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Wound healing is a complex and coordinated biological process easily influenced
by various internal and external factors. Hydrogels have immense practical
importance in wound nursing because of their environmental moisturising,
pain-relieving, and cooling effects. As photo-crosslinkable biomaterials,
gelatine methacryloyl (GelMA) hydrogels exhibit substantial potential for tissue
repair and reconstruction because of their tunable and beneficial properties.
GelMA hydrogels have been extensively investigated as scaffolds for cell
growth and drug release in various biomedical applications. They also hold
great significance in wound healing because of their similarity to the
components of the extracellular matrix of the skin and their favourable
physicochemical properties. These hydrogels can promote wound healing and
tissue remodelling by reducing inflammation, facilitating vascularisation, and
supporting cell growth. In this study, we reviewed the applications of GelMA
hydrogels in wound healing, including skin tissue engineering, wound dressing,
and transdermal drug delivery. We aim to inspire further exploration of their
potential for wound healing.
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1 Introduction

The skin is a multifunctional barrier organ that protects internal organs from potential
environmental hazards (Lee et al., 2006). The protective function of the skin’s barrier can be
damaged by conditions such as burns, trauma, diabetes, and local pressure effects. Skin
wound healing is an ordered and complex biological process that primarily includes
haemostasis, inflammation, proliferation, and remodelling (Rahimnejad et al., 2017).
However, this wound healing process may be interrupted and altered because of
conditions such as diabetes, renal disease, lower immunity, and advanced age. These
factors generally lead to delayed wound healing because of insufficient blood supply and
wound infection (Eming et al., 2014). Furthermore, it is almost impossible for the skin to heal
properly when skin defects are too large (Fu et al., 2023). Several therapies have been
developed for addressing delayed wound healing, including vacuum-assisted closure, stem
cell therapy, and biological dressings. Hydrogel dressings are widely used in wound nursing
because of their good biocompatibility, moisture retention, and drug delivery performance
(Qiu and Park, 2001; Khademhosseini and Langer, 2007; Banerjee et al., 2018). In contrast to
traditional dressings, hydrogel dressings can not only absorb wound exudates and maintain
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the moist environment of the wound but can also accelerate wound
healing upon loading with various biological components and
cytokines. In recent years, GelMA hydrogels have attracted
increasing attention as artificial extracellular matrix (ECM)
materials for wound healing. GelMA hydrogels have broad
prospects for skin wound healing owing to their excellent
biocompatibility and tunable mechanical properties (Xu et al.,
2019; Leu Alexa et al., 2021; Kurian et al., 2022).

GelMA is a synthesised biomacromolecule with excellent
biocompatibility and formability; it was first reported to be
synthesised by Bulcke et al., in 2000 (Van Den Bulcke et al.,
2000). Since then, an increasing number of studies have focused
on this photocurable multifunctional biomaterial (Figure 1A). We
performed a simple data analysis of these published research articles
and found that they were primarily concentrated in the fields of bone
and cartilage (33.5%), vasculature and heart (21.33%), and wound
healing (10.73%) (Figure 1B). GelMA can serve as a versatile matrix
for bone and cartilage tissue engineering scaffolds. It does so by
introducing inorganic composites, growth factors, and even cells to
mimic the structural, mechanical, and biological properties of
natural bone and cartilage (Goto et al., 2021; Dong et al., 2019).
Many studies have proven that vascular network structures can be
formed by embedding human vascular endothelial and
mesenchymal cells into GelMA hydrogels (Chen et al., 2012;
Nikkhah et al., 2012). GelMA hydrogels loaded with vascular
cells can be microfabricated using different methods and used for
disease modelling or drug screening via integration with
microfluidic devices (Liu et al., 2020; Kinstlinger and Calderon,
2021). In addition to their use as tissue engineering scaffolds, their
attractive properties are widely employed in the manufacturing of
adhesives, wound dressings, and drug delivery carriers (Kulkarni
et al., 2022; Kurian et al., 2022; Li et al., 2023a).

GelMA has significant advantages in skin repair and
regeneration. As a gelatine derivative, GelMA is an ideal
biomaterial candidate for engineering skin tissues because of its
similarity to ECM and its tunable physical and chemical properties
(Anand et al., 2022). With the development of 3D printing
technology, GelMA is generally used as an excellent bioprinting

ink for fabricating tissue-engineered skin (Leu Alexa et al., 2021).
GelMA hydrogels can be used to simulate native tissues by
controlling and designing various microstructures, which
provides an ideal platform for tissue engineering (Zhang et al.,
2022). Furthermore, GelMA hydrogels are suitable dressings for skin
wound healing. In addition to maintaining a moist and clean
environment for wounds, the in situ photo-crosslinking
properties make GelMA hydrogels particularly suitable for
application in irregular wounds (Wang et al., 2023). Importantly,
GelMA hydrogels can promote wound healing by controlling
bleeding, reducing inflammation, facilitating vascularisation, and
accelerating collagen deposition via the encapsulation and sustained
release of drugs (Im and Lin, 2022; Zhu et al., 2022; Xiong et al.,
2023). Because of their unique ability to fill and adapt to irregular
wounds, they are also used as haemostatic materials. In particular,
the injectability and porous structure of GelMA hydrogels make
them attractive for use in haemostasis (Chang et al., 2021; Wang
et al., 2021). Therefore, GelMA is a promising biomaterial for skin
tissue engineering and wound dressing. Here, we summarise the role
of GelMA in skin tissue engineering and wound dressing and hope
to provide valuable inspiration for the practical application of
GelMA in wound healing.

2 Synthesis and biological properties of
GelMA

GelMA is produced via the reaction of gelatine and methacrylic
anhydride, in which the amine (–NH2) and hydroxyl (–OH) groups
on the side chains of gelatine are substituted by the methylacryloyl
group (Figure 2A) (Yue et al., 2015). In the presence of a
photoinitiator, the aqueous GelMA prepolymer solution was
cross-linked to form hydrogels under ultraviolet (UV)-visible
light irradiation (Figure 2B) (Yue et al., 2015). Gelatine is a
hydrolysis product of collagen and has a wide range of
biomedical applications because of its good biocompatibility and
biodegradability (Sung et al., 1999; Liu et al., 2015). It is also widely
used as an adhesive, thickener, emulsifier, and stabiliser in the food

FIGURE 1
The number of published articles related to GelMA and their research fields during the last 10 years according to the PubMed (report acquired on
14 August 2023 using advanced keyword search; keywords: GelMA; “bone or cartilage”; vascular; “wound healing”; cardiac).
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industry (Djagny et al., 2001; Ali et al., 2018). Gelatine has also been
utilised in tissue engineering, cell encapsulation, and drug delivery
(Olsen et al., 2003; Klotz et al., 2016). Unmodified gelatine forms
physical cross-links only at a specific concentration and
temperature, resulting in poor mechanical properties of the
gelatine (hydrogel). However, the mechanical properties of
GelMA hydrogels can be precisely adjusted based on the degree
of methacrylate substitution and the time and intensity of light
exposure (Yue et al., 2015). At the same time, the functional amino
acid motifs of gelatine are not significantly influenced, because less
than 5% of the amino acid residues in gelatine are generally modified
(Van Den Bulcke et al., 2000). GelMA contains many arginine-
glycine-aspartic acid and matrix metalloproteinase sequences such
as those of gelatine and is suitable for cell attachment and
remodelling (Benton et al., 2009; Nichol et al., 2010). Upon
methacryloyl modification, GelMA not only exhibits additional
photo-crosslinking and tunable properties but also maintains the
original excellent biocompatibility of gelatine.

3 Application of GelMA in wound
healing

Poor wound healing is generally associated with poorly
regulated aspects of the normal tissue repair responses such as
inflammation, angiogenesis, and cell recruitment (Gantwerker and
Hom, 2011; Hom and Davis, 2023). GelMA is a promising material
for wound treatment because of its structural similarities to the ECM
and its multifunctional characteristics. GelMA serves as a versatile
material for constructing tissue-engineered skin when combined
with other natural ECMs, synthetic materials, or seed cells (Xiao
et al., 2019; Kurian et al., 2022). The cell-interactive properties of
GelMA hydrogels can stimulate the granulation tissue formation

(Jahan et al., 2019; Do Nascimento et al., 2023). Furthermore,
GelMA hydrogels provide a suitable environment for vascular
morphogenesis, which is beneficial for wound vascular network
formation (Im and Lin, 2022). Additionally, GelMA hydrogels can
ideally absorb wound exudates and blood because of their strong
water-uptake capacity (Baghdasarian et al., 2022; Guo et al., 2022).
In this study, we propose several potential applications of GelMA in
wound healing, as shown in Figure 3.

3.1 The applications of GelMA in fabricating
tissue-engineered skin

Scaffold materials in skin tissue engineering can serve dual
purposes: providing a scaffold to promote and guide cell
proliferation and differentiation and creating an environment
containing signalling substances and nutrients to achieve the
desired biological characteristics (Khademhosseini et al., 2006;
Burdick and Vunjak-Novakovic, 2009). GelMA, a derivative of
gelatine, is a potentially attractive material for tissue engineering
applications because it is an inexpensive and abundantly denatured
collagen. GelMA has been implicated in regulating the growth of
various cells, including fibroblasts, vascular endothelial cells, and
keratinocytes and is widely used as a scaffold from simple cell culture
to 3D culture (Table 1). As a cell-responsive hydrogel platform, cells
either seeded on a micro-patterned GelMA hydrogel matrix or
encapsulated in micro-manufactured GelMA hydrogels exhibited
a tendency to adhere, proliferate, elongate, and migrate (Benton
et al., 2009; Nichol et al., 2010). Additionally, the versatility of
GelMA hydrogels is a significant advantage. Supplementing GelMA
hydrogels with other scaffolds improved the properties of the
scaffold materials and cell spreading. GelMA can be mixed with
other methacrylated materials to form photo-crosslinkable

FIGURE 2
Synthesis of gelatinemethacrylate (GelMA) hydrogel. (A) The amine (–NH2) and hydroxyl (–OH) groups on the side chains of gelatine are substituted
by the methylacryloyl group at 50°C. (B) Crosslinking reaction of GelMA hydrogel initiated by UV radiation.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Zhang et al. 10.3389/fbioe.2023.1303709

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1303709


composite hydrogels. For example, to improve the mechanical
properties of a decellularised human amniotic membrane
(dHAM), Zhang et al. fabricated a photo-crosslinkable composite
hydrogel by grafting HAMwithmethacrylic anhydride and blending

it with GelMA. According to the results of the tensile test, the
maximum load value of GelMA-dHAMMA hydrogels was 2,430 ±
91 Pa, which was significantly higher than that of GelMA, dHAM,
and dHAMMA (p < 0.05). GelMA-dHAMMAhydrogels were found

FIGURE 3
Potential applications of GelMA in wound healing.

TABLE 1 Applications of GelMA in tissue-engineered skin and regeneration.

Composite components Seed cells Property

dHAM Fibroblasts ➢ Promote large-area or full-thickness skin defect healing Zhang et al. (2021)

— ESCs and SKPs ➢ Pomote wound healing and functional tissue skin regeneration Chen et al. (2023a)

ADM HaCaTs, Fibroblasts,
HUVECs

➢ Promoted wound healing and re-epithelization, stimulated dermal ECM secretion and angiogenesis Jin
et al. (2021)

HAMA NHDFs, HFDPC ➢ Epidermal/papillary dermis and hair follicle structure improve cellular microenvironment and promote
wound healing quality Kang and Kwon, (2022)

PEGDA HaCaTs, Fibroblasts ➢ Promote the formation of epidermal layers with undulating microstructures and accelerate wound
healing Shen et al. (2021)

Decellularized adipose tissue,
HAMA

hADSCs ➢ Accelerate wound healing and improve healing quality by promoting angiogenesis Fu et al. (2023)

Nano-cellulose Fibroblasts, HaCaTs ➢ Promote epidermis reconstruction and stratification; Reconstruction of skin with hair follicles and early
reticular crest structure Li et al. (2023b)

Alginate Fibroblasts, HaCaTs,
HUVECs

➢ 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered
keratinocytes Barros and Kim, (2021)

Methacrylated silk fibroin HaCaTs, Fibroblasts,
HUVECs

➢Mechanical stability and biocompatibility exceeding 4 weeks; enhance wound healing Choi et al. (2023)

Collagen, Tyrosinase Melanocytes, HaCaTs,
Fibroblasts

➢ Contribute to wound form epidermis and dermis Shi et al. (2018)

HA-NB Fibroblasts, HUVECs ➢ Strong mechanical and bio-adhesive properties; promotes skin regeneration and efficient
neovascularisation Zhou et al. (2020a)

Abbreviation: dHAM, decellularized human amniotic membrane; ADM, acellular dermal matrix; HAMA, hyaluronic acid methacryloyl; PEGDA, poly (ethylene glycol) diacrylate; HA-NB,

butanamide linked hyaluronic acid.
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to promote fibroblast proliferation and α-smooth muscle actin
expression. GelMA-dHAMMA has also been shown to promote
wound collagen deposition and angiogenesis and accelerate tissue
healing in rabbit full-thickness skin tissue defects (Zhang et al.,
2021). To simulate the structure of the skin tissue, Shen et al.
constructed a tissue-engineered skin model with a rete ridge (RR)
microstructure using 10% GelMA and 2% poly (ethylene glycol)
diacrylate (PEGDA) (Shen et al., 2021). PEGDA (2%) was added to
the GelMA prepolymer solution to slow the biodegradation rate and
improve mechanical stability. First, they designed and fabricated a
polydimethylsiloxane (PDMS) mould with a three-dimensional RR
microstructure, into which the GelMA-PEGDA prepolymer
solution suspended with HSFs was poured; it was then cross-
linked by near-UV blue light to form GelMA-PEGDA hydrogel.
Subsequently, HaCaTs were seeded on the GelMA-PEGDA
hydrogel and cultured at the air-liquid interface to mimic the
native skin tissue structure. Digital microscopy image analysis
showed that the micropatterns were well-transferred to the
scaffold’s surface. The fluorescence micrograph of the skin model
section showed that HSFs and HaCaTs grew in their respective
spaces and showed an undulating growth state. Additionally,
epidermal cells and fibroblasts on the hydrogel scaffolds
maintained proliferation and differentiation and promoted
wound healing in vivo.

Recent advances in 3D bioprinting technology have enabled the
production of complex living 3D tissue analogues. GelMA is a
promising candidate as a bioink for 3D printing of engineered
skin tissues because of its excellent biocompatibility and tunable
properties. Collagen and glycosaminoglycans are the two most
abundant substances in the mammalian dermis
(Papakonstantinou et al., 2012). To simulate the composition of
collagen and glycosaminoglycan in natural skin, Kang et al.
constructed tissue-engineered skin with hair follicle structures
and papillary dermal layers using GelMA and hyaluronic acid
methacryloyl (HAMA). GelMA and HAMA were used to
recapitulate the composition of collagen and glycosaminoglycan
in native skin, and hair follicle structures and papillary dermal layers
were fabricated using 3D printing. Normal human dermal
fibroblasts and hair follicle dermal papilla cell spheroids were
embedded into GelMA/HAMA hydrogel scaffolds. HaCaTs were
seeded on GelMA/HAMA hydrogel scaffolds. The printed hydrogel
scaffolds exhibited appropriate degradation properties and a
microporous structure similar to that of the native skin ECM.
Furthermore, these GelMA/HAMA scaffolds showed the ability
to induce hair growth and promote the spontaneous
development of hair pores in vitro (Kang and Kwon, 2022). In
another study, Chen et al. examined the effects of GelMA hydrogels
combined with skin-derived precursors (SKPs) and epidermal stem
cells (ESCs) on skin regeneration using an in situ robot-assisted
bioprinting system. Their study demonstrated that GelMA
hydrogels could not only serve as a scaffold for maintaining stem
cell proliferation and the properties of SKPs but also showed
promising potential in stem cell–based skin wound regeneration
in mice. The regenerated skin was reported to contain epidermis,
dermis, blood vessels, hair follicles, and sebaceous glands, similar to
native skin (Chen et al., 2023a). Therefore, despite the availability of
various implantable biomaterials and constructs for skin tissue
engineering, the tunable mechanical properties and excellent

cellular biocompatibility of GelMA hydrogels have significant
implications in treating skin wound defects.

3.2 Role of GelMA hydrogels in wound
dressings

Wound healing is a cascaded and highly complex process that
primarily includes haemostasis, inflammation, proliferation, and
remodelling. However, this biological process can be disrupted by
bacterial infections, persistent inflammation, an insufficient blood
supply, and excessive oxidative stress. These factors can delay wound
healing, which may lead to non-healing chronic wounds. Therefore,
dressings with anti-inflammatory, antibacterial, angiogenic, and
antioxidant properties must be developed to promote wound
healing. GelMA hydrogels loaded with various biological
components and cytokines (such as nanoparticles, metal ions,
and exosomes) are competitive candidates because of their
excellent biological characteristics (Table 2).

3.2.1 GelMA hydrogels promote wound
angiogenesis

Wound healing requires blood to provide nutrients and oxygen
for cell growth. The early recovery of the vascular network after
injury is a key factor in preventing wound expansion and ulcer
formation (Chen et al., 2016). Therefore, the development of
angiogenic dressings is an important strategy for improving
wound healing. Wound healing is a great challenge in diabetes
due to poor angiogenesis and impaired cell function (Okonkwo and
DiPietro, 2017; Aitcheson and Frentiu, 2021). GelMA hydrogels are
ideal biomaterials for developing vascular networks because they
provide a permissive environment for vascular morphogenesis.
Chen et al. first demonstrated that the implantation of cell-laden
GelMA hydrogels into immunodeficient mice resulted in the rapid
formation of microvascular networks (Chen et al., 2012).
Subsequently, several studies have shown that GelMA hydrogels
can be used as excellent scaffold materials or drug-release carriers for
the formation of microvascular networks. Li et al. prepared a
multifunctional hydrogel dressing by encapsulating endothelin-1
(ET-1) in GelMA hydrogels for full-thickness wound healing. ET-1
is an endogenous vasoconstrictor that promotes angiogenesis in
endothelial cells. GelMA hydrogels protected ET-1 from
environmental damage and provided long-term promotion of the
adhesion and proliferation of vascular endothelial cells via the
sustained release of ET1. Animal experiments have shown that
GelMA-ET-1 hydrogels significantly promoted the formation of
new blood vessels and exhibited better wound healing on the 7th and
14th days (Li et al., 2021). Similarly, a desferrioxamine (DFO)-
loaded GelMA hydrogel was developed for the rapid formation of
vascular network structures in diabetic wounds. DFO could
significantly accelerate the formation of new blood vessels by
increasing the expression of HIF-1a and VEGF (Balanos et al.,
2002; Li et al., 2014). In that study, DFO-GelMA hydrogels
rapidly recruited angiogenesis-related cells and cytokines to the
wound area and provided 3D microarchitectures for the
formation of new blood vessels in the early stages of wound
healing (Chen et al., 2016). GelMA hydrogels were also reported
to be an ideal vehicle to preserve and deliver extracellular vesicles
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(EV) for in vivo vascularisation. In a previous study, epidermal stem
cell–derived EVs loaded with VH298 were encapsulated in GelMA
hydrogels to enhance the angiogenic ability of diabetic wounds.
GelMA hydrogels were shown to be convenient and adaptable
delivery carriers for the sustained release of VH298-EVs,
effectively promoting wound healing by locally improving blood
supply and angiogenesis by increasing the HIF-1a level (Wang et al.,
2022). Similarly, EVs derived from human umbilical vein
endothelial cells (HUVECs-EVs) were loaded onto 10% GelMA
hydrogels to promote wound healing. GelMA-HUVECs-EV
hydrogels could promote angiogenesis and skin regeneration via

the sustained release of HUVECs-EVs during wound healing (Zhao
et al., 2020).

3.2.2 GelMA hydrogels inhibit bacterial growth and
inflammation

Many adverse factors can interrupt the physiological healing
processes. Among them, infection and inflammation are the most
common, but moderate inflammation can promote wound healing
by removing necrotic tissue and killing local bacteria (Almadani
et al., 2021). Excessive inflammatory cell infiltration can hamper
wound collagen deposition, angiogenesis, and granulation tissue

TABLE 2 GelMA application in wound dressings.

Composite components Dressing function Property

AgBr@SiO2microspheres Antibacterialdressings ➢ Enhanced mechanical properties, effective antimicrobial activity Li et al. (2022)

Electrospunnanofibers, dopamine Joint wound dressings ➢ Excellent adhesive, breathable and stretchable capacities Liu et al. (2022)

C60@PDA Antioxidative dressings ➢ Sustainable free radical scavenging ability, favorable cytocompatibility, and
antibacterial ability Chen et al. (2023b)

Chitosan, glycerol, dopamine Hemostatic sponges ➢ Good biocompatibility, tissue self-adhesion, antibacterial activity, and hemostatic
ability Li et al. (2023c)

Pectin methacrylate Hemostatic hydrogel ➢ Tunable rheology, highly porous structure, and controllable swelling and rapid
crosslinking properties Wang et al. (2021)

Catechol Hemostatic sealant ➢Mussel-inspired hemostatic property and tissue adhesion Baghdasarian et al. (2022)

Acrylate, CuCl2 Diabetic wound dressings ➢ Efficient self-healing properties, antibacterial activity, and good adhesive properties
Baghdasarian et al. (2022)

Desferrioxamine (DFO) Diabetic wound dressings ➢ Controlled release of DFO and promote angiogenesis Chen et al. (2016)

VH298-EVs Diabetic wound dressings ➢ Sustained release of VH-EVs enhances blood supply and angiogenesis Wang et al.
(2022)

Dopamine, MSC-EVs Diabetic wound dressings ➢ Rescue wound microenvironment homeostasis and accelerates wound closure
Wang et al. (2023)

SFMA, MSN-RES, PDEVs Diabetic wound dressings ➢ Sustained release of MSN-RES and PDEVs, regulate the inflammation and
angiogenesis of diabetic wounds Zhu et al. (2022)

Mg2+, Zn2+ Skin wounds regeneration ➢ Sustained release Mg2+ and Zn2, accelerate collagen deposition, angiogenesis and
skin wound re-epithelialization Wang et al. (2022)

Hyaluronic acid-aldehyde, gentamicin
sulfate, lysozyme

PH-responsive antibacterial dressings ➢ PH-responsive release drug with antibacterial and hemostatic effect Du et al. (2023)

Endothelin-1 Angiogenic dressing ➢ Accelerate angiogenesis and re-epithelialization Li et al. (2021)

HUVECs-EVs Angiogenic dressing ➢ Sustained release of EVs, improve angiogenesis and wound healing Guo and Liu,
(2022)

AFPBA, G-insulin Microneedle dressing for diabetic
wound healing

➢ Adequate mechanical properties, high biocompatibility, glucose-responsive insulin
release Chen et al. (2022b)

PEGDA,HUVECs-derived exosomes,
tazarotene

Microneedle dressing ➢ Promote cell migration, angiogenesis by slowly releasing exos and tazarotene in the
deep layer of the skin Yuan et al. (2022)

PLGA,MSC Microneedle dressing ➢ Effectively transport MSCs to target tissues and maintain high cell viability Lee et al.
(2020)

Graphene oxide Skin wound defects repair ➢ Accelerate vascularization of full-thickness skin defect Liang et al. (2022)

Silver, bFGF Burn wounds dressings ➢ Sustained release of silver and bFGF, shorten the healing time of deep partial-
thickness burn wounds Chen et al. (2022b)

nano silver Skinwound defects repair ➢ Sustained release of nano silver, reducing wound exudation and promoting new
tissue formation Jin et al. (2023)

Abbreviation: AgBr@SiO2, nanosized silver bromide-doped mesoporous silica; PDA, polydopamine; SFMA, silk fibroin glycidyl methacrylate; MSNs, mesoporous silica nanoparticles; PDEVs,

platelet-derived extracellular vesicles; RES, resveratrol; AFPBA: glucose-responsive monomer 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid; PLGA, poly(lactic-co-glycolic) acid.
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formation (Huang et al., 2022). To improve the antibacterial
function and mechanical properties of GelMA hydrogels, Li et al.
prepared AgBr@SiO2/GelMA dressings by incorporating AgBr@
SiO2 microspheres into GelMA solution and crosslinking it with
UV light. The results indicated that AgBr@SiO2 microspheres not
only improved the mechanical properties of GelMA hydrogels but
also showed effective antibacterial activity against Staphylococcus
aureus and Escherichia coli at a concentration of 1 mg mL−1.
Treatment of full-thickness skin wounds in Sprague-Dawley rats
with GelMA hydrogels containing 1 mg mL−1 AgBr@SiO2

significantly shortened the wound healing time and reduced the
wound area (Li et al., 2022). Similarly, 3D bioprinting of GelMA
hydrogels loaded with silver nanoparticles could improve full-
thickness skin defect wound healing in rats by reducing wound
exudation and promoting new tissue formation (Jin et al., 2023).
Diabetic wounds are difficult to heal because of a wound
microenvironment disorder caused by high glucose levels, which
results in an extremely high risk of bacterial infection and a high
state of oxidative stress. To promote the repair of diabetic wounds,
Chen et al. prepared self-healing, adhesive, and antibacterial
hydrogels using GelMA containing adenine acrylate (AA) and
CuCl2. The coordination of hydrogen bonds and metal ligands
provided by copper ions and carboxyl groups resulted in
composite hydrogels exhibiting effective self-healing properties,
significant fatigue resistance, and good adhesion properties.
Among these, GelMA/AA/Cu1.0 hydrogels exhibited well-
balanced biocompatibility and antibacterial properties and
significantly promoted wound healing by inhibiting the
expression of pro-inflammatory factors by releasing copper ions
in full-thickness skin diabetic wounds (Chen et al., 2022a). Excessive
ROS levels can also hinder the transition of the wound from the
inflammatory to the proliferative stage, leading to a persistent
inflammatory state. To improve wound healing, an ROS-
scavenging hybrid hydrogel was designed by mixing a mussel-
inspired fullerene nanocomposite (C60@PDA) dispersion into a
GelMA solution with a concentration of 0.5 mg mL−1. The
composite hydrogels exhibited sustainable free radical scavenging
and antibacterial abilities in vitro. In a mouse full-thickness wound
defect model, the composite hydrogels showed anti-inflammatory
and anti-infection effects by downregulating the expression of IL-6
and TNF-α and upregulating the expression of TGF-β (Chen et al.,
2023b). Furthermore, composite hydrogels composed of GelMA and
silk fibroin glycidyl methacrylate were used to regulate the
microenvironment of diabetic wounds via the sustained release of
resveratrol (RES). In this study, RES was loaded into mesoporous
silica nanoparticles (MSNs) and mixed into composite hydrogels as
an anti-inflammatory and antioxidant agent. The wound model of
diabetes mice showed that composite hydrogels could inhibit the
expression of TNF-α and iNOS, promote the expression of anti-
inflammatory factors TGF-β1 and Arg-1, and accelerate wound
healing (Zhu et al., 2022).

3.2.3 GelMA hydrogels facilitate wound
haemostasis

Injectable hydrogels can be used as haemostatic adhesives in
surgical wounds by fully filling and adhering to the wounds,
especially for soft and brittle organs, where traditional surgical
wound closure techniques are limited (Hickman et al., 2018;

Wang and Yang, 2023). Injectable hydrogels exhibit a more
effective haemostatic effect because of their injectability and
porous structures. Additionally, gelatine sponges have been
widely used as haemostatic materials because of their excellent
blood absorption (Wang et al., 2020; Ebhodaghe, 2022).
Therefore, as gelatine derivatives, photosensitive GelMA
hydrogels have promising applications in wound haemostasis and
closure. Wang et al. designed a new haemostatic hydrogel by
combining pectin methacrylate (PECMA) and GelMA. The
composite hydrogel was injectable and dual cross-linkable; it
could be injected directly into the wound and rapidly cross-
linked under the stimulation of calcium ions and UV. The highly
porous network and dual cross-linkable properties of the PECMA/
GelMA hydrogel allowed it to absorb blood rapidly and solidify
rapidly. The PECMA/GelMA hydrogel synergised the haemostatic
properties of calcium ions on PECMA, amine residues on GelMA,
and highly porous networks to achieve rapid blood absorption and
coagulation. The PECMA/GelMA hydrogels was shown to stop
bleeding and reduce the coagulation time by 39% in a porcine
skin bleeding mode (Wang et al., 2021). Hydrogel adhesion is crucial
for controlling bleeding, particularly in wet environments. To
improve the ability of hydrogels to adhere to wet tissue surfaces,
Baghdasarian et al. synthesised a haemostatic double-crosslinked
hydrogel, named gelatine methacryloyl-catechol (GelMAC)
hydrogel, by covalently coupling gelatine with catechol motifs
and methacrylate groups. The in vitro blood clotting assay
showed that GelMAC significantly reduced the clotting time
compared to the clinically used haemostat and Surgicel®.
GelMAC exhibited good haemostatic properties and excellent
tissue adhesion in a rat model (Baghdasarian et al., 2022).
Recently, Li et al. developed a composite sponge using
dopamine-modified GelMA, quaternised chitosan (QCS), and
glycerol (Gly). They found that modifying GelMA with
dopamine enhanced the self-adhesion of the composite sponges.
Animal experiments have shown that both the haemostasis time and
blood loss in the GelMA-DA/QCS/Gly sponge group were lower
than those in the commercial gelatine haemostatic sponge and the
haemostatic sponge CS (Li et al., 2023c). These results demonstrate
the broad application prospects of GelMA-based biomaterials as
haemostatic wound dressings in clinical surgery and emergency
treatment.

3.3 GelMA hydrogel microneedles patch for
wound healing

Microneedles are one of the transdermal drug delivery
techniques that usually release loaded drugs directly into the
deep layer of the skin through tiny holes formed by puncture
(Donnelly et al., 2010). Hydrogel microneedles have gradually
become popular because of their convenient administration and
few side effects (Waghule et al., 2019). GelMA microneedles exhibit
high potency for subcutaneous micro-invasive transdermal targeted
drug delivery because of their adjustable mechanical properties and
swelling capacity (Zhou et al., 2020b; Fonseca et al., 2020).
Subcutaneous insulin injection is a typical clinical solution for
diabetes. To avoid adverse reactions caused by the low
controllability of subcutaneous insulin injections, a glucose-
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responsive insulin-releasing hydrogel microneedle dressing was
fabricated. The microneedle dressing was composed of GelMA,
glucose-responsive monomer 4-(2-acrylamidoethylcarbamoyl)-3-
fluorophenylboronic acid, and gluconic insulin. The hydrogel
microneedles showed sufficient mechanical properties, excellent
biocompatibility, and glucose-responsive insulin release behaviour
and were shown to be effective in diabetic woundmanagement (Guo
and Liu, 2022). The microneedle technology allows drugs to be
controlled and released deep into the skin. To improve the drug
delivery efficiency, a GelMA-based microneedle patch loaded with
HUVECs exosomes and tazarotene was designed to accelerate
diabetic wound repair (Yuan et al., 2022). These microneedle
patches showed good performance in maintaining the biological
activity of exosomes and drugs in vitro, achieving controlled and
transdermal release in a mouse model of diabetes. The controlled
release of drugs and HUVEC exosomes deep into diabetic wounds
promoted cell proliferation, migration, and angiogenesis. Lee et al.
constructed a detachable hybrid microneedle system for
mesenchymal stem cell (MSC) delivery (Lee et al., 2020). The
microneedle system was composed of polylactic acid
hydroxyacetic acid as the outer shell and a GelMA-MSC mixture
as the inner shell. After 24 h of microneedle preparation, cell
viability remained above 90%, and mice treated with this
microneedle system showed good wound recovery.

4 Challenges and future perspective

In conclusion, GelMA hydrogels have been widely used in many
applications, ranging from wound dressings to 3D printing skin
tissue engineering. They provide an ideal multistratified anisotropic
scaffold for the growth of various cells such as fibroblasts,
endothelial cells, and keratinocytes. They can also be used to
prepare personalised multifunctional dressings by combining
small molecules, metal nanoparticles, and cellular EVs via
physical binding or chemical reactions. Therefore, the application
prospects of GelMA hydrogels for wound healing are significant.
However, the biosafety of GelMA-based hydrogels remains a major
obstacle to their clinical applications. The release of unreacted
methacryloyl monomers after photo-crosslinking is a potential
risk. Furthermore, photo-crosslinking under UV radiation may
damage cellular DNA (Matsumura and Ananthaswamy, 2004).
Additionally, thorough and objective investigations on the
cytotoxicity or biological safety of photoinitiators,
nanocomposites, or metal ions incorporated into GelMA
hydrogels are essential for future studies (Sakr et al., 2022;
Ghazali et al., 2023). Therefore, the development of a milder and
more efficient GelMA hydrogel crosslinking process is necessary for
clinical application. Moreover, the properties and performance of

GelMA hydrogels can be influenced by many factors, such as the
degree of substitution of methacryloyl groups, amount of
photoinitiator used, and photo-crosslinking conditions (Yue
et al., 2015; Rajabi et al., 2021). The lack of a unified and precise
preparation standard or process for most studies limits the
reproducibility of GelMA preparations for biomedical
applications and leads to inconsistent results. For example, in
three different studies on the effects of GelMA hydrogels on
wound angiogenesis, the concentrations of GelMA hydrogels
used were 5%, 10%, and 15% (Chen et al., 2016; Li et al., 2021;
Guo and Liu, 2022). Therefore, more detailed research is necessary
to validate GelMA hydrogels for clinical applications.
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