
Creating high-resolution 3D
cranial implant geometry using
deep learning techniques

Chieh-Tsai Wu1,2, Yao-Hung Yang3 and Yau-Zen Chang1,4,5*
1Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, 2College of
Medicine, Chang Gung University, Taoyuan, Taiwan, 3ADLINK Technology, Inc, Taoyuan, Taiwan,
4Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan, 5Department of
Mechanical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan

Creating a personalized implant for cranioplasty can be costly and aesthetically
challenging, particularly for comminuted fractures that affect a wide area. Despite
significant advances in deep learning techniques for 2D image completion,
generating a 3D shape inpainting remains challenging due to the higher
dimensionality and computational demands for 3D skull models. Here, we
present a practical deep-learning approach to generate implant geometry from
defective 3D skull models created from CT scans. Our proposed 3D
reconstruction system comprises two neural networks that produce high-
quality implant models suitable for clinical use while reducing training time.
The first network repairs low-resolution defective models, while the second
network enhances the volumetric resolution of the repaired model. We have
tested our method in simulations and real-life surgical practices, producing
implants that fit naturally and precisely match defect boundaries, particularly
for skull defects above the Frankfort horizontal plane.
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1 Introduction

Skull defects can arise from various causes, including trauma, congenital malformations,
infections, and iatrogenic treatments such as decompressive craniectomy, plastic surgery,
and tumor resection. Recent studies (Yeap et al., 2019; Alkhaibary et al., 2020) have
demonstrated that reconstructing extensive skull defects can significantly improve
patients’ physiological and neurological processes by restoring cerebrospinal fluid
dynamics and motor and cognitive functions. However, designing a customized implant
for cranioplasty is complex and expensive, especially in cases with comminuted fractures.

Advances in medical imaging and computational modeling have enabled the creation of
custom-made implants using computer-aided design software. The design process typically
involves intensive human-machine interaction using specialized software and requires
medical expertise. For example (Lee et al., 2009; Chen et al., 2017), have used mirrored
geometry as a starting point for developing an implant model. However, since most human
skulls are asymmetric to the sagittal plane, a unilateral defect may still require significant
modification to fit the defect boundary after the mirroring operation, let alone defects
spanning both sides.

Significant progress has been made in deep learning-based 2D image restoration. For
instance (Yang et al., 2017), proposed a multi-scale convolutional neural network to provide
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high-frequency details for defect reconstruction. The image
inpainting schemes of (Pathak et al., 2016; Iizuka et al., 2017)
used an encoder-decoder network structure (Hinton and
Salakhutdinov, 2006; Baldi, 2011; Dai et al., 2017) for adversarial
loss training based on the Generative Adversarial Networks scheme
(Goodfellow et al., 2014; Li et al., 2017). Yan and coauthors (Yan
et al., 2018) also introduced a shift connection layer in the U-Net
architecture (Ronneberger et al., 2015) for repairing defective images
with fine details.

While deep learning techniques have made noteworthy
progress in 2D image completion, 3D shape inpainting remains
challenging due to the higher dimensionality and computational
requirements to process 3D data (Maturana and Scherer, 2015).
Among the early studies, Morais and coauthors in (Morais et al.,
2019) conducted a pioneering study using an encoder-decoder
network to reconstruct defective skull models at a volumetric
resolution of up to 120 × 120 × 120 by integrating eight equally
sized voxel grids of size 60 × 60 × 60.

In (Mahdi, 2021), a U-net (Ronneberger et al., 2015) scheme was
developed to predict complete skulls, where the cropped skull modes
were down-sampled and rescaled to a voxel resolution of 192 × 256 ×
128. This investigation also demonstrates the importance of the
quantity and diversity of datasets to ensure the quality and
robustness of network predictions (Li et al., 2021a). proposed a
patch-based training strategy for 3D shape completion by
assembling an encoder-decoder network and a U-net on 128 ×
128 × 128 patches cropped from defective skull models. This
approach alleviates the memory and computational power
requirements. However, when the size of the defect is close to
the patch size, the reconstruction performance significantly
worsens. Besides, as observed in (Li et al., 2021b), merging
patches can easily lead to uneven surfaces.

In (Ellis and Aizenberg, 2020), four 3D U-Net (Ronneberger
et al., 2015) models with the same architecture were trained
separately in an ensemble. All four models were used to predict
complete skulls with a volume resolution of 176 × 224 × 144, and the
results were averaged as the final output. The paper reported the loss
of edge voxels at the corners of implants. Matzkin and coauthors in
(Matzkin et al., 2020a) also used the U-Net architecture for 3D skull
model reconstruction and concluded that estimating the implant
directly may produce less noise. In a follow-up work by Matzkin and
coauthors in (Matzkin et al., 2020b), a shape constructed by
averaging healthy head CT images is concatenated with the input
to provide complementary information to facilitate the robustness of
the model predictions.

Besides, the Statistical Shape Modeling technique (SSM)
(Fuessinger et al., 2019; Xiao et al., 2021) can model 3D shapes
explicitly from a collection of datasets. This method is inherently
insensitive to defect size and shape and can potentially reconstruct
skull defects (Li et al., 2022). demonstrated its application to
substantial and complex defects, but this approach performed
worse on medium-sized synthetic defects than deep learning-
based methods.

More recently, Wu and coauthors (Wu et al., 2022)
successfully developed a dilated U-Net for 3D skull model
reconstruction with a volumetric resolution of 112 × 112 × 40.
However, the repairable defect area was limited to the upper parts
of skulls, and the voxel resolution was insufficient for direct use in

implant fabrication. Building on this work, we propose a new
approach to advance the 3D skull model inpainting technique in
this paper. Our approach can reconstruct skull models with a
higher volumetric resolution of 512 × 512 × 384, meeting the
needs of cranial implant design.

Figure 1 illustrates the use of our proposed deep learning
system for cranioplasty. The system inputs a normalized
defective 3D skull model derived from a set of CT-scanned
images. Using this defective model, our system automatically
reconstructs the skull model. A 3D implant model is then
obtained by subtracting the original defective model from the
completed model. Once a validated implant model is ready,
technicians can use manufacturing processes such as 3D
printing and molding (Lee et al., 2009; Wu et al., 2021) to
convert raw materials into an implant for surgical treatment.

2 Materials and methods

The effectiveness of a deep learning system relies on several
factors, including the quality of training data, the network
architecture, and training strategies. In this section, we delve into
these aspects in detail.

2.1 Skull dataset

We collected and curated a dataset of skull models to train and
evaluate neural networks. This dataset includes pairs of intact and
defective skull models, with the defective models created by applying
3D masks to the intact ones. These skull models were carefully
selected from three datasets described below.

2.1.1 Publicly available datasets
The binary datasets, SkullFix (Li and Egger, 2020; Kodym et al.,

2021) and SkullBreak (Li and Egger, 2020), were derived from an
open-source collection of head-CT images known as the
CQ500 dataset (Chilamkurthy et al., 2018). The SkullFix dataset
was released for the first MICCAI AutoImplant Grand Challenge (Li
and Egger, 2020) in 2020, while the SkullBreak dataset was provided
for the second MICCAI AutoImplant Challenge (Li and Egger,
2020) in 2021.

In these datasets, defective models were created by masking
certain areas of intact 3D skull models. SkullFix defects are circular
or rectangular, while SkullBreak defects are more irregular to mimic
traumatic skull fractures. In this study, we selected only 92 intact
models from these two datasets.

2.1.2 A retrospective dataset
The Department of Neurosurgery, Chang Gung Memorial

Hospital, Taiwan, gathered a dataset over the last 12 years. To
ensure confidentiality, the Institutional Review Board, Chang Gung
Medical Foundation, Taiwan, under the number 202002439B0,
approved removing sensitive information about individuals. Out
of the 343 sets of collected data, only 75 datasets were used in this
study due to incompleteness or the presence of bone screws. Since
image acquisition conditions vary, the bone density of each patient is
also different, which necessitated setting the intensity threshold for
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extracting bone tissue individually, generally within the Hounsfield
scale interval [1200, 1817].

During our research, we simplified the skull models we had
gathered to reduce memory usage. This was accomplished by
removing the bone tissue below the Frankfort horizontal plane
(Pittayapat et al., 2018). Besides, although CT images typically
have a planar resolution of 512 × 512 pixels, the slice interval
can vary from 0.3 to 1.25 mm. To ensure a consistent volumetric
resolution of 512 × 512 × 384 voxels, we used the Lanczos
interpolation method (Mottola et al., 2021) to resample the skull
datasets in the craniocaudal direction. As a result, the cranial models
had a typical voxel size of 0.45 mm × 0.45 mm × 0.8 mm.

As shown in Figure 2, defects were created on complete skull
models using elliptical-cylindrical or ellipsoidal 3D masks to
produce a diverse training dataset with different sizes and
shapes of defects. The masks were applied randomly to various
positions on the skull model, ranging from 60 to 120 mm in
diameter. Twenty-five defect variations were injected into each
complete skull model.

We employed a data augmentation technique (Shorten and
Khoshgoftaar, 2019) to expand the skull dataset by rotating the
skull models along the craniocaudal axis. The rotation interval was
set at 2°, resulting in seven variants for each skull model. Notably,
three variants were generated on one side.

Eventually, we collected 25,930 datasets of paired skull models
after removing models with out-of-range defects. Each dataset
comprises two intact skull models and two defective ones, which
were normalized to two volumetric resolutions: 512 × 512 × 384 and
128 × 128 × 96. The lower-resolution model was down-sampled
from the corresponding higher-resolution model. Our final skull
data was divided into three groups: training data comprising
21,600 datasets, validation data of 2,400 datasets, and test data of
1,930 datasets.

2.2 3D completion and resolution
enhancement network architectures

We developed two deep-learning networks to predict complete
skull models from incomplete ones. As shown in Figure 3, the first is
a 10-layer 3D completion network, and the second is a 14-layer
resolution enhancement network. Both networks were trained using
a supervised learning approach on the training dataset of two
different volumetric resolutions.

A defective skull model is first normalized to a volume resolution
of 512 × 512 × 384 to prepare input for the networks, retaining only
the bone tissue above the Frankfort horizontal plane (Pittayapat et al.,
2018). This normalized model is then transformed into a low-
resolution defective cranial model with a resolution of 128 × 128 ×
96, which becomes the input for the 3D completion network. The
network predicts a 128 × 128 × 96 completed skull model. By
downsampling the 3D skull model, the computational resources
required to process the data are reduced. Finally, the 3D resolution
enhancement network uses both the 128 × 128 × 96 completed skull
model and the original 512 × 512 × 384 defective skull model as inputs
to generate a 512 × 512 × 384 completed skull model.

2.2.1 The 3D completion network
This network uses a 3D U-Net (Ronneberger et al., 2015) with

3D dilations at the bottleneck section, as illustrated in Figure 4 and
Table 1. The network employs 3 × 3 × 3 kernels in all convolutional
layers, including basic convolutions and dilated convolutions, with a
dilation rate of 2 for all dilated convolutions. Additionally, all max-
pooling operators are of size 2 × 2 × 2.

The network begins with a convolution layer and rectified linear
unit (ReLU) activations (Agarap, 2018), generating an 8-channel
feature map. The down-sampling section on the left side of the
network repeatedly performs three convolutions, followed by ReLU

FIGURE 1
Flowchart of cranial restoration using the proposed deep learning technique.
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activations and max-pooling operations. After each convolution
operation, the size of feature maps is halved, while the number
of channels remains at 8, 4, and 4, respectively. The bottleneck

comprises two dilated convolutional layers with four filters, each
connected by skip-connections (Alkhaibary et al., 2020) and
followed by ReLU activations (Agarap, 2018).

FIGURE 2
The use of 3D masks to generate simulated defects on cranial models. In the top row are two types of masks: the elliptical cylinder and the mixed
elliptical cylinder. The bottom row, on the other hand, has two different mask types: the ellipsoid and the hybrid ellipsoid.

FIGURE 3
Overview of the proposed 3D inpainting system. The system comprises two networks: a 3D completion network and a resolution enhancement
network. The 3D completion network completes the defective skull model with a volume resolution of 128 × 128×96. The resolution enhancement
network uses both the completed model of 128 × 128 × 96 and the defective model of 512 × 512 × 384 to generate a 512 × 512 × 384 completed skull
model.
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In the up-sampling section, there are more up-convolutions
followed by ReLU activations, and the corresponding feature maps
from the down-sampling section are added in. We used nearest-
neighbor interpolation upsampling (Kolarik et al., 2019) for the up-
convolutions, which assigns the grayscale value from the nearest
original voxel to each new voxel.

After that, a convolution layer with sigmoid activation functions
is applied to the feature maps from the up-sampling path. The final
network output is obtained by adding the result to the original
network input. The 3D completion network is made up of
8,269 trainable parameters.

2.2.2 The 3D resolution enhancement network
The network predicts a high-resolution completed skull model

using a low-resolution completed model and a high-resolution
defective model. As shown in Figure 5 and Table 2, the network
combines a 3D completion network and a shallower U-Net
(Ronneberger et al., 2015). The 3D completion architecture
provides a geometric abstraction of the complete low-resolution
model to enhance the high-resolution defective model. All
convolutional filter kernels and max-pooling operators in the
network are 3 × 3 × 3 and 2 × 2 × 2, respectively, similar to the
3D completion network.

As illustrated in Figure 5, the 3D completion network output is
followed by an up-sampling convolution layer and ReLU activations
in the upper middle. The high-resolution defect model acts as the
second input and undergoes a down-sampling convolution layer,
followed by ReLU activations and max pooling operations. The two
inputs are added up and go through an up-sampling convolution
layer with ReLU activations, as depicted on the upper right side of
Figure 5. Another decoder section follows, which encompasses an
addition operation with the corresponding feature maps from the
down-sampling section. The bottleneck of the shallower U-Net does
not have dilated convolution.

The output is generated by a convolutional layer normalized to
the range [0, 1] using sigmoid activation functions. Finally, the
predicted voxel values are thresholded at 0.45 to transform the
resultant models into binary values. The network has a total of
11,741 trainable parameters.

2.3 Deep-learning networks training

While training the 3D completion network and the resolution
enhancement network, we utilized binary cross-entropy (Liu and Qi,
2017) as the loss function and Adadelta (Zeiler, 2012) as the
optimizer. The binary cross-entropy (Liu and Qi, 2017) evaluates
the proximity of the predicted probability of voxel values to the
target values, where 1 or 0 represent the presence or absence of bone
tissue, respectively. Adadelta (Zeiler, 2012) is an adaptive stochastic
gradient descent algorithm that adjusts the learning rate without
needing a parameter setting. All trainable parameters were
randomly initialized (Skolnick et al., 2015).

We utilized 21,600 datasets consisting of 128 × 128 × 96 skull
models to train the 3D completion network. In addition, we
employed 5,800 datasets of 128 × 128 × 96 and 512 × 512 ×
384 skull models to train the resolution enhancement network.
During the network training phase, we used 2,400 datasets for the

FIGURE 4
The proposed 3D completion network. The network was created
to reconstruct low-resolution skull models. The numbers represent
the size of I/O data or feature maps, i.e., the outputs of convolutional
layers. For example, (128 × 128 × 96) x 8 describes an 8-channel
tensor of size 128 × 128 × 96 in each channel.

TABLE 1 The architecture of the 10-layer 3D completion network. “AF” is the
activation function succeeding a convolutional layer and “Channels” depicts
the filter number of a convolutional layer. All convolutional kernels in the
network are of size 3 × 3×3 with stride = 1.

Type Dilation AF Channels

3D Convolution 1 ReLU 8

3D Convolution + Max Pooling 1 ReLU 8

3D Convolution + Max Pooling 1 ReLU 4

3D Convolution + Max Pooling 1 ReLU 4

Dilated 3D Convolution 2 ReLU 4

Dilated 3D Convolution 2 ReLU 4

3D Up-Sampling 1 ReLU 4

3D Up-Sampling 1 ReLU 8

3D Up-Sampling 1 ReLU 8

3D Convolution 1 Sigmoid 1
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3D completion network validation and 600 for the resolution
enhancement network validation. These validation datasets were
independent of the training datasets. All skull models were saved as
uint8, where the file size of a 128 × 128 × 96 skull model was between
127 and 268 kB, and the file size of a 512 × 512 × 384 skull model was
between 5.1 and 7.1 MB.

The calculations for network training and usage were performed
on a personal computer that had an Intel Core i9-9900K 3.6 GHz
CPU, 128 GB DDR4 memory, and an NVIDIA GeForce RTX
A6000 graphics card with 48 GB GDDR6 GPU memory. To
accommodate the GPU memory limitations, we used a batch size
of 10 during the 3D completion network training and 4 during the
resolution enhancement network training.

We shuffled the datasets at the beginning of each epoch to
improve data order independence and prevent the optimizer from
getting stuck in a local minimum of the loss function. The 3D
completion network was trained for 1,200 epochs over 12.5 days,
while the resolution enhancement network was trained for
20 epochs over 45 days. After training, we selected the networks
that achieved the best loss values in the validation dataset for the
reconstruction and resolution enhancement tasks.

Following the training, it took only 4.9 s to obtain a completed
128 × 128 × 96 skull model using the 3D completion network and
7.2 s to get a 512 × 512 × 384 high-resolution skull model using the
resolution enhancement network. In summary, using the proposed
approach, it takes less than 10 min to create an implant model ready

FIGURE 5
The proposed resolution enhancement network. The network was created to predict high-resolution completed skull models. Two inputs are
required: the low-resolution completed skull model created in the first stage and the original high-resolution defective model.
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for manufacturing once a defective skull model is available for
design. This is a significant improvement over the manual
restoration method, which takes more than 1 h. This is in
addition to the improvement in geometric quality.

Further details regarding the hardware and software setup for
training and evaluation, training history, and additional case studies
are available in the Supplementary Material linked to this article.

3 Results

To demonstrate the performance of our proposed 3D cranial
inpainting system, both numerical studies and surgical practice are
presented in this section, highlighting its quantitative and qualitative
capabilities.

3.1 Numerical study

We created defects on numerical models by applying various 3D
masks to intact skull models for study. The removed parts are
considered ground truth (ideal) implants for quantitative
investigations. The implants generated by the proposed system
are compared to the ground truth implant models using the
Sørensen-Dice index (Dice, 1945; Carass et al., 2020) and
Hausdorff Distance (Morain-Nicolier et al., 2007) metrics.

In this study, skull models were converted to a voxel-based
representation. Each voxel value is treated as a Boolean, with
1 representing bone tissue and 0 representing otherwise. The
Sørensen-Dice index (SDI) (Dice, 1945; Carass et al., 2020) is
defined and calculated as follows:

SDI � 2NTP

2NTP +NFP +NFN
× 100% � 2 P ∩ G‖ ‖1

P‖ ‖1 + G‖ ‖1 × 100% (1)

In Eq. 1, NTP denotes the number of true positives, NFP

represents the number of false positives, and NFN is the number
of false negatives. In the second expression of Eq. 1, P is a skull model
predicted by the proposed approach, and G is its corresponding
ground-truth model. The 1-norm calculates the number of 1’s in a
voxel-based model.

In addition, the Hausdorff Distance (HD) (Morain-Nicolier
et al., 2007) measures the distance between two sets of voxels, P
and G, in this study. It is defined as the most significant distance
from the center of any bone-tissue voxel in the set P to the closest
center of any bone-tissue voxel in the set G. The HD between G and
P is calculated as:

HD � max
gB∈G

min
pB∈P

gB − pB

�
�
�
�

�
�
�
�2 (2)

In Eq. 2, gB and pB represent bone-tissue voxels (with value 1) in
G and P, respectively. The distance between the centers of two voxels
is calculated using the L2 norm (the Euclidean norm). For a skull
model of voxels measuring 0.45 mm × 0.45 mm × 0.8 mm, one HD
unit is equivalent to a distance between 0.45 mm and 1.0223 mm,
serving as a quantitative measurement.

The proposed approach generates implants in two stages, as
detailed in the Materials and Methods section. The first stage
produces low-resolution implant modes, while the second
generates high-resolution ones. Figure 6 illustrates four case
studies with simulated defects. The first row displays the
defective skull models in an isometric view. The ground-truth
implants are shown in the second row for comparison. The third
and fourth rows present the low and high-resolution implants
produced by the proposed system in the first and second stages,
respectively.

The last two rows of Figure 6 present the quantitative
performance of the proposed deep learning scheme. The case in
the last column, with a significant defect denoted as type Parietal-
Temporal, has an HD index of 2, while the rest have HD values of 1.
The last column also has a smaller SDI value of 85.97%, while the
SDI values for the remaining columns are all above 90%.

This simulation study shows that the suggested system can
produce implants that closely resemble actual lost tissue based on
defective skull models. The first stage generates implants with a
lower resolution, while the second stage significantly enhances their
resolution. Please note that cranial suture patterns are not restored,
which does not hinder practical usage.

Figure 7 presents two additional case studies demonstrating the
proposed networks’ ability to reconstruct and improve the
resolution of large-area defects. These two extreme cases illustrate
the potential of the proposed system to reconstruct defects more
significant than one-third of the upper part of the skull.

Recently, several publicly available datasets have been released
for cranial reconstruction studies. We collected several cases from
(Li and Egger, 2020) and present four representative results in
Figure 8. The defect in the first column is made of a cubic mask.
In contrast, the defects in the other three columns are irregularly
shaped. The first row displays the defective skulls, while the second
row shows how the generated implants fit into them. The ground-

TABLE 2 The architecture of the 14-layer resolution enhancement network.
“AF” is the activation function succeeding a convolutional layer and
“Channels” depicts the filter number of a convolutional layer. All convolutional
kernels in the network are of size 3 × 3×3 with stride = 1.

Type Dilation AF Channels

3D Convolution 1 ReLU 8

3D Convolution + Max Pooling 1 ReLU 8

3D Convolution + Max Pooling 1 ReLU 4

3D Convolution + Max Pooling 1 ReLU 4

Dilated 3D Convolution 2 ReLU 4

Dilated 3D Convolution 2 ReLU 4

3D Convolution 1 ReLU 8

3D Convolution + Max Pooling 1 ReLU 8

3D Up-Sampling 1 ReLU 4

3D Up-Sampling 1 ReLU 8

3D Up-Sampling 1 ReLU 8

3D Up-Sampling 1 ReLU 8

3D Up-Sampling 1 ReLU 8

3D Convolution 1 Sigmoid 1
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truth and generated implants are shown in the third and fourth
rows. The last two rows demonstrate the quantitative performance
of the proposed system in these simulated cases.

Based on the results presented in Figure 8, we can conclude that
the reconstruction performance of the proposed system degrades for
irregular defects. However, HD values remain at 1, and all SDI values
are above 80%.

Further analysis of the reconstruction performance of our
approach is available in the Supplementary Material, which is
linked to this article. These studies include comparisons with
manually repaired cases stored in a database known as
MUG500+ (Li et al., 2021c). One of the examples in the
Supplementary Material, Supplementary Figure S11, demonstrates
four cases with significant and irregular defects that were
reconstructed using our method. The frontal-orbital implants
have lower SDI values of 78.28% and 79.67% compared to the
frontal-parietal implants, which have SDI values of 79.83% and
83.76%. This difference in performance may be due to the lack of
frontal-orbital defective cases in the training dataset. However,
implants created for these challenging cases are still useful for
treatment purposes with minor modifications, even though the
HD values go up to 2.

3.2 Surgical practice

The proposed deep learning system has been utilized in cranial
surgeries, along with retrospective numerical studies presented in
the last section. These studies have been registered on ClinicalTrials.
gov with Protocol ID 202201082B0 and ClinicalTrials.gov ID
NCT05603949. Additionally, the study has been approved by the
Institutional Review Board of Chang Gung Medical Foundation in
Taiwan under IRB 202002439B0. Here, we demonstrate a surgical
application outcome of our proposed system.

A young man, aged 24, has a significant craniofacial deformity
and was seeking surgery to restore the structure of his skull. Seven
years ago, the patient fell from a height of 5 m, resulting in a severely
comminuted fracture and intracranial hemorrhage. These injuries
were treated with an extensive craniectomy, but the skull has
remained open, as shown in Figure 9A.

As depicted in the 3D image from a CT scan in Figure 9B, this
cranial opening spanned the parietal, frontal, and temporal bones
and measured up to 114 mm at its widest point. The edge of the
opening was covered by scar tissue due to a prolonged ossification
process. Additionally, there was a small hole in the left frontal bone
to place an external ventricular drain.

FIGURE 6
Automatic generation of implants for simulated defects using the proposedmethod. The first row shows skull models with simulated defects derived
by subtracting 3D masks from an intact skull model using Boolean operations. The second row displays the ground-truth implants. The automatic
generation of implants using the proposed approach requires two stages. The third row shows the outputs of the first stage, while the fourth row presents
the results of the final stage. It is important to note that there is no cranial suture pattern on the resulting implant models and that the test datasets
have never been used in training.. (All implant models, including the ground-truth implants, are enlarged to facilitate visual inspection).
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Figures 4E, F, 9D show the shape of an implant generated by
the proposed method and how it fits into the defective skull. For
comparison, Figure 9C shows a reconstructed skull model
created by a technician using CAD software to demonstrate
what a typical hand-designed implant would look like. The
implant produced by the proposed method fits the defect
well and has a more natural appearance despite being
asymmetrical to the left side of the skull. Additionally, a
small patch covering the hole drilled for the ventriculostomy
drainage system was removed, as placing an implant of that size
was unnecessary.

To quantitatively assess the reconstruction performance, we
compared the reconstructed 3D skull models generated by the
proposed deep-learning approach with that designed manually
using the cranial vault asymmetry index (CVAI) (Yin et al.,

2015), originally used to evaluate the symmetry of positional
plagiocephaly.

The CVAI index is calculated using a measurement plane.
Figure 10 shows that this plane intersects the implant the most
and is parallel to the Frankfort horizontal plane. Additionally, the
figure provides top views of the reconstructed skulls, where lines AC
and BD are diagonal lines drawn 60° from the Y-axis. Points A, B, C,
and D are located on the measurement plane, and point O is at the
intersection of lines AC, BD, and the Y-axis.

Based on the length of these lines, we define the anterior cranial
vault asymmetry index (ACVAI) and the posterior cranial vault
asymmetry index (PCVAI) in Eqs 3, 4.

ACVAI � AO
∣
∣
∣
∣

∣
∣
∣
∣ − BO

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

AO
∣
∣
∣
∣

∣
∣
∣
∣

× 100% (3)

FIGURE 7
Two extreme cranial reconstruction examples with large-area defects. The first two rows display skull models from different viewpoints with defects
more significant than one-third of the upper skull. The third row shows the ground-truth implant modes, while the fourth row presents the final implant
models generated by the proposed scheme. (The ground-truth and generated implants have been magnified for visual inspection. Also, these two
defective datasets have never been used in training).
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× 100% (4)

The ACVAI evaluates the degree of asymmetry in the front part
of the skull based on the intact side, while the PCVAI evaluates the
back part of the skull. A perfectly symmetrical reconstructed skull
will receive a score of 0% for both ACVAI and PCVAI.

Table 3 summarizes the ACVAI and PCVAI values of the two
design approaches. The proposed deep-learning approach yielded
ACVAI and PCVAI values of 2.22% and 2.14%, respectively. On the
other hand, the manual design approach resulted in ACVAI and
PCVAI values of 2.05% and 6.03%, respectively. The deep-learning
approach produced more symmetric geometry in the back part of
the skull, while the difference in the front part of the skull was
insignificant for both approaches.

The implant fabrication process began with creating a 3D-
printed template using the implant model generated by the
proposed deep learning system. Silicone rubber was then used to
make a mold that captured the geometric details of the implant. The
implant was created through casting and molding, with most of the
manufacturing in the operating room to ensure cleanliness and

sterilization. In this surgery, the implant was made of
polymethylmethacrylate (PMMA) (Yeap et al., 2019) bone
cement. We have chosen this material for skull patches for over
15 years (Wu et al., 2021) and found it satisfactory in healing,
duration, and providing protection. Excluding 3D printing, the
casting and molding process took less than 30 min.

As shown in the intraoperative photograph in Figure 9G, we
made 30 holes in the implant with a diameter of 2 mm for dural
tenting (Przepiórka et al., 2019). In our experience with cranioplasty,
this arrangement facilitates interstitial fluid circulation and exudate
absorption during healing. Figure 9I shows a 3D image based on a
CT scan taken 1 week after the surgery. The patient has been
followed up for over 6 months and has no postoperative
complications.

4 Discussion

According to (Li et al., 2021b), craniotomy defects typically have
uneven borders due to manual cutting during the procedure. Our
first-hand experience aligns with this observation. As a result, our

FIGURE 8
Inpainting performance of the proposed approach using cases collected from (Li and Egger, 2020). The first row shows defective skull models. The
second row shows the generated implants placed on the defective models, demonstrating their compatibility with the defects. The third row displays the
ground-truth implant modes, while the fourth row presents the final implant models generated by the proposed scheme.. (The implants are magnified in
the third and fourth rows to facilitate visual inspection. These defective data sets have never been used in training).
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study did not utilize synthetic defects with straight borders, as
provided in, e.g., (Gall et al., 2019; Li et al., 2021d), to train and
demonstrate the reconstruction capabilities of our proposed system.

As materials engineering advances, neurosurgeons explore using
alloplastic materials (Yeap et al., 2019; Alkhaibary et al., 2020) for
long-term skull reconstruction. Various options, such as
polymethylmethacrylate (PMMA), polyetheretherketone (PEEK),
polyethylene, titanium alloy, and calcium phosphate-based bone
cement, have been used for cranioplasty materials. PEEK and
titanium alloys offer excellent biomechanical properties, allowing
for a significant reduction in implant thickness to reduce loading
while providing support (PEEK’s tensile strength: 90 MPa; Ti6Al4V
Grade 5: 862 MPa). To facilitate this, surgeons must be able to
determine the thickness of an implant according to their
requirements.

To adjust the thickness of an implant model, one can utilize
software tools like Autodesk® Meshmixer to extract the outer
surface. Extending the surface to a specified thickness, the final
implant model can be produced. Figure 11 demonstrates this
thickness-modification procedure using the defective cranial

model described in Figure 9 with a 2 mm thickness for the new
implant. Additionally, Ellis and coauthors in (Ellis et al., 2021)
emphasized the importance of creating implants with smooth
transitions and complete defect coverage without excess material.
This example reveals that the updated design still fulfills these
requirements, despite the change in thickness.

Our proposed system greatly minimizes the need for post-
processing thanks to the remarkable similarity between the
reconstructed and defective models. However, in line with the
recommendation in (Li et al., 2021a), incorporating
morphological openness and connected component analysis
(CCA) (Gazagnes and Wilkinson, 2021) proves helpful in
achieving the final implant geometry. Morphological openings,
which involve erosion and dilation of the model, can eliminate
small or thin noises attached to it and isolated noises. Also, verifying
the final implant design using a 3D-printed model (Lee et al., 2009;
He et al., 2016) before proceeding with cranioplasty is essential.

In clinical practice, allowing for larger tolerances when fitting a
cranial implant may be necessary. One effective method to achieve
this is to scale up the defective skull model to 102% before

FIGURE 9
Clinical reconstruction of a skull defect with an implant designed by the proposed approach. (A) a preoperative photograph of the patient. (B) a 3D
skull image based on a CT scan. (C) a skull model reconstructed by a technician using CAD software, showing the appearance of a typical hand-designed
implant (depicted in blue for clarity). (D–F) illustrate the shape of the implant (in yellow) generated by the proposed approach and how it fits into the
defective skull in the front view, sagittal cross-section view, and transversal cross-section view, respectively. (G, H) are intraoperative photographs.
(I) a postoperative 3D image based on CT scanning, showing the patient’s cranial status 1 week after the surgery.
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performing a Boolean subtraction with the reconstructed skull
model. This approach provides a more tolerant fit and helps
eliminate noise from mismatches between the reconstructed and
defective models outside the defect area.

The training of the 3D completion network requires
1,200 epochs and 21,600 pairs of skull models, while that of the
resolution enhancement network only needs 20 epochs and
5,800 pairs of skull models. This difference in data requirements

and training epochs is due to the more significant challenge faced by
the first network in reconstructing skulls with defects of varying
sizes, positions, and types compared to that of the second network in
raising the resolution of various skull models.

The proposed neural networks are based on the U-net
(Ronneberger et al., 2015) architecture. The 3D completion
network is a direct extension of the work presented in (Wu et al.,
2022) and was constructed by increasing the resolution of each layer.

FIGURE 10
(A) Definition of the measurement plane, denoted as M, for the CVAI index. Plane M intersects the implant the most and is parallel to the Frankfort
horizontal plane, marked as F. (B) and (C) are the reconstructed skulls’ top views, which display the diagonal lines for CVAI. Lines AC and BD are drawn 60°

from the Y-axis in each diagram, and points A, B, C, and D are located on themeasurement plane. The point o is located at the intersection of lines AC, BD,
and the Y-axis. The implant of (B) is generated by the proposed deep-learning approach, while that of (C) is designed manually.

TABLE 3 Comparison of implant design quality using ACVAI (the anterior cranial vault asymmetry index) and PCVAI (the posterior cranial vault asymmetry index).
Lengths of lines AO, BO, CO, and DO are measured in millimeters.

AO BO CO DO ACVAI (%) PCVAI (%)

Reconstruction method

Deep-Learning
71.05

72.63 83.70
85.53

2.22 2.14

Manual 72.51 80.37 2.05 6.03

FIGURE 11
The creation of an implant with a specified thickness for cranial restoration. The implant model was generated by extracting the outer surface of the
implant generated by the proposedmethod, shown in Figure 9D, and extending it by 2 mm in the inner direction. (A). Surface extraction. (B). Sagittal view.
(C). Transverse view.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Wu et al. 10.3389/fbioe.2023.1297933

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1297933


The resolution enhancement network is created by merging two
U-nets. This innovative architecture allows the network to
effectively utilize the high-resolution geometry from the defective
model and the low-resolution framework from the reconstructed
model.

U-nets (Ronneberger et al., 2015) are autoencoders (Hinton and
Salakhutdinov, 2006; Baldi, 2011; Dai et al., 2017) that feature skip
connections (He et al., 2016). In a U-net, feature maps in the encoder
section are combined with the corresponding feature maps in the
decoder section. This makes the U-Net utilize features extracted in
the encoder section to reconstruct a 3Dmodel in the decoder part (Li
et al., 2021a). showed the importance of skip connections (He et al.,
2016) in encoder-decoder networks for reconstructing a defective
skull.

We observed that the encoder-decoder network’s ability to fill
holes decreased when skip connections were used. However,
incorporating dilated convolutions (Yu and Koltun, 2016)
compensates for this weakness and leads to stable convergence
during training. This observation is consistent with the findings
reported in (Jiang et al., 2020), which showed that dilation layers
could enhance the performance of 2D image inpainting. Dilated
convolutions allow kernels to expand their operating range on the
input and gather contextual information frommultiple scales. These
features facilitate the completion of missing structures in the entire
skull model.

Unlike the approach in (Devalla et al., 2018), which used
dilated convolutions throughout, we applied dilated
convolutions only to the bottleneck section in our proposed
networks. We did not use batch normalization, as we did not
observe accuracy benefits during network training, given memory
and computing constraints limiting our batch size. We implement
skip connections via summation (He et al., 2016) rather than
concatenation (Gao Huang et al., 2017), as we found the
summation operations more suitable for the voxel-based
architecture to enable stable end-to-end training.

Through analysis of the training history and performance
evaluations, we determined that removing batch normalization
and restricting dilated convolutions simplifies the network,
reduces computational overhead, and facilitates efficient training
and inference while retaining accuracy. Specifically, attempting
dilated convolutions throughout increased model capacity but
resulted in instability during training and intractable execution
time that hindered hyperparameter tuning. The arrangement of
our architecture is tuned for the voxel input modality and tailored
hardware constraints to enhance execution efficiency without
sacrificing model performance.

In addition, the number of filters in the convolutional layers
affects the stability and accuracy of the network. Increasing the
filters can enhance capability but also prolongs costly 3D
network training. Given our computational constraints, we
optimized the filter numbers to balance performance and
efficiency. Through experimentation, we found that 4-8 filters
per layer provided adequate representational power while
minimizing overhead.

While these choices are based on trial-and-error tuning, future
ablation studies would provide a better understanding of each
factor’s impact. Our current architecture modifications reduce
parameters to facilitate efficient training under constraints.

Further analysis can methodically validate the contribution of
individual components like filter numbers to identify optimal
accuracy-efficiency trade-offs based on available resources
quantitatively.

5 Conclusion

A well-designed cranial implant improves aesthetic
outcomes and minimizes operative duration, blood loss, and
the risk of infection. This paper introduces an approach for
automatically generating implant geometry using a deep
learning system.

Our deep-learning approach’s success depends on two factors:
the quality of the training data and the effectiveness of the neural
network architectures. With our method, we can produce skull
models with a volumetric resolution of 512 × 512 × 384 in two
stages, which meets most clinical requirements for implant
fabrication. In the first stage, the 3D completion network
reconstructs defective skull models at a resolution of 128 × 128 ×
96. In the second stage, another network known as the resolution
enhancement network increases the reconstructed skull models’
resolution to 512 × 512 × 384.

Our numerical studies and clinical implementation have
demonstrated the effectiveness of our proposed approach in
creating personalized cranial implant designs for various clinical
scenarios. The implants produced by the system were well-matched
to the defects’ location and could significantly reduce surgery time.
In a representative case study, our approach significantly produced
more symmetric reconstruction than a manual design. This can lead
to fewer postoperative complications and result in higher patient
satisfaction.

Our research and clinical trials have demonstrated the
effectiveness of our personalized cranial implant designs, which
are tailored to different clinical scenarios. The implants generated by
our system were accurately matched to the location of the defects,
thereby significantly reducing surgery time. In a case study, our
proposed approach produced more symmetric reconstructed
geometry than manual design, leading to fewer postoperative
complications and higher patient satisfaction.

This paper showcases the effectiveness of our proposed deep
learning system for neurosurgery. However, we do acknowledge
that our system has limitations. The process must be divided into
two stages to reduce computational overhead during training,
and the input needs to be normalized into two files with volume
resolutions of 128 × 128 × 96 and 512 × 512 × 384. These
limitations increase the amount of labor required and limit the
range of deficiencies that can be addressed. In cases where
defective skull models include even lower parts, designing
implants using deep learning techniques may be more
challenging or impossible due to individual differences in
Zygomatic and Maxilla geometry.

We plan to further our research by developing a user-friendly
system that is more computationally efficient, can recover a broader
range of defect types and extents, and can accept datasets with
varying patient poses and different slice intervals. To achieve these
goals, we are exploring alternative deep learning networks based on
other representations of 3D shapes, including polygon meshes
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(Hanocka et al., 2019), point clouds (Charles et al., 2017; Qi et al.,
2017; Xie et al., 2021), and octree-based data (Tatarchenko et al.,
2017; Wang et al., 2017; Wang et al., 2018; Wang et al., 2020). This
could lead to more advanced and effective solutions than the
volumetric data types used in our current work.
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