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Atherosclerosis is a prevalent cause of acute coronary syndromes that consists of
lipid deposition inside the artery wall, creating an atherosclerotic plaque. Early
detection may prevent the risk of plaque rupture. Nowadays, intravascular
ultrasound (IVUS) is the most common medical imaging technology for
atherosclerotic plaque detection. It provides an image of the section of the
coronary wall and, in combination with new techniques, can estimate the
displacement or strain fields. From these magnitudes and by inverse analysis, it
is possible to estimate the mechanical properties of the plaque tissues and their
stress distribution. In this paper, we presented a methodology based on two
approaches to characterize the mechanical properties of atherosclerotic tissues.
The first approach estimated the linear behavior under particular pressure. In
contrast, the second technique yielded the non-linear hyperelasticmaterial curves
for the fibrotic tissues across the complete physiological pressure range. To
establish and validate this method, the theoretical framework employed in
silico models to simulate atherosclerotic plaques and their IVUS data. We
analyzed different materials and real geometries with finite element (FE)
models. After the segmentation of the fibrotic, calcification, and lipid tissues,
an inverse FE analysis was performed to estimate the mechanical response of the
tissues. Both approaches employed an optimization process to obtain the
mechanical properties by minimizing the error between the radial strains
obtained from the simulated IVUS and those achieved in each iteration. The
second methodology was successfully applied to five distinct real geometries and
four different fibrotic tissues, getting median R2 of 0.97 and 0.92, respectively,
when comparing the real and estimated behavior curves. In addition, the last
technique reduced errors in the estimated plaque strain field by more than 20%
during the optimization process, compared to the former approach. The findings
enabled the estimation of the stress field over the hyperelastic plaque tissues,
providing valuable insights into its risk of rupture.
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1 Introduction

Atherosclerotic plaques in coronary arteries can trigger diverse
acute syndromes, including angina or myocardial infarction
(Gutstein and Fuster, 1999). Briefly, atherosclerotic plaques are
the result of cholesterol deposition inside the artery walls. That
leads to a lipid core surrounded by fibrotic tissue, which, in case of
rupture, causes a thrombus due to the contact between lipids and
blood. Vulnerable plaques are those which are prone to rupture,
therefore the fibrous cap thickness (FCT) that separates the lipid
core from the blood is widely used to classify the plaque into stable
or vulnerable (Virmani et al., 2005). In literature, FCT smaller than
65 μm is considered to be vulnerable (Finet et al., 2004). In addition,
other geometrical variables are usually considered to determine the
risk of rupture, such as the lipid core area or the degree of stenosis
(Cilla et al., 2012; Corti et al., 2022). However, as the plaque rupture
is the mechanical failure of the fibrotic tissue, the mechanical
properties of the plaque tissues also play a key role in the
vulnerability (Ohayon et al., 2008; Akyildiz et al., 2016; Gómez
et al., 2019). It has been demonstrated that peak stresses on the
fibrotic tissue and stress distributions are correlated with the risk of
rupture and its location (Ohayon et al., 2005; Versluis et al., 2006).
The stress state of the arterial wall could be only accurately
calculated by knowing the mechanical behavior of the tissues.
The clinical detection and characterization of atherosclerotic
plaques remain a challenge for early diagnosis. Nowadays,
Intravascular Ultrasound (IVUS) images are one of the most
common imaging techniques for the diagnosis of atherosclerotic
plaques in coronary arteries.

The mechanical characterization of atherosclerotic tissues is
highly dependent on previous tissue segmentation that could be
performed manually on IVUS images due to the different echo
reflectivity characteristics of the tissues (Olender et al., 2020), using
virtual histologies (Kubo et al., 2011) or new methodologies based
on machine learning (Sofian et al., 2019; Du et al., 2022). Some
studies employed an optimization process to simultaneously
segment and obtain the elasticity map of the arterial wall (Le
Floc’h et al., 2009; Le Floc’h et al., 2012; Tacheau et al., 2016). In
a different approach, Narayanan et al. (2021) achieved segmentation
using deep learning techniques on OCT images. These approaches
showed how important it is to obtain accurate segmentation results.
The mechanical characterization of the properties usually involves
three steps. It commonly begins with the acquisition of, at least, two
clinical images (base and target shapes), normally in systolic and
diastolic pressure (Liu et al., 2019), and then the relative
displacements or deformation between them are computed (Le
Floc’h et al., 2009; Tacheau et al., 2016; Torun et al., 2022).
Secondly, the segmentation of the tissues is performed by using
Magnetic Resonance Imaging (MRI), ex-vivo testing and histologies
(Akyildiz et al., 2016; Torun et al., 2022), optical coherence
tomography (OCT) (Narayanan et al., 2021) or segmentation
based on mechanical properties (Le Floc’h et al., 2009; Nayak
et al., 2017). Thirdly, the last step consists of estimating the
mechanical properties by means of an optimization process,
where the displacements/strains estimated in the first step are
compared with those computed by an inverse finite element
analysis (Le Floc’h et al., 2009; Torun et al., 2022). Other
approaches tried to match meshes between the base and the

target shapes (Liu et al., 2019) or were based on micro-
morphological information, like the interfaces of the plaque
tissues, to recover the material behavior (Narayanan et al., 2021),
and others used the virtual fields method to obtain the material
parameters (Avril et al., 2004; Avril et al., 2010). The optimization
algorithm plays a key role in determining the mechanical properties,
and the choice of algorithm depends on the type of problem we want
to solve. The computational cost and the complexity of the process
vary greatly depending on the application. To obtain the linear
elastic properties of the tissues, a gradient-based optimization
procedure could provide robust results (Le Floc’h et al., 2009; Le
Floc’h et al., 2010; Tacheau et al., 2016; Porée et al., 2017). However,
for more complex material properties, this type of algorithm could
become stuck in local minima. Genetic algorithms, such as the Non-
dominated Sorting Genetic Algorithm used by Narayanan et al.
(2021), select an initial population of parameters, and then
propagate the population over several generations. This kind of
algorithm allows the evaluation of a large number of material
parameters, but it requires a lot of time and computational cost.
Nowadays, more complex new optimization methods have emerged
that enable the evaluation of complex material models to be
evaluated by using machine learning methods, such as the
Bayesian optimization (Torun and Swaminathan, 2019; Torun
et al., 2022). A very different approach, like the principal
component analysis optimization used by Liu et al. (2019),
permits optimization times of 1–2 h by partitioning the possible
stress-stretch curves using a dimensional reduction technique (Liu
et al., 2018; Liu et al., 2019). As part of the optimization process,
several studies used arterial images of two pressure steps within a
pressure increment of 5 mmHg between them (Le Floc’h et al., 2009;
Nayak et al., 2017). Despite the hyperelastic behavior of the arterial
tissues, this procedure allows the application of small deformation
theory to estimate the linear elastic properties of the tissues. In these
cases, the estimated Young’s modulus (Le Floc’h et al., 2009; Le
Floc’h et al., 2010; Le Floc’h et al., 2012; Nayak et al., 2017) or
orthotropic modulus (Gómez et al., 2019) refers to the associated
relative stiffness at that pressure. Akyildiz et al. (2016) proposed a
framework to describe the mechanical properties of atherosclerotic
tissues from ex-vivo testing images. They estimated the Neo
Hookean material parameters for different pressure increments,
showing a correlation between increased pressure and increased
stiffness. This trend corresponded to the hyperelastic behavior of
arterial tissues, with the stress-stretch curve exhibiting greater
stiffness at higher loads. In spite of the methodology providing a
hyperelastic behavior of the tissues, Neo Hookean parameter values
exhibited variations with changes in pressure and failed to describe
the high non-linear behavior of the atherosclerotic tissues. To
accurately predict the hyperelastic mechanical behavior of tissues,
a non-linear analysis using unpressurized geometry should be
conducted. IVUS images are taken at a certain pressure, and if
these images are assumed to be in an unpressurized configuration,
incorrect strain and stress distributions would be obtained. To
account for unpressurized geometries, some studies utilized
histologies (Akyildiz et al., 2016), ex-vivo MRI (Torun et al.,
2022) or assumed the first clinical image as stress-free geometry
(Narayanan et al., 2021) to obtain the hyperelastic parameters of
hyperelastic multi-parameter materials on atherosclerotic carotid
arteries.
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In this article, we present a theoretical framework to estimate the
non-linear mechanical properties of atherosclerotic plaques in
coronary arteries based on clinical images. We previously
proposed a method based on two consecutive images taken by
IVUS for segmenting the different atherosclerotic tissues (Latorre
et al., 2022). In addition, in that contribution, we also defined the
strategy to simulate the IVUS data from finite element (FE) models.
That segmentation enabled us to describe geometrical measures
related to plaque vulnerability, such as the FCT or the lipid core area.
After the image segmentation, in this paper, we propose to use an
inverse FE analysis in order to obtain the mechanical properties of
the segmented materials. Since it is an in silico study, all the IVUS
data are simulated using FE models with some noise over the strain
distribution. We introduce two different approaches for estimating
the mechanical properties of atherosclerotic tissues. Both of them
use the information from two different pressure steps to collect the
relative radial strains. In the first method, we determine the linear
elastic properties of the tissues through a simple optimization
process using those radial strains (Le Floc’h et al., 2009; Bouvier
et al., 2013; Tacheau et al., 2016). However, it must be said that this
approach only provides the relative stiffness of the tissues at a certain
blood pressure. Then, in the second approximation, we implement a
process to estimate the non-linear properties of the atherosclerotic
tissues. The arterial behavior exhibits high non-linearity, therefore,
we include a Pull-Back algorithm to estimate the unpressurized
geometry inside the optimization process. This implementation
enables us to obtain the hyperelastic properties of plaque
materials and an estimated zero-pressure (ZP) geometry. It is
worth highlighting that these variables are critical to a proper
determination of the stresses on the plaque. At the end of this
optimization process, we could evaluate the stress state of the arterial
tissue at physiological pressures and evaluate the risk of rupture.

2 Materials and methods

The appearance of atherosclerotic tissues on IVUS images varied
due to their different echo reflectivity characteristics (Olender et al.,
2020). While it was feasible to differentiate calcifications and softer
inclusions like lipids through visual inspection, it was not possible to
obtain a proper segmentation or estimate mechanical behavior. The
aim of this paper was to determine the mechanical properties of
atherosclerotic tissues. For this purpose, we compared two different
methods for determining the mechanical properties as linear elastic
or non-linear hyperelastic. The first one estimated the linear elastic
properties of the tissues by applying incremental pressure. This
resulted in a measurement of the relative stiffness of the tissues at a
specific pressure. While this method allowed for the quantification
of the relative modulus of elasticity of atherosclerotic tissues, it did
not enable the determination of the stress state of the plaque
throughout the cardiac cycle. It is a common methodology found
in literature, where arterial tissues were considered with linear or
orthotropic materials (Le Floc’h et al., 2009; Gómez et al., 2019). To
overcome this limitation, the second approach included a Pull-Back
algorithm in the inverse FE analysis in order to estimate the non-
linear properties of the tissues. The use of this algorithm enables the
mechanical response of tissues to be analyzed from the
unpressurized configuration.

2.1 Determination of linear elastic properties

We initially simulated the IVUS data from FE models using Neo
Hookean materials. Then an image segmentation was performed to
finally obtain the linear elastic properties through an optimization
process.

2.1.1 Simulated IVUS data
The IVUS data were simulated using FE models with five real

patient IVUS geometries obtained from the literature (Finet et al.,
2004; Le Floc’h et al., 2009; Bouvier et al., 2013). IVUS images
typically do not enable detection of the adventitia or media layers,
this is why only the fibrotic tissue, the lipid core, and calcification
were considered. Moreover, clinical images display only the
cross-section of the arterial wall, so the FE models were 2D
including the plane strain assumption. Since IVUS images were
taken under specific pressure, the unpressurized geometry was
previously estimated. The robustness of this approach was tested
with five geometries and different material combinations of lipid
and fibrotic tissues to ensure that the results were consistent
regardless of the geometry or material properties. In previous
work, Caballero et al. (2023) conducted a study on the elastic
modulus ranges for lipid and fibrotic tissues through the
literature. They collected a range of [1–100 kPa] for lipid
elastic modulus and [390–1,200 kPa] for fibrotic elastic
modulus. To cover the whole range of combinations, we
performed a Latin hypercube sampling (LHS) to take
15 representative samples (Corti et al., 2020). In this
approximation, lipidic and fibrotic tissues were modeled as
quasi-incompressible Neo Hooke materials using Eq. 1. Both
Eqs 2, 3 establish a relationship between Neo Hookean and linear
elastic parameters. The influence of geometry was analyzed with
the material properties reflected in Table 1 (Le Floc’h et al., 2009;
Babaniamansour et al., 2020), whereas the influence of the
material was solely conducted using the first plaque geometry
with 15 material combinations obtained from the LHS. In both
analyses, calcifications were fixed and modeled as linear elastic
material with 5,000 kPa of Young’s modulus and ] = 0.333 (Le
Floc’h et al., 2009).

Ψ � C10 I1 − 3( ) +D1 J − 1( )2, (1)
C10 � E

4 1 + ]( ), (2)

D1 � 6 1 − 2]( )
E

, (3)

The analysis was performed in the commercial software
Abaqus (Dassault Systems 2014), where we applied an internal
pressure of 115 mmHg in the lumen, which represents the

TABLE 1Material properties used for geometrical analysis in the first approach.

Neo Hooke parameters Linear parameters

Tissue C10 [kPa] D1 [kPa−1] E [kPa] ] [-]

Fibrotic 103.45 0.001 —

Lipidic 1.72 0.06 —

Calcification — 5,000 0.333
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average pressure in patients with high-normal pressure and grade
1 hypertension (Ramzy, 2019). It should be noted that all the
geometries were meshed using plain strain three-node linear
elements (CPE3). The mesh size was set to achieve at least
three elements between the lumen and the lipid core, taking
into account the accuracy of the IVUS technique. The five
different FE models had a number of elements of 4,375, 6,392,
7,945, 3,173, and 4,207, respectively. Rigid body motion was
constrained by fixing three external contour points of the fibrotic
tissue (Cilla et al., 2012). Figure 1 shows the five different FE
models with their tissues. The FE models simulated the
atherosclerotic plaque; to mimic the acquisition of two
consecutive IVUS images we used the FE results at various
pressure steps. Nowadays, there are several different
approaches for estimating displacement or strain fields from
two ultrasound images (Maurice et al., 2004). To replicate
this, we gathered the nodal coordinates (X and Y) and
displacements (ux and uy) at pressures of 110 and 115 mmHg.
Then, we computed the relative displacements between both
pressure steps. This process aimed to simulate the data
obtained through displacement estimators on two IVUS
images with 5 mmHg between both (Porée et al., 2017). Once
we had obtained the relative displacement from the small
pressure increment, we were able to calculate the strains under
the infinitesimal strain theory. Finally, we added a signal-to-noise
ratio (SNR) of 20 dB to the strain fields in order to simulate the
intrinsic noise present in IVUS data (Porée et al., 2015). We
computed the strains in both Cartesian and cylindrical
coordinates, as well as the principal and equivalent strains.
However, to be consistent with prior studies (Le Floc’h et al.,
2009; Le Floc’h et al., 2012; Tacheau et al., 2016), we mainly
utilized radial strains for the segmentation and optimization
process due to their lower estimation error from IVUS images
compared to other deformation variables.

2.1.2 Segmentation
The segmentation process was fully described previously in

Latorre et al. (2022). Briefly, the method was based on the
representation of Strain Gradient Variables (SGV). This type of
variable highlighted the contours of the different atherosclerotic
tissues and after a Watershed-Gradient Vector Flow segmentation it
was possible to extract the plaque components. The segmentation
results varied depending on the chosen SGV; in this work, we
segmented all the lipids and calcifications with the modulus of
the gradient of the radial strains (|▽εrr|) alone or in combination
with other SGVs like (|▽εrr| + |▽εmin|, |▽εrr| + |▽εvMises|. . .). We
also proved the accuracy of the method by measuring FCT and lipid
areas in some geometries. The segmentation was performed through
imaging techniques, so we converted the extracted tissues from
images to meshes. We used the Partial Differential Equation toolbox
from Matlab (version R2022b, Mathworks, MA, United States) to
build the FE model from the segmented tissues. As a result of this
process, we obtained a segmented FE model of the plaque at
110 mmHg.

2.1.3 Mechanical characterization
After the segmentation at 110 mmHg, the estimated radial

strains (εiteratedrr ) were computed by imposing a lumen pressure
of 5 mmHg and optimizing the material properties of the segmented
tissues. Since the pressure increment happens to be low, we assumed
a linear elastic behavior of the materials (Le Floc’h et al., 2009;
Tacheau et al., 2016). In addition, lipid core and fibrotic tissues were
considered quasi-incompressible materials with a fixed Poisson’s
ratio of 0.49, while calcifications were considered an isotropic
material with a fixed Poisson’s ratio of 0.33 (Babaniamansour
et al., 2020; Corti et al., 2020). Therefore, only the elastic
modulus of the fibrotic tissues, lipid, and calcification (EFib, ELip
and ECalc) varied during the optimization. The optimization was
performed by linking Matlab and Abaqus software

FIGURE 1
Five real geometries considered in the analysis (Finet et al., 2004).
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(Papazafeiropoulos et al., 2017) and also using a pattern-search
algorithm, which works with smooth and non-smooth functions as
it is not based on gradient descent. This optimization algorithm
partitions the space of the objective function into mesh points and
starts evaluating the function at an initial point. Then, it uses that
information to generate additional points to find the parameters that
most minimize the cost function (Hooke and Jeeves, 1961). At each
iteration, the algorithm polled different mesh points and if the
method finds a point that minimizes the function, the polling mesh
size will increase by two; otherwise, the polling mesh size will
decrease by half. The selected poll algorithm was the Generating
Set Search which is more efficient for linear-constrained problems
than the classic algorithm. The target cost function (J0) to minimize
was the Normalized-Root-Mean-Squared Error (NRMSE) between
the simulated IVUS radial strains (εIVUSrr ) and the estimated by the
method (εiteratedrr ) shown in Eq. 4. In order to validate this method,
we compared the resulting elastic modulus with the Neo Hookean
parameters that were employed in the simulated data using Eqs 2, 3.
This first approach is schematized in Figure 2.

J0 εIVUSrr , εiteratedrr( ) � 100

����������������
1
N∑ εIVUSrr −εiteratedrr( )2

mean εIVUSrr( )∣∣∣∣ ∣∣∣∣
√√

, (4)

Finally, to evaluate the accuracy of the estimation of the Young’s
modulus, we introduced the Success Rate (sr) coefficient, which

quantifies how closely our predicted Young’s modulus (Eestimated)
matched the actual FE values (Ereal) Eq. 5.

sr %( ) � 100 1 − Ereal − Eestimated| |
Ereal

( ), (5)

2.2 Determination of non-linear properties

This approach attempted to characterize the mechanical
properties of the atherosclerotic tissues as hyperelastic and
wanted to provide an estimation of the unpressurized plaque
geometry.

2.2.1 Simulated data
We proposed a similar methodology as in the previous

approach, with the major difference being the material used for
the FE models and the simulation of the ZP geometry. To consider a
non-linear hyperelastic material, it is necessary to know the
unpressurized configuration where the non-linear stress-strain
curve begins. Normally, healthy arterial tissues were assumed to
be anisotropic such as the media or adventitia. However, diseased
tissues, such as fibrotic or lipid tissues, were considered isotropic
exponential-type materials. While lipids were treated as Neo
Hookean material, fibrotic tissue was modeled with the Gasser-
Ogden-Holzapfel (GOH) strain energy function (Eq. 6) (Gasser
et al., 2006). The parameter D was fixed to 0.005 to reproduce the
quasi-incompressibility behavior of the tissues. Meanwhile, C10

represented the initial stiffness of the tissue at zero-pressure, and
k1 and k2 indicated the stiffness at higher pressures and the shape of
the exponential curve, respectively. Finally, κ was set at 0.3333 to
consider an isotropic fiber response. In order to understand the
influence of the geometry and composition of the plaque, we
analyzed five real geometries and four different fibrotic tissues
(cellular, hypocellular, and two calcified) (Loree et al., 1994;
Versluis et al., 2006). The material parameters for the GOH
model are presented in Table 2 where the “Calcified 1” material
was the calcified fibrotic tissues used in the different geometrical
analyses. Moreover, atherosclerotic plaques could present
calcifications as highly rigid inclusions. These calcifications were
considered isotropic linear elastic materials with E = 5,000 kPa and
] = 0.333.

Ψ � 1
D
· J − 1[ ]2 + μ I1 − 3[ ]

+ k1
2k2

∑
i�4,6

exp k2 κ I1 − 3[ ] + 1 − 3κ[ ] Ii − 1[ ][ ]2( ) − 1( ), (6)
Finally, the displacement or strain fields obtained from two

consecutive IVUS images and the image segmentation process were

FIGURE 2
Scheme of the optimization process of the first method to
recover the linear elastic properties of the atherosclerotic tissues.

TABLE 2 GOH material parameters used for the simulated fibrotic tissues.

C10 [kPa] k1 [kPa] k2 [−]

Calcified 1 9.58 17,564 0.51

Calcified 2 17.29 13968.82 3.36

Cellular 0.1 1948.80 3.36

Hypocellular 139.32 15918 0.1
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simulated following the same guidelines defined in the former
approach.

2.2.2 Optimization methodology
We developed a novel pipeline to characterize the non-linear

properties of the plaque tissues. After segmentation (see Section
2.1.2), an optimization process was conducted to obtain the
hyperelastic mechanical properties of the tissues. During each
iteration, the methodology involved three different steps. First,
the optimization algorithm selected an initial seed to iterate the
material parameters and generated the initial FE model. Then, a
Pull-Back algorithm was employed to estimate the ZP geometry.
Secondly, it collected the radial strain within the pressures of
110 and 115 mmHg (εiteratedrr ). The objective of the algorithm was
to minimize the cost function error between the simulated IVUS
strains and the strains obtained during the iteration (Eq. 4). These
two steps were repeated until the resulting error was less than a
tolerance of 10–4 or the optimization time exceeded 4 hours. Finally,
we estimated the unpressurized geometry with the final material

parameters. The entire process is described below and is illustrated
in Figure 3.

• First Step. On each analysis, only three material parameters
needed to be optimized for the fibrotic tissue (C10, k1 and k2 for
isotropic GOH materials), two for each lipid (C10 and D1 for
Neo Hooke materials), and one for each calcification (E for
linear elastic materials). To recover an approximated ZP
geometry we used an adapted version of the Pull-Back
algorithm developed by Raghavan et al. (2006). This
algorithm was originally created to obtain the ZP geometry
of a 3D arterial aneurysm, so it was modified to recover the
initial geometry of 2D atherosclerotic plaques. The algorithm
created an initial FE model with the segmented pressurized
geometry and added an internal pressure of 110 mmHg (the
pressure at which the segmentation was performed). Then, the
resulting nodal displacements ([uZPx uZPy ]) were collected.
Unpressurized geometry was obtained by constructing a
new FE model using the pressurized segmented geometry
and imposing the nodal displacements multiplied by a
recovery factor (KZP) as a boundary condition (BC), as
depicted in Eq. 7. The final ZP geometry was achieved
through an iterative process by varying the recovery factor
and comparing the error of the coordinates between the ZP
geometry candidate, after adding 110 mmHg, and the
pressurized segmented geometry. Raghavan et al. (2006)
considered the recovery factor as a parameter that should
be optimized. However, we assumed a recovery factor KZP = 1,
which was an intermediate value, with the aim of avoiding
another optimization process and also reducing the
computational cost.

BC � −KZP
uZP
x

uZP
y

[ ] (7)

• Second Step. Once the unpressurized geometry was obtained,
we imposed an internal pressure of 115 mmHg at this
unpressurized geometry to compute the iterated radial
strain (εiteratedrr ). At this stage, we used the same cost
function defined in Eq. 4 and the same pattern-search
optimization algorithm (see Section 2.1.3). In linear elastic
materials, as in the previous approach, due to its simplicity, the
initial size of the polling mesh was equal to 1. However, GOH
materials are more complex which could lead to a higher
number of local minima in the cost function. Thus, we
changed the initial mesh size of the poll algorithm to
100 to cover more different variable possibilities and also to
avoid being stuck in local minima. Hence, after analyzing the
initial point, the algorithm evaluated different mesh points
with a distance of 100 between them, allowing many different
parameter combinations to be analyzed. Furthermore, the
optimization process needed a search range for each
material parameter, and the pattern-search algorithm used
this range to give more relevance to those variables with a
greater search range. So, the ranges for fibrotic GOH
parameters were C10[1 → 50 kPa], k1[5 → 100000 kPa],
k2[1 → 100] obtained from curve fitting of literature data
(Loree et al., 1994; Versluis et al., 2006), and giving more

FIGURE 3
Scheme of the optimization process of the second method to
recover the non-linear hyperelastic properties of the atherosclerotic
tissues.
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relevance to k1 which proved to be more important in the
mechanical response at physiological pressures. Both the lipid
and the calcification ranges were adjusted considering the
proposed range of Caballero et al. (2023), with the lipid
parameters C10[0.1 → 100 kPa] and D1[0.005 → 0.9 kPa−1]
and the elastic modulus of the calcification with a range of
[500 → 10000 kPa].

• Third Step. After completing the optimization process, we
obtained the hyperelastic properties of the tissues, however,
the resulting unpressurized geometry was obtained with the
recovery factor KZP fixed to 1. In this final step, we
implemented the whole Pull-Back algorithm, optimizing the
value of KZP. The process was the same as described in the first
step, with the difference of changing the recovery value.
Figure 4 shows a scheme of the iterative Pull-Back process.
This method was implemented into the five different
geometries and the four distinct fibrotic materials (cellular,
hypo-cellular, and two calcified).

3 Results

The proposed segmentation methodology was previously
presented and validated (Latorre et al., 2022), so no comments
about that have been included here. Regarding the mechanical
characterization, we present the results of both approaches.

3.1 Determination of linear elastic properties

In the first approach, we obtained the relative Young’s modulus
of the tissues at 110–115 mmHg of blood pressure. In order to
validate the approach, five geometries and fifteen material
combinations of lipid-fibrotic tissues were analyzed using FE

models with Neo Hookean materials. We computed the (sr)
coefficient for the different cases.

In Figure 5 there is a box plot of the sr for the different
geometries and material combinations of the LHS. The FE
models of the simulated data used for analyzing the influence of
the geometry were constructed with Neo Hooke parameters
presented in Table 1, which correspond, using Eqs 3, 4, to
Young’s modulus of 600 kPa for the fibrotic tissue and 10 kPa for
the lipid (Le Floc’h et al., 2009). The resulting mean elasticity
modulus obtained was 535.25 and 10.05 kPa for the fibrotic and
lipid core respectively, while the median sr for the fibrotic tissue was
88.5% and 79.6% for the lipids core, as we can see in reddish color in
Figure 5. The interquartile range for lipid’s sr was 4.8 times higher
than the fibrotic tissue.

On the other hand, analyzing the influence of material
combinations, orange box plots of Figure 5 show a median sr
value of 92.33% for fibrotic tissues and 81.62% for lipids. Once
again, the interquartile range for lipid sr was higher than fibrotic’s.
For calcifications, the method detected a highly rigid material with
Young’s modulus over 5,000 kPa. However, this did not affect the
estimated radial strains used in the cost function. Figure 6 presents
the LHS distribution of the lipid-fibrotic material combination, with
each data point marked in a different color based on its estimation
results. Each circle was divided into two halves: The color of the left
half of the circle represents the sr of the fibrotic tissue, whereas the
color of the right half shows the sr of the lipids. The best results were
obtained for combinations with higher stiffness in the fibrotic tissue.
In contrast, combinations with lower Young’s modulus resulted in a
worse sr regardless of the stiffness of the lipid tissue. As the linear
materials calculations converged quickly, the convergence tolerance
was the stopping criterion rather than limiting the optimization
time. Each optimization process took about 2–3 h, equivalent to
around 180 material evaluations, depending on the complexity of
the geometry.

Previously to determine the non-linear properties, we
checked the methodology of the first approach using

FIGURE 4
Scheme of the Pull-Back algorithm used to recover the Zero-
Pressure geometry.

FIGURE 5
Box plot of the sr variability in the fibrotic material (left) and lipidic
material (right) for the different material combinations of LHS (orange)
and different geometries (red).
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simulated IVUS data from FE models with GOH material model
instead of Neo Hookeans. With this test, we checked the
availability of the proposed linear methodology to reproduce
the response of non-linear tissues. Unlike Neo Hooke materials,
GOH parameters did not have a direct relationship with Young’s
modulus, so a direct comparison of the material parameters was
not available. In the geometric analysis conducted on the five
geometries, the mean value of Young’s modulus was
1,512.97 kPa. On the other hand, in the material analysis, the
elasticity modules were 516, 708.6, and 1,404.5 kPa for hypo-
cellular, cellular, and calcified tissues respectively. The resulting
elasticity for fibrotic tissues exceeds the range previously
proposed (Caballero et al., 2023). Therefore, the method
failed to accurately estimate the stiffness of the lipid tissue,
resulting in softer values than the actual ones. However, the
maximum principal stress distribution achieved with this
method made it possible to obtain approximate values for the
stress in the plaque. Supplementary Figures show the qualitative
comparison between the actual stress and that resulting from
taking into account the modulus of elasticity calculated.

3.2 Determination of non-linear properties

In the second approach, we obtained the non-linear properties by
using the previous optimization method and adding a Pull-Back
algorithm to recover the unpressurized geometry. Since different
GOH material parameters (C10, k1, k2, and κ) could result in similar
curves, we compared the behavior curve rather than the parameter
values. Figure 7 displays the median and the range of the resulting
behavior curves under uniaxial tensile loading obtained for the different
geometries. The error of the estimated curves was computed with the
coefficient of determination R2, represented in Table 3. Among the
analyzed geometries, the first four reached a R2 between 0.95 and 0.99.

However, more complex geometries, like the fifth plaque, only got a R2

of 0.50. Despite this low coefficient, the resulting curves behaved
similarly to the real ones. This means that the resulting mechanical
response is similar to the actual one.

For the analysis of different fibrotic tissues, Figure 8 presents the
resulting GOH fitted curves under uniaxial tensile loading on the cases
with calcified, cellular, and hypocellular fibrotic tissues for the first IVUS
geometry. The resulting R2 in calcified tissues was 0.97 and 0.99, while
for the hypo-cellular and cellular tissues was 0.79 and 0.88.

The pattern-search algorithm efficiently minimized the error of the
cost function (Eq. 4) in a maximum of 4 h, which is equivalent to about
40 iterations. Thefinal ZP geometrieswere estimated by using a Pull-Back
algorithmoptimizing the recovery factor. Figure 9 compares the “true”ZP
geometry with the estimated one for different geometries. In most cases,
the geometries are similar, except for the second geometry, where the
lumen was estimated to be larger than the actual one. Figure 9 shows
some differences in the lipid and calcification contours between the
unpressurized geometries used to simulate the IVUS data and the
unpressurized geometry after the optimization process. The roughness
of the contours comes from the error resulting from the segmentation
process and the size of the mesh elements. Different SGVs provided
different errors and smoother contours (Latorre et al., 2022). The size of
the mesh elements was related to the resolution of the IVUS images.

3.3 Comparison between approaches

Finally, we compared both techniques over the same simulated
IVUS data from GOH models. Figure 10A shows the radial strain
obtained in the simulated IVUS data, which represents the ground
truth in our cost function (Eq. 4). Then, Figure 10B presents the
segmentation process, where the SGV was used to get the
segmentation of the tissues. Both the simulated IVUS data and
the segmentation were the same for the two approaches. We then
defined the linear elastic or non-linear hyperelastic material

FIGURE 6
LHS with the differences material combinations between
fibrotic-lipid elastic modulus. The left half of the circle presents the sr
of the lipid core characterization and the right half for sr in fibrotic
tissues. The colors range from yellow to dark red depending on
how high the success rate is.

FIGURE 7
Results of the stress-stretch curves under uniaxial tensile loading
obtainedwith the second approach over the different geometries with
the material properties of calcified 1 (Table 2).
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parameters for each tissue, depending on the approach. At the end of
each approach, Figures 10C, D present the radial strain maps
obtained with the linear and non-linear approaches respectively.
On the one hand, the first method used linear elastic materials to
mimic a highly hyperelastic behavior, so the resulting cost (Jlinear)
was over 55.73% for the first IVUS geometry. On the other hand, the
second one obtained an error in the cost function (Jnon−linear) of
18.53%. All the cost values are collected in Table 3. As a summary, it
can be stated that, in all cases, the second method reduced the mean
error in the cost function, providing more accurate radial
strain maps.

Once the material properties and the unpressurized geometry had
been estimated, it was possible to calculate the stress distribution on the
plaque. Figure 11 shows the maximum principal stress (σmax) maps
resulting from the linear and non-linear approaches compared to the
ground truth for the fifth geometry. Although the method gave a low R2

for fibrotic tissue in this geometry, the stress distribution in the second
approach ismore similar to the true one compared to the first approach.
Supplementary Figure S1 compares the stresses between the ground
truth and the results of both approaches for the other four geometries,
and the second figure shows the stress distributions for the different

fibrotic tissues. It can be seen that in all cases both approaches were able
to reproduce the stress distribution and the areas of maximum values.
However, the results suggested that the secondmethodmore accurately
reproduced the areas of highest stress.

4 Discussion

In this study, we compared two different approaches to determine
the mechanical properties of atherosclerotic tissues. In the first one, we
obtained Young’s modulus of the tissues at a specific blood pressure.
This kind of process allowed us to compare the stiffness of different
tissues and classify them according to their behavior. If we were able to
capture images of the plaque over time, it could also be helpful in
evaluating the evolution of the pathology and the result of some
treatments. However, atherosclerotic tissues exhibited a significant
non-linear behavior (Narayanan et al., 2021; Torun et al., 2022).
Thus, this method provided only a relative Young’s modulus that
did not fully explain the behavior of the tissue. To overcome this
limitation, we proposed the second approach, which consisted of the use
of a Pull-Back algorithm to recover the unpressurized geometry, we
tried to characterize the full non-linear behavior of atherosclerotic
plaque tissues. The process yielded an estimation of the mechanical
properties and ZP geometry at the same time, which enabled the
determination of the stress state over the atherosclerotic plaque under
physiological conditions.

4.1 Determination of linear elastic properties

To assess the robustness of the method, we initially simulated
IVUS data using FE models with Neo Hookean materials. This
procedure estimated Young’s modulus of the tissues, which was then
compared with the Neo Hookean parameters using the relationships
outlined in Eqs 2, 3. Although Neo Hookean models were simple for
describing the behavior of the arterial tissues, this type of model has
been considered enough for capturing the mechanical response of
the plaque (Akyildiz et al., 2016; Noble et al., 2020). The geometries
analyzed in this theoretical study were previously used in other in
silico works, where the FE models were built directly with linear
elastic properties and a lumen pressure of 1 kPa (Le Floc’h et al.,
2009; Bouvier et al., 2013; Tacheau et al., 2016). These studies did not
consider the hyperelasticity behavior of the tissues and obtained a
direct correlation between the results and the Young’s modulus used
in their FE models. Our approach successfully characterized lipid
and fibrotic tissues in different geometries and material

TABLE 3 Summary table to resume the results obtained with the FE models using GOH material models.

Calcified 1 properties IVUS 1 geometry

IVUS 1 IVUS 2 IVUS 3 IVUS 4 IVUS 5 Calcified 1 Calcified 2 Cellular Hypocellular

R2 0.97 0.99 0.98 0.95 0.50 0.97 0.99 0.88 0.79

JLinear 55.73 72.91 56.35 59.87 55.92 55.73 52.06 23.55 37.39

Jnon−linear 18.53 33.01 35.30 44.54 44.90 18.53 16.54 16.97 44.75

Five different geometries and four different fibrotic tissues were analyzed. The first data row represents the R2 between the real behavior curve and the resulting curve obtained with the second

methodology. The last two rows show the cost function value between the εIVUSrr and εiteratedrr using the first approach (Jlinear) and the second one (Jnon−linear).

FIGURE 8
Results of the stress-stretch curves under uniaxial tensile loading
obtained with the second approach over the first geometry with the
calcified 1 fibrotic tissue (A), calcified 2 tissue (B), cellular tissue (C) and
hypocellular tissue (D).
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combinations with similar results as those presented in literature (Le
Floc’h et al., 2009; Bouvier et al., 2013). Results suggested that sr was
higher for the fibrotic than the lipidic tissues. This was because the sr
depended on the relative error of the Young’s modulus, so even if the
estimated value for the lipid was 12 kPa instead of the actual value of
10 kPa, it could still result in an sr of 80%. Calcifications were
estimated as highly stiff solids, with two orders of magnitude above
the other tissue. However, the estimated values were far from the
actual ones. Similar outcomes were reported by Le Floc’h et al.
(2009) and Tacheau et al. (2016) who successfully identified calcium
inclusions but failed to accurately estimate their Young’s modulus
due to the small strains amplitudes. Nevertheless, the differences
between considering the actual or the estimated Young’s modulus
did not affect the radial strains map.

In addition to the geometric influence, we also analyzed the impact
of the materials on the mechanical characterization. It should be noted
that material combinations between lipid and fibrotic tissues played a
key role in Young’s modulus estimation. For atherosclerotic plaques
with softer fibrotic tissues, the methodology yielded worse mechanical
characterization and, in those cases, the stiffness of the lipid seemed to
have no influence. The segmentation process, which was based on SGV,
was also found to be slightly affected by the material combination
(Latorre et al., 2022). Although cases with less gradient between the
stiffness of the lipid and fibrotic tissues were more challenging for
segmentation (Latorre et al., 2022), the segmentation was performed
properly in all cases. It is worth noting that the cases that were more
challenging for segmentation were not the same as those with worse sr.
Figure 5 shows that the mechanical characterization was more
dependent on the geometry rather than the atherosclerotic materials.
The optimization procedure was conducted by using a pattern-search
algorithm instead of a gradient-based method, as fmincon algorithm,
used in previous studies (Le Floc’h et al., 2009). The newly chosen
algorithm provided faster results and showed less dependence on the
initial point in the optimization process.

After the validation with Neo Hooke models, we applied the
methodology to more realistic FE models with fibrotic tissues modeled
as GOH material in order to reproduce real arterial tissue behavior. In
these cases, it was not possible to directly compare the estimated Young’s
modulus with the GOH material parameters. However, stiffness values
were found to be over the limits (Caballero et al., 2023). Due to the high
Young’smodulus estimation of fibrotic tissues, lipids appeared to be softer
than their actual stiffness values. This overestimation of the fibrotic tissue
stiffnesswas the result of trying to describe a highly non-linear hyperelastic
material with a linear elasticmodel. As can be seen in Figure 11, and in the
Supplementary Figures, the maximum principal stress field obtained with
linear properties had some similarities with the true field. However, the
properties obtained are unrealistic and the stresses are only close to the
study pressure and cannot be generalized to other physiological pressures.
This was because the estimated Young’s modulus was obtained as the
slope of the straight line secant to the real curve. As a result, the method
provided a relative stiffness value at a certain blood pressure, which could
assist in determining the nature of the tissues but would not provide their
actual behavior.We applied the process at different pressure loads (80–85,
110–115, and 135–140mmHg) and observed an increase in the relative
stiffness at higher pressures, although these resultswere not included in the
current paper. Akyildiz et al. (2016) used a similar process to obtain the
stiffness of the plaque tissues at systolic and diastolic pressures, proving the
same outcome that stiffness increases over the cardiac cycle.

4.2 Determination of non-linear properties

In this method, due to the highly non-linearity of the problem, a
Pull-back algorithmwas included to compute the ZP geometry in order
to obtain a better estimation of the hyperelastic material parameters. A
correct reference geometry was important not only for the stress
distribution but also for the estimated vessel diameter (Alastrué
et al., 2008). The first approach used a reference geometry of the

FIGURE 9
Comparison between the true unpressurized geometries (A)with the estimated ZP geometries (B). Fibrotic tissues are represented in reddish color,
lipids in orange, and calcifications in gray.
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FIGURE 10
Results of bothmethods over the first IVUS geometry with calcified 1material properties. (A) Simulated radial strains after adding 20 dB of SNR to the
FE results. (B) Segmentation process, where the chosen SGV to extract the lipid was |▽εrr | which is represented next to the image segmentation results.
Then, the mechanical characterization used this segmentation to estimate the radial strain with linear material properties (C) or non-linear properties (D).

FIGURE 11
Max. Principal Stress distribution [kPa] at 115 mmHg in the fifth IVUS plaque taken as ground truth (A), and the resulting (σmax) for the linear (B), and
non-linear (C) approaches.
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pressurized state at 110 mmHg, assuming a linear elastic behavior of the
tissues. Thus, this pressurized reference could lead to Young’s modulus
acquisition (Le Floc’h et al., 2009; Bouvier et al., 2013; Tacheau et al.,
2016) or orthotropic linear properties (Gómez et al., 2019). However,
this assumption was not valid for estimating non-linear materials, such
as soft tissues. In order to consider the unpressurized geometry, some
studies obtained the Yeohmaterial parameters by taking ex-vivo images
or tests of the atherosclerotic plaque (Akyildiz et al., 2016; Torun et al.,
2022) or using the pressurized geometry at low pressures as ZP
geometry (Narayanan et al., 2021), which could lead to a more rigid
characterization. In the present paper we implemented a modified
version of a Pull-Back algorithm defined by Raghavan et al. (2006), to
estimate an initial unpressurized geometry of aneurysms avoiding the
iterative process by fixing the recovery factor KZP = 1. Although the
estimated initial geometry was not entirely accurate, it was continually
updated with each material evaluation. At the end of the iterative
process, we got the hyperelastic material parameters for the
atherosclerotic tissues. Subsequently, a more accurate initial
geometry was obtained by optimization of the Pull-Back algorithm
by fixing the mechanical properties without constraining the recovery
factor. For both approaches, we used an i7-10700K CPU with 8 cores
running at 3.79 GHz and with 64 GB RAM. While the first approach
took around 2 h to accomplish around 180 evaluations, the second
approach needed twice time to get about 40 iterations. This was due to
the complexity of the second approach which included the Pull-Back
step and the convergence velocity of the non-linear tissues.

This new technique was successfully applied to five different
geometries and four different fibrotic materials (cellular,
hypocellular, and two calcified). Results showed that different
GOH material parameters lead to similar curves and in all
analyzed cases the fibrotic tissues were correctly characterized.
The resulting R2 was above 0.95 showing similar behavior curves
to the real ones, except for complex geometries or hypo-cellular
tissues. Complex geometries, like the fifth IVUS, had a worse
estimation of the curve, due to the presence of two lipids and
one calcification that shielded the strain maps in those regions.
Moreover, other fibrotic tissues were more challenging to estimate
during the optimization process. We analyzed many different initial
points for the pattern-search algorithm with similar outcomes and
results suggested that fibrotic materials were considered slightly
stiffer than the actual ones. This was the result of assuming the
recovery factor fixed KZP = 1 during the optimization. Lipid Neo
Hookean parameters were obtained with a lot of variation regarding
the actual values, especially in complex geometries, where the
estimated values were close to the initial point of optimization.
For softer fibrotic tissues, such as cellular and hypocellular, the
mechanical properties of the lipid played a more important role in
estimating the properties of the fibrotic tissue. The stiffness of
calcifications was determined with a similar level of error as in
the first approach. Therefore, both approaches were consistent with
results reported in the literature, indicating that the exact Young’s
modulus was difficult to assess due to the small strain variation over
a rigid solid (Le Floc’h et al., 2009; Tacheau et al., 2016), as well as the
high stiffness of calcifications compared to fibrotic tissues (Gijsen
et al., 2021).

Despite the lipid and calcification results, the final strain maps
(εestimatedrr ) were close to the ground truth, resulting in a low error in
the cost function. Torun et al. (2022) computed themechanical properties

of all plaque tissues but they focused mainly on fibrotic tissue. This
suggested that strains observed in the evaluated atherosclerotic plaques
were mainly influenced by the fibrotic tissues rather than the lipid core.
One advantage of the proposed approach was that, while the majority of
the literature used information on the diastolic and systolic pressures for
determining the mechanical properties (Liu et al., 2018; Liu et al., 2019);
this approach could be applied at any state of pressure. Since the
methodology estimates the material parameters of GOH, we obtain
the response for all ranges of pressures independently of the pressures
used for the estimation of the parameters. So, the results could be
extrapolated to other lumen pressures. Once the material properties
were finally estimated, we applied the Pull-Back algorithm without
fixing the recovery factor to obtain the final unpressurized geometry.
With this geometry and the estimated mechanical properties, it would be
possible to determine the stress state in the arterial wall and apply it to the
risk of rupture of the plaque. Although Figure 11 and Supplementary
Figures show that both approaches gave similar stress distributions to the
ground truth at 115mmHg, the second method could be extrapolated to
any other physiologic pressure. Furthermore, this approach produced a
smoother and more accurate σmax distribution in the different analyzed
cases even in complex geometries where the optimizedmaterial properties
provided a low R2. Thus, this method would allow a better estimation of
the areas with the highest stress and therefore the areas with the highest
risk of plaque rupture.

4.3 Limitations

Although the results of this new methodology are very
promising, it is important to note that the study has a number of
significant limitations.

• The study was basically theoretical and should be considered
as the first step to lay down a methodology and validate it with
different geometries and materials. We used the radial strains
in our cost function because it was commonly used in the
literature (Le Floc’h et al., 2009; Tacheau et al., 2016; Gómez
et al., 2019). However, we also tried to use displacement fields
with similar outcomes (Akyildiz et al., 2016). Radial strains or
displacement fields could be obtained from IVUS images by
using speckle tracking or other algorithms (Maurice et al.,
2004; Lopata et al., 2009), that had been successfully applied
in vitro (Le Floc’h et al., 2010; Porée et al., 2017) and in vivo (Le
Floc’h et al., 2012). Due to the noisy nature of IVUS data, the
radial strains obtained by these estimators lead to noisy strain
maps. We mimicked that noise by adding an SNR of 20 dB
over the FE strain field.

• The in silico data were constructed using 2D FEmodels under the
assumption of plane strain. These FE models overestimated the
magnitude of stress compared to 3D FE models (Ohayon et al.,
2005; Carpenter et al., 2020; Peña et al., 2021). Narayanan et al.
(2021) developed a method to create meshes from OCT images,
and they captured not only the 3D morphological information
but also ensured that the applied load was physiologically
representative. This kind of process needed different
segmented slices over the axial direction of the artery which
would increase the segmentation error in complex geometries.
We used 2D FEmodels to simulate the information provided by a
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standard IVUS image. Furthermore, the influence of residual
stress was not taken into account in this study. Although it has a
relevant impact on the location of the maximum stress in the
atherosclerotic plaque (Cilla et al., 2012), residual stress requires
ex vivo information that is difficult to obtain (opening angle test,
axial stretch. . .).

• The fibrotic tissues were considered homogeneous, with the same
mechanical properties as the tissue. Nonetheless, histologies
showed a heterogeneous composition, and it affected the
mechanical properties and the stress state (Akyildiz et al.,
2016). However, heterogeneities were very difficult to segment
or detect and some methodologies took them into account by
changing the number of inclusions evaluated in their models and
obtaining heterogeneous Young’s modulus over the fibrotic tissue
(Le Floc’h et al., 2009; Porée et al., 2017). In this study, only
fibrotic tissue and macro inclusions, such as lipids or
calcifications, were segmented, and homogeneous behavior
was assumed in each tissue.

• The optimization process was set to take nomore than 4 h; but it
depended on the initial point and the limits of every parameter. A
previous study was conducted to analyze different initial points
with similar results. Although pattern-search was a local
optimization algorithm, the polling method was modified to
avoid local minima. We also compared these results with
those provided by the genetic algorithm, but the required time
was much longer. More complex global optimization
methodologies, like modifications of Bayesian optimization
(Torun and Swaminathan, 2019), take more time
(approximately 7 h) to estimate the hyperelastic material
properties of the arterial wall (Torun et al., 2022). Liu et al.
(2019) managed a computational cost of 1–2 h for determining
the mechanical properties of ascending thoracic aortic aneurysm.
They reduced the time by using principal components analysis
from the stress-stretch curves and using an algorithm to go from
coarse to fine to analyze lots of behavior curves in less time (Liu
et al., 2018; Liu et al., 2019). They characterized the properties
assuming the arterial wall with the same properties, however, in
atherosclerotic plaques, the importance remained on the different
properties of the tissues, and this method should be applied for
each segmented material increasing the computational cost and
the complexity of the study.

4.4 Conclusion

In this work, we have presented a new method to determine
the non-linear material properties of atherosclerotic tissues. The
proposed approach had been compared with a classical process
based on linear properties, providing a more accurate description
of the mechanical behavior of atherosclerotic tissues and
resulting in a lower error in the cost function. We estimated
the non-linear properties of the tissues and the unpressurized
geometry of the plaques, which allowed us to obtain the
mechanical response of the atherosclerotic tissues throughout
the entire cardiac cycle, rather than only at a specific blood
pressure. Despite being a theoretical framework, this method was

successfully applied to different real geometries and different
fibrotic materials, demonstrating its potential as a valuable tool
for assessing the vulnerability of patients with atherosclerotic
coronary plaques.
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