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The investigation of bone defect repair has been a significant focus in clinical
research. The gradual progress and utilization of different scaffolds for bone repair
have been facilitated by advancements in material science and tissue engineering.
In recent times, the attainment of precise regulation and targeted drug release has
emerged as a crucial concern in bone tissue engineering. As a result, we present a
comprehensive review of recent developments in responsive scaffolds pertaining
to the field of bone defect repair. The objective of this review is to provide a
comprehensive summary and forecast of prospects, thereby contributing novel
insights to the field of bone defect repair.
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1 Introduction

Bone tissue defects present a significant health risk to individuals (Buza and Einhorn,
2016). Approximately four million surgical procedures are performed annually to address
bone loss, utilizing grafts and/or substitutes, thereby establishing it as the second most
commonly transplanted tissue worldwide (Greenwald et al., 2001). Although bone grafting
serves as the preferred method for repairing extensive defects resulting from congenital
anomalies, tumor removal, and traumatic fractures, it is accompanied by challenges such as
limited availability, morbidity at the donor site, and inflammation, among others (Brydone
et al., 2010; Tang et al., 2016).

The primary objective of bone tissue engineering is to develop bone-graft substitutes that
can overcome the limitations associated with natural bone grafts (Shrivats et al., 2014).
Scaffolds, which serve as a potential approach for treating bone defects, are currently being
explored. The selection of appropriate biomaterials is of utmost importance in the
fabrication of these scaffolds, and various techniques and materials are under
investigation. The ideal bone graft substitutes should possess biocompatibility,
biodegradability, and ease of production. Additionally, they should facilitate cell
infiltration, stimulate bone growth, and provide biomechanical support during the
regeneration of bone by osteoblasts (Bose et al., 2012).

Researchers have employed diverse scaffold materials to facilitate endogenous
regeneration. Conventional scaffold materials comprise organic polymers such as
collagen and hyaluronic acid, artificial polymers like polylactic acid, and biologically
active inorganic materials like calcium phosphate, which enhance bone regeneration
(Khan et al., 2008; Collins et al., 2021). However, conventional scaffolds exhibit a
deficiency in controlled release capabilities, rendering them incapable of effectively
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regulating chronic inflammation as required (Ye et al., 2022). As a
result, scholars have redirected their focus towards the advancement
of responsive scaffolds.

Responsive scaffolds are considered to be groundbreaking in the
field of bone repair. These scaffolds are comprised of materials that
possess the capability to be activated and respond to various external
stimuli, such as light, magnetism, and pH, or internal stimuli,
including cytokines, enzymes, and biological signals. Responsive
scaffolds demonstrate the ability to react to triggers originating from
external regulatory equipment and internal microenvironment
alterations, thereby enabling them to deliver drugs in a timely
manner in response to a diverse array of circumstances (Wei
et al., 2022). Moreover, they exhibit the capacity to react to both
external and internal triggers, enabling them to deliver drugs as
needed in response to a wide range of situations.

The occurrence of bone loss can lead to injury in both hard and
soft tissues, with the microenvironment of diseased tissue exhibiting
notable distinctions from that of healthy tissue. These disparities are
believed to exploit various stimuli, including lower pH levels,
elevated concentrations of reactive oxygen species (ROS), and
heightened enzyme and osteoclast activities, thereby promoting
bone resorption. By utilizing a responsive scaffold, it becomes
possible to activate and target these specific stimuli, facilitating
the precise delivery of drugs to modify the microenvironment
and effectively repair the injury. For instance, researchers have
developed a modified-scaffold composed of an electrospun
asymmetric double-layer membrane made of polycaprolactone
and collagen (PCL/Col) to address the low pH environment in
bone defect sites. This composite scaffold exhibited the release of
approximately 93% of Zn2+ ions from the PCL/Col/ZIF-8 membrane
within 12 h under acidic conditions (pH 5.5). The pH-sensitive
structure of the scaffold provides a favorable environment for the
proliferation of osteoblasts, thereby presenting a promising
approach for bone regeneration (Xue et al., 2021). Responsive

scaffolds have demonstrated potential and approval in the
treatment of bone injuries.

This review primarily examines the recent advancements in
responsive biomaterials and scaffolds utilized in bone tissue
engineering. It specifically delves into their application, material
selection, scaffold design, and their efficacy in addressing bone
defects. Furthermore, the review explores the current limitations
and potential prospects for bone defect restoration, drawing upon
substantial evidence that substantiates the favorable outcomes
achieved through the implementation of functionalized
responsive scaffolds.

2 The categories of responsive
scaffolds

This study primarily encompasses three primary categorizations
of stimulus-responsive scaffolds based on the source of stimuli:
physical stimuli (e.g., light, temperature change, electric field,
magnet, and ultrasound), chemical stimuli (e.g., pH level and
ROS), and enzyme stimuli (Figure 1) (Table 1).

2.1 Physical stimuli

Physical-responsive scaffolds are predominantly comprised of
materials that are sensitive to physical stimuli. These materials
possess a structure that can be reconfigured when exposed to
various factors, including light, magnetism, temperature,
ultrasonic waves, and magnetic fields. Consequently, these
alterations in structure facilitate the delivery of drugs. For
instance, temperature-responsive scaffolds exhibit stability in
healthy tissue, but undergo degradation in diseased tissue. In the
initial phases of bone defects, inflammation induces a localized
increase in temperature. This change in temperature can serve as an
endogenous stimulus for the scaffold to respond and subsequently
release the drug (Zhang et al., 2013; Karimi et al., 2016b).

Under specific circumstances, elastin-like polypeptides (ELPs)
exhibit a lower critical solution temperature (LCST) in contrast to
other synthetic polymers (Tamburro et al., 2005). Upon surpassing
this transition temperature, ELPs undergo a first-order phase transition,
resulting in the formation of a peptide and water-rich phase (Krishna
et al., 2012; Zhao et al., 2016). This distinctive characteristic has sparked
considerable enthusiasm in the advancement of biomaterials capable of
reacting to external stimuli. In a recent study, researchers have
successfully synthesized elastin-like self-assembly nanoparticles with
thermos-responsive characteristics. These nanoparticles were
employed for the controlled release of bone morphogenetic protein-2
(BMP-2) and bone morphogenetic protein-14 (BMP-14), exploiting the
reverse temperature transition of bio-generated polymer(VPAVG) 220

(Bessa et al., 2010). This distinctive property can be harnessed tomitigate
inflammation and facilitate bone regeneration under specific conditions.
In the field of bone tissue engineering, a wide range of physical-
responsive scaffolds are frequently utilized to modulate drug delivery.

2.1.1 Temperature response
Temperature-responsive scaffolds can undergo structural

reconstruction and release drug payloads when the desired

FIGURE 1
Different types of responsive scaffolds for bone repair.
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TABLE 1 The summarization of recent responsive scaffolds.

Scaffold
categories

Specific scaffold material Growth factors or
drugs

Animal model/
in vitro study

Function Ref

temperature-
responsive

elastin-like polymer (VPAVG)220 bone morphogenetic
protein-2 (BMP-2) and
bone morphogenetic
protein-14 (BMP-14)

C2C12 cells induced osteogenic
mineralization

Bessa et al.
(2010)

temperature-
responsive

poly(ε-caprolactone-co-lactide)-b-PEG-b-poly(ε-
caprolactone-co-lactide) (PCLA) and

O-phosphorylethanolamine

bone morphogenetic
protein 2 (BMP-2)

subcutaneous
administration into the

dorsal region of
Sprague-Dawley (SD)

rats

biomineralized in situ Kim et al.
(2020)

temperature-
responsive

chitosan (CS) and methylcellulose (MC) veratric acid (VA) mouse mesenchymal
stem cells

promoted osteogenic
differentiation

Durairaj
et al. (2023)

temperature-
responsive

hydroxyapatite (HA), Gelatin (GN) and Fe3O4 ibuprofen (IBU) MTT assay within the
cell environment

highly biocompatible Sahmani
et al. (2020)

light-responsive strontium and ibuprofen-loaded black
phosphorus (BP + IBU@SA microspheres) into
aminated modified poly-L-lactic acid (PLLA)

ibuprofen (IBU) MC3T3-E1 cells improved cell adhesion and
proliferation and induced

apatite formation

Chen et al.
(2021)

light-responsive thin-film silicon (Si) embedded into
hydroxyapatite mineralized collagen/poly(ε-

caprolactone) (PLA) structures

- 5 mm-sized SD rat
circular bone defect

model

improved osteogenesis Wang et al.
(2023)

electric-
responsive

poly (l-lactic acid)-block-aniline pentamer-block-
poly (l-lactic acid) (PLA-AP) with poly (lactic-co-

glycolic acid)/hydroxyapatite (PLGA/HA)

human bone
morphogenetic protein-

4 (hBMP-4)

rabbit radial defect
model

improved cell proliferation
ability, enhanced osteogenesis
differentiation and bone healing

Cui et al.
(2020)

electric-
responsive

gelatin-graft-poly-pyrrole H2O2 - sustained oxygen release Nejati et al.
(2020)

electric-
responsive

silicon dioxide with poly(dimethylsiloxane)
(SiO2/PDMS)

- 5 mm-sized SD rat
circular bone defect

model

facilitated bone regeneration Qiao et al.
(2022)

mechanical-
responsive

hydroxyapatite/barium titanate (HA/BT) - MTT assay within
L929 cells

highly biocompatible Zhang et al.
(2014)

magnetic-
responsive

poly (vinylidene fluoride) (PVDF), and
magnetostrictive particles of CoFe2O4

- MC3T3-E1 cells promoted preosteoblasts
proliferation

Fernandes
et al. (2019)

magnetic-
responsive

polycaprolactone (PCL) microparticles,
encapsulating magnetic nanoparticles (MNPs)

placental proteins umbilical cord
mesenchymal stem
cells (UC-MSCs)

promoted osteogenic
differentiation

Lanier et al.
(2021)

ultrasound-
responsive

polylactic acids (PLA) embedded in alginate
hydrogels

stromal cell-derived
factor-1 (SDF-1) and
bone morphogenetic
protein 2 (BMP-2)

SD rats femoral bone
defect model

repaired bone defect in situ He et al.
(2023)

pH-responsive polycaprolactone/collagen (PCL/Col) membrane
modified by zeolitic imidazolate

framework-8 (ZIF-8)

- SD rats calvarial defect
model

increased osteoinductivity along
with blood vessel formation

Xue et al.
(2021)

pH-responsive chitosan loaded with ZIF-8 vancomycin (VAN) MC3T3-E1 cells promoted high proliferation and
osteogenic activities

Karakeçili
et al. (2019)

ROS-responsive LBL-compatible poly (thioketal β-amino amide)
(PTK-BAA) polycation

bone morphogenetic
protein 2 (BMP-2)

8 mm-sized SD rat
circular bone defect

model

increased new bone formation Martin
et al. (2021)

enzyme-
responsive

KLDL-MMP1 (Ac-
KLDLKLDLVPMSMRGGKLDLKLDL-CONH2)

peptides

bone marrow
mesenchymal stromal
cell-derived exosomes

(BMSC-Exos)

6 mm-sized SD rat
circular bone defect

model

recruited stem cells and
promoted osteodifferentiation

in response to
neovascularization and

accelerate tissue regeneration

Yang et al.
(2023)

enzyme-
responsive

polycaprolactone/chitosan nanofibers with
glucose oxidase (GOD)

dexamethasone (DEX) MC3T3-E1 cells promoted MC3T3-E1 cells’
osteogenic differentiation in
high-glucose environments

Jia et al.
(2023)
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temperature is achieved, as they are triggered by changes in the
surrounding environment. Thermo-responsive polymers, employed
in the fabrication of these scaffolds, may experience phase
transitions above the LCST (Bordat et al., 2019) or expedite
degradation when exposed to elevated temperatures. For instance,
certain thermo-responsive polymers undergo a transition from a
liquid state to a stable viscoelastic gel, while certain thermo-sensitive
polymers exhibit accelerated degradation at elevated temperatures,
thereby facilitating the controlled release of drugs.

In a recent study, a cohort of alginate bioconjugates comprising
micrografted poly(ε-caprolactone-co-lactide)-b-PEG-b-poly(ε-
caprolactone-co-lactide) (PCLA) and o-phosphorylethanolamine
were synthesized with the aim of facilitating bone regeneration
(Kim et al., 2020). These bioconjugated salts have the ability to
undergo a conversion into durable viscoelastic gels when
administered in vivo and subjected to physiological temperature,
surpassing the LCST threshold. This conversion enhances the
mechanical characteristics and fosters bone regeneration, thereby
suggesting their potential utility in promoting bone formation.
Methylcellulose is a cellulose polysaccharide known for its
biocompatibility, biodegradability, and hydrophilicity. It
demonstrates gelation properties, resulting in gel formation at
specific temperatures (Lioubavina-Hack et al., 2005; Kim et al.,
2018). Composite hydrogels, comprising chitosan and
methylcellulose, encapsulate veratric acid and exhibit desirable
biocompatibility. These hydrogels gelatinize at 37°C, making
them suitable for use as a restorative agent to enhance osteoblast
differentiation (Durairaj et al., 2023).

Endogenous temperature stimulation is elicited by
fluctuations in temperature conditions at the site of the lesion.
The lesion tissue undergoes pathological deformation and
hyperthermia, which stem from trauma and tumors, thereby
triggering the release of inflammatory factors and evaluation
of the local environmental temperature. Consequently, the
scaffold structure in pathological sites undergoes alterations
when the temperature is elevated. During the initial phase of
bone defect, the localized temperature elevation can serve as a
stimulus for scaffold response and/or drug release (Zhang et al.,
2013; Karimi et al., 2016b).

Nanocarriers engineered for thermal responsiveness have the
potential to maintain stability at the physiological temperature of the
human body. Upon exposure to external heat or assessment of the
local environmental temperature, these carriers can efficiently
release therapeutic agents either promptly upon heating or in a
controlled manner at the site of disease. In a recent study, Fe3O4

nanoparticles were employed by researchers within a magnetic field
to induce heat generation and eradicate infected cells (Abdellahi
et al., 2018a). The magnetite nanoparticles (MNPs) possess the
ability to elevate temperature upon exposure to an alternating
magnetic field, thus facilitating the degradation of the drug
carrier for drug release (Abdellahi et al., 2018b; Sahmani et al.,
2018). In this particular scenario, hydroxyapatite (HA) and gelatin
(GN) were integrated with MNPs to fabricate bio-nanocomposite
scaffolds, which subsequently underwent degradation under
magnetothermal conditions. The results indicate that the
prepared scaffold exhibits promising potential for utilization in
bone tissue engineering for both biological and thermal
applications (Sahmani et al., 2020).

The achievement of thermal specificity in temperature-
responsive systems poses a significant obstacle due to the
restricted variability observed in pathological tissues within living
organisms. Consequently, future research endeavors should
prioritize the development of scaffold materials that are more
responsive to lower temperatures, possess enhanced stability in
normal tissues, and ensure greater safety.

2.1.2 Light response
Various light-responsive materials exhibit different responses to

various wavelengths of light, thereby facilitating the identification of
suitable materials for diverse clinical needs. Upon exposure to light,
light-responsive scaffolds undergo changes in their physical
properties, thereby enabling efficient drug delivery. This
responsiveness of scaffolds is primarily attributed to the
degradation of materials containing light-sensitive components
or the modification of light-sensitive molecules. Consequently,
when scaffolds are exposed to light, the drug bound or
encapsulated within them is released (Mayer and Heckel, 2006;
Chen and Zhao, 2018).

Black phosphorus (BP), a novel nanomaterial characterized by
its two-dimensional framework, exhibits remarkable biosafety,
inherent biocompatibility, and photosensitivity (Pandey et al.,
2020). In a recent study, a multifunctional nanofiber scaffold was
developed by incorporating ibuprofen black phosphorus (BP +
IBU@SA microspheres) and sodium alginate microspheres onto
aminated poly-L-lactic acid (PLLA) nanofibers. This scaffold
demonstrates exceptional near-infrared light-responsive release
capabilities and anti-inflammatory properties. BP was employed
to induce the destruction of polymeric shells through the utilization
of near-infrared (NIR)-mediated photothermal performance,
thereby achieving controlled drug release. By subjecting the
scaffolds to NIR light, the adverse effects of rapid drug release
can be mitigated, while maintaining the drug concentration at an
optimal level to meet the specific requirements of bone repair. The
conducted investigations have demonstrated that the incorporation
of functionalized scaffolds enhances cell adhesion, proliferation, and
apatite formation, rendering it a viable and promising approach for
bone tissue engineering (Chen et al., 2021).

Silicon (Si) is widely employed as a semiconductor material in
bio-implantation devices (Kang et al., 2016; Parameswaran et al.,
2018). When subjected to near-infrared illumination, Si structures
produce electrical signals that depolarize cell potentials and trigger
intracellular calcium activation. Consequently, these optoelectronic
signals play a role in directing hBMSCs towards osteogenic
differentiation (Wang et al., 2023). Recently, a three-dimensional
(3D) biomimetic scaffold utilizing thin-film Si microstructures has
been developed. Through the utilization of NIR light, researchers
have discovered that the Si film facilitates the attachment and
growth of cells. The Si-based hybrid scaffold offers a 3D
hierarchical structure that effectively governs cell growth and
regulates cell behavior via light-responsive electrical signals.
These silicon structures are remotely manipulated by infrared
radiation to regulate the depolarization of stem cell membranes,
resulting in heightened Ca2+ activities for hBMSCs, as well as
improved potential and intracellular calcium dynamics.
Consequently, this process promotes both cell proliferation and
differentiation. The utilization of silicone scaffolds resulted in
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enhanced bone formation when subjected to light stimulation
(Wang et al., 2023) (Figure 2).

However, the advancement of light-responsive systems
continues to encounter various obstacles. In numerous
applications, the ability of radiation below 650 nm to penetrate
tissue beyond a depth of 1 cm is limited, while NIR light within the
range of 650–900 nm (as water absorbs wavelengths longer than
900 nm) can penetrate up to 10 cm. However, these penetration
depths are not considered clinically significant due to being either
too shallow or too deep in vitro (Weissleder, 2001; Fomina et al.,
2012). Additionally, further quantitative investigation is necessary to
evaluate the biological safety of light-sensitive materials and
ascertain the optimal duration and intensity of light exposure.

2.1.3 Electric response
Electrical stimulation (EStim) has undergone extensive research

and has proven to be an effective intervention in medical settings for
the purpose of enhancing bone healing (Bhavsar et al., 2020), as it
exerts influence on the migration (Yuan et al., 2014), proliferation
(Ercan and Webster, 2008), differentiation (Eischen-Loges et al.,

2018) of bone cells. Presently, the integration of electrostimulation
therapy with electric-responsive stents is regarded as a compelling
approach in clinical practice (Palza et al., 2019; Vaca-González et al.,
2019).

Endogenous electrical currents exert a substantial influence on
diverse physiological processes in the human body. These naturally
occurring electrical fields possess the capacity to induce either
depolarization or hyperpolarization of the membrane potential in
living tissues, thereby eliciting the activation of signaling factors that
facilitate cell proliferation and migration, including those of bone
cells (Funk, 2015). Exogenous electrical stimulation including
alternating current (AC), which reverses direction periodically
and direct current (DC) which flows in one direction both have
effects on bone tissue and scaffold (Chen et al., 2013). Electric-
responsive scaffolds possess inherent bioactivity and can facilitate
tissue formation with or without the need for external electrical
stimulation. These scaffolds are capable of responding to electrical
fields in living tissues, thereby expediting drug release.
Consequently, electric-responsive scaffolds have been employed
in various studies within the field of bone tissue engineering.

FIGURE 2
Bioregenerative 3D optoelectronic scaffold with Si nanostructures for bone regeneration. (A)An illustration of an implantable scaffold in concept. (B)
Native bone hierarchical structure. (C) Structural design of the 3D hybrid scaffold. Reproduced from (Wang et al., 2023) with permission. Copyright
2023 AAAS.
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Conductive polymers, namely polyaniline, poly-pyrrole,
polythiophene, and their derivatives (Cui et al., 2012; Xie et al.,
2015) have been found to augment cellular activities, including cell
adhesion, proliferation, differentiation, migration, and protein
secretion, at the interface between the polymer and tissue,
regardless of electrical stimulation (Hardy et al., 2013). These
polymers demonstrate favorable biocompatibility in both in vivo
and in vitro settings, while also exhibiting high conductivity under
physiological conditions. Polyaniline (PA) is a conductive polymer
that exhibits the ability to undergo transference when subjected to
pulsed EStim (Wang et al., 2017). Additionally, polylactide (PLA) is
a polymer known for its favorable biodegradability (Huang et al.,
2007). In light of these aforementioned attributes, a novel electric-
responsive scaffold has been developed, comprising a main chain
composed of poly (l-lactic acid)-block-aniline pentamer-block-poly
(l-lactic acid) (PLA-AP) and a triblock copolymer of poly (lactic-co-
glycolic acid)/hydroxyapatite (PLGA/HA). The composite scaffold
(PLGA/HA/PLA-AP/phBMP-4) underwent degradation upon
electrical stimulation (Cyclic voltammograms (CV), scanning rate
of 100 mVs−1) to control the release of phBMP-4 and regulate gene
expression of doxycycline (Dox). In an experimental model
involving rabbit radius defects, the electric-responsive scaffold
demonstrated enhanced cell proliferation, improved osteogenic
differentiation, and influenced the process of bone healing (Cui
et al., 2020).

Poly-pyrrole has garnered significant attention in academic
research due to its exceptional conductivity. In this study, H2O2-
loaded polylactic acid microparticles were manufactured, and
gelatin-graft-poly-pyrrole with varying pyrrole contents and
periodate-oxidized pectin were synthesized to create an injectable
conductive hydrogel/microparticle scaffold. This scaffold
demonstrated the ability to sustain oxygen release for a duration of
14 days. The conductivity of the scaffold can enhance the bone healing
process when responding to electrical stimuli, making it a promising
candidate for bone tissue engineering applications (Nejati et al., 2020).

Electret materials, known for their enduring polarization
properties (Zhang et al., 2023), have the ability to generate
intrinsic electrical stimulation when subjected to an external
electric field (Guo et al., 2022; Lin et al., 2022; Qiao et al., 2022).
In tissue engineering, electret materials commonly employed
include inorganic compounds like silicon dioxide (SiO2) (Qiao
et al., 2022), zinc oxide (ZnO) (Zhu et al., 2018), HA (Nakamura
et al., 2009), as well as biopolymers such as proteins (e.g., collagen),
polysaccharides (e.g., chitin), and polynucleotides (e.g., DNA), also
demonstrate the phenomenon of the electron effect (Zheng et al.,
2020). SiO2, a material with electret properties, exhibits favorable
biocompatibility and charge retention ability (Li et al., 2015). In
order to enhance its electroactive properties, researchers developed a
composite membrane by integrating silicon dioxide with
poly(dimethylsiloxane) (SiO2/PDMS). The composite membranes
underwent polarization through the application of an external
electric field, resulting in the retention of residual charge for a
duration of up to 6 weeks. The electreted SiO2/PDMS membranes
demonstrated a favorable electrical microenvironment, leading to
enhanced osteogenic differentiation of BMSCs in vitro and
accelerated bone defect healing in vivo (Qiao et al., 2022) (Figure 3).

The potential application of electrical stimuli-responsive
scaffolds in bone repair shows promise. However, the

controllability of electric field changes in organisms remains
uncertain, necessitating further investigation into the application
of telephony stents.

2.1.4 Mechanical response
Mechanical-responsive materials possess the ability to promptly

alter their physiochemical attributes when subjected to mechanical
force or deformation (Shabani and Bodaghi, 2023). Piezoelectric
biomaterials are a class of intelligent materials capable of producing
electrical activity in response to mechanical stimulation,
independent of the need for external electrical devices (Zheng
et al., 2020). Piezoelectricity arises from the inherent crystal or
chemical structure of materials, leading to the development of a net
dipole or charge during mechanical deformation. Additionally,
piezoelectric materials possess the ability to modulate cellular
behavior by generating surface charges in response to
deformation caused by cellular interaction. This characteristic
offers novel avenues for biomechanical simulation, bone
regeneration, and bone defect repair (Tandon et al., 2018; Khare
et al., 2020).

Piezoelectric materials can be classified into various categories
including polymers (such as PLLA and poly (vinylidene fluoride)
(PVDF)), ceramics [such as HA and barium titanate (BT)], natural
materials like collagen, and composite polymers. An example of
such composites is the aligned porous BT/HA composites, which
have been developed to possess high piezoelectric coefficients owing
to their exceptional piezoelectric property. These composites serve
as a charge supplier, thereby stimulating the bone healing process,
and exhibit similar charge supply properties and stress-generated
potentials as natural collagen bone (Baxter et al., 2010; Zhang et al.,
2014).

Collagen, a naturally occurring protein and integral component
of bone, exhibits piezoelectric properties that render it well-suited
for tissue engineering applications. Specifically, the piezoelectric
nature of collagen within bone induces the generation of a
streaming potential when subjected to stress, leading to a
decrease in hydraulic permeability and an augmentation in
stiffness (Ahn and Grodzinsky, 2009; Ferreira et al., 2012). The
suitability of the collagen-HA piezoelectric composite scaffold for
cellular growth and bone healing has been demonstrated in previous
research (Silva et al., 2001). Nevertheless, this scaffold is subject to
certain limitations, including low mechanical stiffness, rapid
degradation, and potential toxicity resulting from the use of
crosslinking agents.

Despite facing challenges related to material stability,
biocompatibility, and the need to balance mechanical properties,
the investigation of piezoelectric materials in the realm of bone
tissue engineering presents promising opportunities for the
treatment of bone defects and the regeneration of bone.

2.1.5 Magnetic response
The utilization of magnetic nanoparticles in bone tissue

engineering has gained attention due to their inherent magnetism
and the magnetocaloric effect, among other factors. These
nanoparticles demonstrate a responsive characteristic towards
magnetic fields, including both alternating magnetic field (AMF)
that periodically change direction, and constant magnetic field
(CMF) that remain in one direction (Goharkhah et al., 2015).
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Moreover, they possess the potential to augment the osteoinductive,
osteoconductive, and angiogenic properties of scaffolds (Dasari
et al., 2022).

A magnetic-responsive scaffold comprising of a piezoelectric
polymer, PVDF, and magnetostrictive particles of CoFe2O4 has been
successfully fabricated, with nylon template structures utilized to
facilitate the solvent casting process. The investigation revealed that
the PVDF component of the scaffold undergoes crystallization into
the electroactive β-phase when subjected to magnetic and/or
electromagnetic stimulation (permanent magnets, frequency of
0.3 Hz), thereby enhancing the proliferation of preosteogenic
cells. This observed phenomenon can be attributed to the
interplay between the magnetic and electromagnetic properties of
the magnetic nanoparticles upon stimulation (Fernandes et al.,
2019) (Figure 4). The magnetomechanical and magnetoelectric
response of the scaffolds is believed to be a valuable resource.

In a separate investigation, the magnetic-responsive scaffold is
comprised of PCL microparticles that enclose MNPs and placental
proteins. The MNPs, due to their magnetocaloric effect, induce
heating and subsequent melting of the PCL upon exposure to AMF
(strength from−1 to 1 T), thereby facilitating the diffusion of
proteins from the microparticles to stimulate bone formation.
Upon deactivation of the magnetic field, the PCL solidifies once
again, potentially enabling repeated administration of drugs in a
cyclic manner (Lanier et al., 2021). This present study introduces a
magnetic-responsive delivery system designed for localized drug
release, with potential applications in bone regeneration.

The magnetic field presents a superior setting for external
stimuli-responsiveness in comparison to light and temperature
due to its ability to fully penetrate human tissue and initiate

release, while also allowing for complete external control.
Nevertheless, magnetic nanoparticle could face drawbacks of
diffusion out within one or 2 days, thus preventing a continuous
release (Veres et al., 2022), during the bone defect treatment and
Iron oxide magnetic nanoparticles may mediate ROS generation and
have an impact on other cells (Hohnholt et al., 2011; Sruthi et al.,
2018).

2.1.6 Ultrasound response
Ultrasound, a mechanical wave with a high frequency

(≥20 kHz), possesses the ability to be concentrated and
transmitted within a particular medium, thereby finding utility in
various clinical domains including in vivo imaging and physical
therapy (Wheatley and Cochran, 2013). Furthermore, ultrasound
exhibits potential in addressing bone defects as it can influence the
biological aspects and drug administration characteristics of
materials (Wei et al., 2021; He et al., 2023).

In order to obtain biomimetic scaffold composites (BSCs),
researchers fabricated acoustically responsive hydrogel scaffolds
(ARSs) that were developed and incorporated with stromal cell
derived factor-1 (SDF-1) and BMP-2. The alginate hydrogel scaffold
was degraded through pulsed ultrasound (p-US) irradiation,
resulting in the exposure of ARSs to BMSCs due to its thermal
effect. Subsequently, sinusoidal continuous wave ultrasound (s-US)
irradiation was applied to stimulate the intrinsic resonance of ARSs,
thereby facilitating the capture of endogenous BMSCs on the
scaffolds and significantly enhancing their adhesion and growth
for the in situ repair of bone defects (He et al., 2023).

The ultrasound-responsive scaffold facilitates the precise
release of drugs and recruitment of cells in a spatiotemporal

FIGURE 3
The schemes of electreted sandwich membranes. (A) Illustration of persistent electrical stimulation provided by electreted sandwich-like SiO2/
PDMS composite membranes. (B) Implanted composite membranes act as native periosteum covering the bone defect region to enhance well-
integrated bone formation and regeneration. Reproduced from (Qiao et al., 2022) with permission. Copyright 2022 American Chemical Society.
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manner, while minimizing adverse effects through a non-toxic
pathway (Pitt et al., 2004; Zardad et al., 2016). Nonetheless, the
uncontrolled depth of ultrasound penetration and the potential
thermal effect necessitate further investigation. In contrast to
ultrasound, shockwave, which is a prevalent mechanical wave,
exhibits greater shock amplitude and energy (Smallcomb et al.,
2022). It is commonly employed to facilitate the biological
healing processes of bones. Although shockwave is seldom
reported as a stimulus source for responsive scaffolds, it offers

a promising and innovative avenue for the repair of bone defects
(Cheng and Wang, 2015).

2.2 Chemical stimuli

Chemically-responsive scaffolds are primarily constructed using
materials that demonstrate sensitivity to specific variations in
environmental concentration. When exposed to changes in the

FIGURE 4
The schemes of 3D magnetoactive scaffolds for bone tissue engineering. (A) Schematic representation for the 3D scaffold development. (B)
Schematic representation of the cell culture assays and stimulation profile. (C) Schematic representation of magnetomechanical and local
magnetoelectrical properties of 3D scaffolds upon the magnetic stimuli. Reproduced from (Fernandes et al., 2019) with permission. Copyright
2019 American Chemical Society.
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pH value, ROS concentration, ion concentration, and other
conditions, the drug-encapsulated scaffold undergoes stimulation,
leading to the rupture of responsive chemical bonds or modification
of the functional group structure within the scaffold. Consequently,
this process triggers the release of the drug. For example, ROS
concentration can be activated by phagocytes (such as granulocytes
andmacrophages) under inflammatory conditions after trauma, and
phenylborate pinanol ester (PBAP), a compound that can be
combined on scaffold, break chemical bonds and fracture under
high ROS, which lead to the quickly drug releasing on the certain site
(Zhang et al., 2017; Yuan et al., 2021). Therefore, the development of
chemical-responsive materials holds potential in facilitating targeted
drug delivery at the site of injury to promote bone repair. Here are
several common types of chemical-responsive scaffolds on bone
regeneration.

2.2.1 pH response
pH-responsive scaffolds are specifically engineered to react to

alterations in pH levels, which are induced by the release of
inflammatory factors from injured tissues. Extensive research has
demonstrated that the pH value can decrease to 6.5 within a span of
60 h following the onset of inflammation (Caliceti, 2011).
Furthermore, various organelles exhibit distinct pH values, such
as lysosomes (4.5–5), endosomes (5.5–6), golgi apparatus (6.4), and
cytosol (7.4) (Karimi et al., 2016a). Consequently, it becomes feasible
to incorporate pH-responsive chemical groups into scaffold
materials, thereby empowering the scaffold to regulate the release
of drugs within the affected tissue.

Zeolitic imidazolate framework-8 (ZIF-8) belongs to the class of
metal-organic frameworks (MOFs), which are formed through the
connection of metal ions or clusters with organic ligands. Its
remarkable pH-sensitivity has led to its application as a bone
substitute and drug carrier (Zheng et al., 2016). Research has
demonstrated that ZIF-8 is capable of releasing Zn2+ ions in
acidic environments, thereby displaying a favorable osteogenic
impact (Liu et al., 2022). To facilitate the promotion of
vascularized bone regeneration, electrospun polycaprolactone/
collagen (PCL/Col) membranes were modified with ZIF-8. The
ZIF-8 structure experienced collapse and subsequent release of
Zn2+ ions at a pH value of 5.5. Within a 12-h timeframe,
approximately 93% of Zn2+ ions were discharged from the PCL/
Col/ZIF-8 composite membrane under acidic conditions (pH 5.5).
Utilizing this pH-responsive scaffold, concurrent restoration of
blood vessels and bone was achieved in a rat model with
calvarial defects (Xue et al., 2021).

In a separate study, ZIF-8 nanocrystals were employed as a
carrier for vancomycin in order to achieve a delivery profile that
responds to changes in pH. These nanocrystals were incorporated
into chitosan fiber-scaffolds to create a potential substitute for bone
tissue, which also possessed antimicrobial properties and facilitated
interaction with osteoblast cells. Following a 48-h period at a pH of
5.4, the release of vancomycin reached a plateau at 77%, subsequent
to the increased dissolution of ZIF-8 under acidic conditions. This
dissolution served to diminish the activity of S. aureus and promote
the differentiation of preosteoblasts into osteoblasts (García-
González et al., 2018; Karakeçili et al., 2019).

The pH-responsive system presents a captivating approach for
drug delivery, leveraging the pH discrepancies observed in various

tissues within the living organism. Nevertheless, the exclusive
reliance on pH reaction systems may encounter limitations in
terms of specificity and sensitivity, given the inconsistent
magnitude of pH disparity between the target tissue and healthy
tissue.

2.2.2 Redox response
ROS, encompassing highly reactive ions, free radicals or

molecular compounds such as superoxide (O2-), hydroxyl radicals
(·OH), hypochlorite ion (ClO−), and hydrogen peroxide (H2O2),
play a significant role as signaling molecules in the progression of
inflammatory disorders. Given their close relationship with bone
growth and remodeling, ROS hold particular appeal for augmenting
material responsiveness (Martin et al., 2021).

At the site of a bone defect caused by inflammation,
polymorphonuclear neutrophils (PMNs) produce an excessive
amount of ROS, leading to endothelial dysfunction and tissue
damage, which is detrimental to the process of bone repair. In
comparison to healthy tissues, inflamed tissues exhibit ROS
concentrations that are 10–100 times higher (Liu et al., 2016).
Consequently, the development of a scaffold that is responsive to
ROS for the purpose of regulating drug release in inflammatory sites
and other afflicted tissues represents a promising approach for
enhancing bone repair (Mura et al., 2013).

A critically-sized bone defect refers to a clinical situation
wherein bone loss or removal occurs as a result of trauma,
infection, tumor, or other factors, and is unable to undergo
spontaneous healing (Huang et al., 2022). In such circumstances,
the defect lacks the ability to self-repair and necessitates external
interventions. A recent investigation has documented a study on a
polycation that exhibits compatibility with the Layer-by-Layer (LBL)
technique and is exclusively degraded by ROS produced by cells.
When the concentrations of ROS increase in the surrounding
environment, the thioketal-based polymers containing a scaffold
structure can be activated and broken down by physiological levels
of ROS. Additionally, these polymers enable the controlled release of
therapeutic BMP-2 upon oxidation. The findings of this study
suggest a direct correlation between ROS-responsive scaffolds
and the promotion of bone growth in critically-sized bone defects
(Martin et al., 2021).

In the context of pathological tissues, the maintenance of a stable
structure by the ROS response system assumes critical importance.
Nevertheless, the development of a ROS-responsive system that
operates optimally under specific conditions presents a persistent
challenge owing to the intricate and heterogeneous in vivo
microenvironment. Despite continuous endeavors, there persist
unresolved fundamental concerns that impede its attainment of
perfection.

2.3 Enzyme stimuli

Enzymes have found application in the realm of
nanotechnology, particularly in the development of nano-drug
carriers, owing to their distinctive biological targeting and
catalytic attributes. In the context of lesion tissue, enzyme levels
undergo alterations within the local microenvironment as a
consequence of injury and inflammation. By employing this
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approach, enzymes can be directed towards specific biochemical
signals within the area of bone defect, facilitating the regulation of
active ingredient release.

Neovascularized bone, for example, expresses high levels of
matrix metalloproteinase-1 (MMP1) (Quintero-Fabián et al.,
2019). MMP1 can degrade extracellular matrix proteins by

cleaving specific amino acid sequences, which can promote the
migration of vascular endothelial cells by decomposing the
extracellular matrix (Quintero-Fabián et al., 2019). The KLDL-
MMP1 (Ac-KLDLKLDLVPMSMRGGKLDLKLDL-CONH2)
peptides were synthesized by the researchers, as they can be
degraded by MMP1. To develop a microfluidic chip, the

FIGURE 5
Structural design of enzyme-responsive KGE microspheres. (i) KGE microspheres encapsulated Exos before enzymatic hydrolysis. (ii)
MMP1 degrades KGE, releasing Exos after injection. (iii) Through neovessels, Exos diffuse into bone defects to promote BMSCs migration and
osteodifferentiation. (A–C) The MMPs expression in neovascularized and vascularized bone tissues. (A) CD31 immunohistochemical staining of SD rat
skull defect on day 14, scale = 100 μm. (B) CD31/α-SMA Immunofluorescent staining of SD rat skull defect on day 14, scale = 100 μm. (C) Detection
of MMPs concentration by ELISA, ppp: p < 0.001, pp: p < 0.01, ns: p > 0.05. Reproduced from (Jia et al., 2023) with permission. Copyright 2023 Elsevier.

TABLE 2 The advantages and limitations of responsive scaffold categories.

Scaffold
categories

Advantages Limitations

Temperature-
responsive

Controllable and easy to operate Temperature ranges are limited

Light-responsive Little harm to the human body; No direct contact with
the lesion area

Penetration depths are either too shallow or too deep; The biological safety of light-
sensitive materials need to evaluate

Electric-responsive Responds quickly and with strong sensitivity Further investigation is required to examine the alterations in electric field intensity and
frequency within organisms

Mechanical-responsive Sensitive and quick to react Potential toxicity resulting from the use of crosslinking agents

Magnetic-responsive Controllable from an external source The diffusion rate of magnetic particles is high; There exists a potential for toxicity

Ultrasound-responsive The system can be controlled externally The controllability of penetration depth is limited; It generates a thermal effect

pH-responsive Utilizing the distinctions between diseased and normal
tissue

Limited range of variation; Low sensitivity

Redox-responsive Utilizing the distinctions between diseased and normal
tissue

The sensitivity is relatively low

Enzyme-responsive Distinctive biological targeting and catalytic attributes Different types of enzymes may exhibit cross-reactivity
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researchers utilized an injectable MMP1-sensitive hydrogel
microsphere (KGE), which was created by combining self-
assembling peptide (KLDL-MMP1), gelatin methacryloyl
(GelMA), and bone marrow mesenchymal stromal cell-derived
exosomes (BMSC-Exos). The Exo-release material, which is
sensitive to enzymes, exhibits a specific response and degradation
towards MMP1 originating from neovascularization during the
angiogenesis phase subsequent to bone injury. This degradation
process facilitates the release of exosomes within scaffolds, thereby
facilitating the recruitment of cells for the purpose of bone defect
repair (Yang et al., 2023) (Figure 5).

A novel enzyme-responsive scaffold has been developed
utilizing glucose oxidase (GOD), an enzyme capable of selectively
catalyzing the degradation of glucose. In individuals with diabetes,
the process of osteogenesis is frequently hindered due to the
presence of elevated glucose levels in the body, which in turn
leads to inflammation that inhibits osteogenesis. In a high-
glucose environment, glucose can undergo specific catalysis by
glucose oxidase, resulting in the production of gluconic acid.
Consequently, the researchers incorporated glucose oxidase into
the nanofiber scaffold to construct a glucose oxidase responsive
scaffold. As the glucose concentration increased, the nanofiber
scaffolds gradually expanded, leading to the subsequent release of
dexamethasone (DEX), which possesses anti-inflammatory
properties and promotes bone formation. Thus, these glucose-
sensitive nanofiber scaffolds present a promising therapeutic
approach for individuals with diabetes and alveolar bone defects
(Jia et al., 2023).

Despite the extensive development of enzymatic reaction
systems, they still possess several drawbacks within an academic
context. One such limitation pertains to the variability in enzyme
expression levels observed among patients, thereby raising concerns
regarding the adequacy of enzyme expression within the target
population. Additionally, the lack of specificity poses another
challenge, as different types of matrix metalloproteinases (MMPs)
may exhibit cross-reactivity. For example, all of MMP1, MMP8, and
MMP13 can cleave glycine–isoleucine or glycine–leucine bond
(Williams and Olsen, 2009). These limitations ultimately impede
the progress of enzyme-reactive scaffolds in the field of bone
engineering.

3 Conclusion and discussion

Stimuli-responsive scaffolds have emerged as a promising class
of intelligent biomaterials in recent years. The advantages and
limitations of responsive scaffold categories are shown in Table 2.
They possess the ability to detect various physical stimuli, including
light, temperature, electric field, magnetic field, and ultrasound, as
well as chemical stimuli such as pH and redox response, and enzyme
stimuli. Upon encountering specific stimuli, these scaffolds facilitate
cell adhesion, migration proliferation, and differentiation.
Consequently, they hold great potential for the repair of bone
defects. Despite the notable progress made in biomaterial
advancements for bone tissue engineering over the past few
decades, there remains a considerable amount of work to be
done, particularly in three specific areas that warrant further

investigation in the future: 1) Responsive scaffolds for bone tissue
engineering must possess specific biocompatibility and exhibit
targeted responses to particular stimuli. However, achieving a
singular response is challenging due to the intricate nature of the
human physiological environment and the diverse conditions found
at injury sites. Consequently, the development of multi-response
scaffolds is gradually gaining momentum as a means to attain
optimal therapeutic outcomes; 2) Further in-vivo experiments are
necessary to ascertain the interactions between biomaterials and the
local microenvironment. The implantation of biomaterials can
induce substantial alterations in the microenvironment, thereby
exerting a significant influence on osteogenesis. Consequently, it
is imperative to continuously monitor the dynamic changes of
substances within the body; 3) Furthermore, the challenges
pertaining to the precision and specificity of responsive tissue
engineering scaffolds persist. The accurate identification of the
lesion site and the implementation of targeted responses
necessitate additional attention and research. Continued advances
in bone tissue engineering are anticipated to facilitate the rapid
development of stimuli-responsive scaffolds, offering additional
treatment options for the clinical management of bone defects,
and ultimately influencing clinical outcomes.
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