphosphine
(PPh3), and stir under nitrogen at 50°C for 48 h. Subsequently,
added water and extracted with ethyl acetate 3 times, then combined
the organic phase, and washed with water 3 times, dried with anhydrous
sodium sulfate, and purified with a silica gel column to obtain yellow
solid powder. Afterward, the yellow solid powder was dissolved in 2 mL
of anhydrous tetrahydrofuran, methanol (MeOH), and 1M potassium
hydroxide (KOH) to react at 40°C overnight, and the yellow green solid
powder NH2-TPDC was obtained by centrifugal washing. The synthesis
process is shown in Figure 2. The product structure was characterized by
nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry,
and infrared (IR) spectroscopy.

2.3 Preparation and characterization of
functionalized polypeptide DBCO-SS-
AUNP12

Dissolved 7 mg DBCO-NH2 and 3,3′-dithiodipropionic acid in
10 mL dichloromethane (DCM), and added 12 mg N-
hydroxysuccinimide (NHS) and 19 mg 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride (EDCI) in an ice bath, after
reacted for 1 h, continue the reaction at room temperature
overnight. The reaction is monitored by thin layer chromatography
(TLC), then washed and dried to obtain a white solid. Dissolved the

FIGURE 5
The preparation diagram of ICG-MOF-SS-AUNP12.

FIGURE 6
Schematic diagram of co-culture of DC cells and B16 cells.
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white solid in 5 mLDCM, added 12 mgNHS and 19 mg EDCI at room
temperature to react overnight, and monitored the reaction completely
with TLC. After washing and column chromatography purification, a
colorless oily substance DBCO-SS-NHS was obtained. The synthesis
process is shown in Figure 3.

Finally, a PBS solution of 0.1 M AUNP12 was dropwise added into
DMF solution of DBCO-SS-NHS (DBCO-NHS). The amino groups on
AUNP12 were connected to DBCO-SS-NHS (DBCO-NHS) through a
condensation reaction. After reacting overnight, DBCO-SS-AUNP12
(DBCO-AUNP12) was obtained by dialysis and freeze-drying.

FIGURE 7
NMR spectra of (A) NH2-TPDC and (B) DBCO-SS-NHS, (C) mass spectrum of DBCO-SS-NHS.

FIGURE 8
(A) Particle size, (B) Zeta potential, (C) UV absorption spectrum, (D) TEM image (scale bar: 500 nm), (E) SEM image (scale bar: 1 µm) and (F)
Photothermal effect of nanoparticles.
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2.4 Preparation and characterization of
MOF-SS-AUNP12

In this project, zirconium chloride (ZrCl4) was used as the
metal ion, and NH2-TPDC as the ligand to prepare MOF
material. In detail, the 12 mg NH2-TPDC and 8.4 mg ZrCl4
were dissolved in DMF, and an appropriate amount of acetic

acid was added to stirred at 80°C, following reacting for 5 days,
centrifuged and washed with DMF to obtain MOF. Subsequently,
1 mg of MOF was dispersed in 2 mL of acetonitrile, and an
appropriate amount of tert butyl nitrite (t-BuONO) and azide
trimethylsilane (TMSN3) were added for stirring overnight, and
centrifugated to get N3-MOF. The N3-MOF and DBCO-SS-
AUNP12 were stirred at room temperature for 3 h, and
centrifuged and washed with DMF to obtain MOF-SS-
AUNP12. The preparation process is shown in Figure 4. The
MOF nanocarrier was characterized by particle size and zeta
potential.

2.5 Preparation and characterization of ICG-
MOF-SS-AUNP12

As shown in Figure 5, the photothermal agent ICG and MOF-
SS-AUNP12 were stirred overnight in PBS solution, centrifuged,
and washed with PBS to obtain nanodrug ICG-MOF-SS-
AUNP12. The drug loading capacity and encapsulation
efficiency of ICG were investigated via a UV
spectrophotometer. The ICG-MOF-SS-AUNP12 was
characterized in terms of particle size, zeta potential, TEM,
and SEM. In addition, the photothermal ability of ICG-MOF-
SS-AUNP12 directly affects the therapeutic effect. So we
investigated the photothermal effects of ICG-MOF-SS-
AUNP12 under an 808 nm NIR laser at a density of 1.5 W/

FIGURE 9
Release behavior of AUNP12 in MOF-SS-AUNP12.

FIGURE 10
(A) Live and dead cell staining image (green: live cells, red: dead cells, scale: 50 µm). (B) Cytotoxic effect of nanodrug on B16 cells, “**” means the
p < 0.01.
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cm2, and recorded the temperature changes through infrared
thermal imaging instruments.

2.6 Release behavior of ICG-MOF-SS-
AUNP12

The release behavior of AUNP12 in ICG-MOF-SS-
AUNP12 under different concentrations of GSH (0, 2 μM,
10 mM) at 37°C with a shake at 100 rpm was tested (Hao et al.,
2023). Samples were taken at determined time points, and the release
behavior of AUNP12 at different time points was detected through
high performance liquid chromatography (HPLC).

2.7 Biological evaluation of ICG-MOF-SS-
AUNP12

In this study, via live and dead cell staining experiments, we
estimated the cell inhibiting ability of ICG, AUNP12, MOF-SS-
AUNP12, and ICG-MOF-SS-AUNP12, equal to 100 μg/mL of ICG
and 200 μg/mL of AUNP12, on mouse melanoma cell lines B16 cells
which have cultured in RPMI 1640 medium at a density of 5 × 104 in
a 24-well plate, with or without NIR light irradiation (1.5 W/cm2,
5 min). Moreover, the cytotoxicity of ICG, AUNP12, MOF-SS-
AUNP12, and ICG-MOF-SS-AUNP12 was also carried on
B16 cells with a density of 5 × 103 in a 96-well plate through
MTT methods (Hao et al., 2020b) as reported previously.

FIGURE 11
The maturity of DC Cells stimulated by different groups. (A–C) Expression levels of surface molecules CD80 and CD86 on DC Cells, (D–F)
Quantification of expression levels of CD80 and CD86 on DC Cells, “**” means the p < 0.01.
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2.8 Immunological effects of ICG-MOF-SS-
AUNP12

The dendritic cells (DC cells) were extracted from mouse bone
marrow, and induced maturation by adding cytokines such as
granulocyte-macrophage colony stimulating factor (GM-CSF) and
interleukin 4 (IL-4) in vitro. Subsequently, as shown in Figure 6, DC
cells with a density of 2 × 105 in RPMI 1640 medium were placed at
the lower layer of transwell, and B16 cells with a density of 5 × 104 in
RPMI 1640 medium were co-cultured in transwell chamber. Then
the group of AUNP12, ICG+Laser, ICG-MOF-SS-AUNP12, and
ICG-MOF-SS-AUNNP12+Laser (1.5 W/cm2, 5 min) were added to
transwell chamber. After 24 h of stimulation, the DC cells were
collected and stained with fluorescently labeled antibodies CD11C-
PE, CD86-APC, and CD80-FITC, and analyzed by flow cytometry.

3 Results and discussions

3.1 Preparation and characterization of NH2-
TPDC and DBCO-SS-AUNP12

We synthesized the MOF ligand NH2-TPDC by 2,5-
dibromoaniline and 4-methoxycarbonylphenylboronic acid. The
NMR spectra were shown in Figure 7A (1H NMR (400 MHz,
DMSO) δ 12.93 (brs, 2H), 8.02 (d, J = 8.2 Hz, 4H), 7.74 (d, J =
8.2 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 5.7 Hz, 2H), 7.01 (d,
J = 7.8 Hz, 1H), 5.10 (brs, 2H), the results indicated that we
synthesized NH2-TPDC successful. DBCO-SS-NHS was
synthesized from azadibenzocyclooctyne amine and 3,3′-
dithiodipropionic acid, and the NMR spectra were shown in
Figure 7B (1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 7.6 Hz,
1H), 7.42–7.27 (m, 8H), 6.10 (t, J = 5.2 Hz 1H), 5.14 (d, J =
7.6 Hz 1H), 3.70 (t, J = 6.4 Hz, 1H), 3.39–3.32 (m, 1H),
3.26–3.21 (m, 1H), 3.07–3.04 (m, 2H), 3.01–2.94 (m, 2H),
2.99–2.83 (m, 6H), 2.53–2.36 (m, 3H), 2.02–1.91 (m, 1H).
Additionally, the calculated molecular weight of DBCO-SS-NHS
(C28H28N3O6S2

+) was 566.1414, and the molecular weight obtained
by mass spectrometry was 566.1422 (M+H)+ (Figure 7C), further
demonstrated the successful preparation of DBCO-SS-NHS.
Subsequently, the polypeptide AUNP12, which could block the
PD-1/PD-L1 pathway, was reacted with DBCO-SS-NHS to obtain
a functionalized polypeptide DBCO-SS-AUNP12 for further
research.

3.2 Preparation and characterization of ICG-
MOF-SS-AUNP12

The MOF material (particle size: 95.58 ± 0.42 nm, PDI: 0.140,
zeta potential: 35 mV) was successfully synthesized using NH2-
TPDC as the ligand and Zr+4 as the metal ions. Amino groups
on the surface of MOF were then modified to azide. Subsequently,
the functionalized polypeptide DBCO-SS-AUNP12 was connected
to the MOF surface to obtain MOF-SS-AUNP12 (particle size:
123.07 ± 1.85 nm, PDI: 0.182, zeta potential: −7.74 mV). The
photothermal agent ICG was loaded into the MOF to obtain
ICG-MOF-SS-AUNP12 with a particle size of 152.51 ± 2.09 nm

(PDI: 0.153) and a zeta potential of −22.4 mV (Figures 8A, B). The
TEM and SEM images showed that ICG-MOF-SS-
AUNP12 exhibited good dispersion without agglomeration
(Figures 8D, E). To evaluate whether the loading of ICG affected
its photothermal ability, the absorption peak of ICG-MOF-SS-
AUNP12 was measured using a UV spectrophotometer
(Figure 8C), which confirmed that it still maintained the
characteristic absorption peak of ICG at 780 nm. Furthermore,
we investigated the photothermal effect of ICG-MOF-SS-
AUNP12 and free ICG via an 808 nm NIR laser and an infrared
thermal imaging instrument, the results demonstrated that both
samples possessed strong photothermal abilities and could rapidly
reach a temperature rise up to 53°C within 5 min (Figure 8F),
suggesting that ICG-MOF-SS-AUNP12 has great photothermal
effect.

In addition, we investigated the responsive release behavior of
polypeptide AUNP12 in ICG-MOF-SS-AUNP12 under varying
concentrations of GSH (0, 2 μM, 10 mM). As shown in Figure 9,
AUNP12 exhibited negligible release without GSH or at low GSH
concentration (2 µM). However, at a concentration of 10 mM,
AUNP12 was released more rapidly, further demonstrating its
potential for tumor microenvironment-responsive release at
tumor sites.

3.3 Biological evaluation of ICG-MOF-SS-
AUNP12

Live/dead cell staining experiments were conducted on mouse
melanoma cell line B16 cells using red for dead cells and green for
live cells. The results presented in Figure 10A revealed that the
treatment of AUNP12, MOF-SS-AUNP12, ICG and ICG-MOF-SS-
AUNP12 resulted in predominantly green-stained B16 cells
indicative of cellular safety. However, when treated with the ICG-
MOF-SS-AUNP12+Laser group, it showed a predominance of red-
stained B16 cells, further confirming the potential therapeutic
efficacy of ICG-MOF-SS-AUNP12 in tumor treatment. We also
assessed the cytotoxic effects of AUNP12, MOF-SS-AUNP12, ICG,
and ICG-MOF-SS-AUNP12 on B16 cells with or without an 808 nm
NIR irradiation. As depicted in Figure 10B, MOF-SS-
AUNP12 exhibited negligible cytotoxicity, indicating excellent
biocompatibility of the MOF carrier. Furthermore, under 808 nm
NIR irradiation, both the ICG group and ICG-MOF-SS-
AUNP12 group demonstrated potent inhibition of B16 cells,
highlighting the effective tumor-killing capability of the
photothermal agent ICG.

3.4 Immunological effects of ICG-MOF-SS-
AUNP12

Finally, we isolated dendritic cells (DCs) from mouse bone
marrow and co-cultured them with B16 cells to investigate the
ability of ICG-MOF-SS-AUNP12 to induce DC maturation.
CD80 and CD86 are typical markers that indicate DC
maturation. As shown in Figure 11, both polypeptide AUNP-12
and ICG-MOF-SS-AUNP12 were capable of stimulating DC
maturation, resulting in a maturity rate of 21.52% and 26.57%,
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respectively, thereby demonstrating the polypeptide’s potential in
promoting DC maturity. Furthermore, the maturity rate was
observed to be 25.03% in the ICG+Laser group, indicating that
simple photothermal therapy could also elicit immune responses.
Notably, the ICG-MOF-SS-AUNP12+Laser group exhibited the
highest maturity rate (37.53%), suggesting that photothermal
effects can enhance immunotherapy effectiveness significantly. In
summary, this study further validates the potential application of
ICG-MOF-SS-AUNP12 in photothermal immune therapy.

4 Conclusion

In summary, we developed a GSH-responsive ICG loaded
PD-1 inhibitory polypeptide AUNP12 modified MOF
nanoparticles for achieving synergistic photothermal and
immunotherapy in melanoma treatment. The ICG-MOF-SS-
AUNP12 exhibits potent photothermal effects for tumor cell
ablation while intelligently releasing PD-1 inhibitory
polypeptide to enhance DC cell maturation. This study
presents a novel approach towards the development of
intelligent nanomedicine with potential applications in the
synergistic treatment of melanoma.
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