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Introduction: Intrauterine adhesions (IUA), also known as Asherman’s syndrome, is
caused by trauma to the pregnant or non-pregnant uterus, which leads to damaged
endometrial basal lining andpartial or total occlusionof theuterine chambers, resulting
in abnormal menstruation, infertility, or recurrent miscarriage. The essence of this
syndrome is endometrial fibrosis. And there is no effective treatment for IUA to
stimulate endometrial regeneration currently. Recently, menstrual blood-derived
stem cells (MenSCs) have been proved to hold therapeutic promise in various
diseases, such as myocardial infarction, stroke, diabetes, and liver cirrhosis.

Methods: In this study, we examined the effects of MenSCs on the repair of uterine
adhesions in a rat model, and more importantly, promoted such therapeutic
effects via a xeno-free VitroGel MMP carrier.

Results: This combined treatment reduced the expression of inflammatory
factors, increased the expression of anti-inflammatory factors, restricted the
area of endometrial fibrosis, diminished uterine adhesions, and partially
restored fertility, showing stronger effectiveness than each component alone
and almost resembling the sham group.

Discussion: Our findings suggest a highly promising strategy for IUA treatment.
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1 Introduction

Female infertility, affecting approximately 9%–18% of women worldwide, is predicted by the
World Health Organization to be the third most common disease by the end of the 21st century,
after cancer and cardiovascular disorders. A stable uterine environment is essential for embryo
implantation and development in a successful pregnancy. About 8% of infertility cases are
secondary to intrauterine adhesions (IUA) (Evans-Hoeker and Young, 2014). IUA means that
fibrous tissue forms inside the uterus and can lead to thewalls of the uterus sticking together, which
fully or partially closes off the cervix and/or the uterus cavity, resulting in pelvic pain and infertility
(Hooker et al., 2014). IUA can be caused by several obstetric and gynecological diseases, including
placental retention (Hamerlynck et al., 2013), endometrial fibroplasia (Xin et al., 2022), and
endometrial damage, as well as many common surgeries, such as miscarriage clearance (Hooker
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et al., 2014), myomectomy (Mazzon et al., 2014), polypectomy (Perez-
Medina et al., 2005) and insertion of intrauterine devices (IUDs)
(Pabuccu et al., 2008). IUA accounts for almost 90% of reproductive
disorders (Deans and Abbott, 2010; Evans-Hoeker and Young, 2014).
Reducing endometrial tolerance, IUA has been linked to recurrent
miscarriage and is thought to be the cause in 20%–30% of these
cases (Hooker et al., 2014). Hysteroscopy is currently an effective tool
for IUA diagnosis (Kuroda et al., 2022), and is capable of separatingmild
adhesions to some extent. However, separation is difficult for severe
adhesions, followed with worse clinical outcomes. Even if the separation
is successful, recurrence is frequent and unpredictable without available
prevention approach, especially when sufficient post-operation nursing
care is not taken. Novel strategies are thus urgent to be developed for
effective and long-lasting treatment against IUA.

Stem cell therapy is currently one of the research hotspots in
endometrial regeneration. Transplantation of mesenchymal stem cells
(MSCs) is widely used for both damage repair and disease treatment
(Aurich et al., 2007). Among various MSCs, menstrual blood-derived
mesenchymal stem cells (MenSCs) are highlighted by their non-
invasive source. MenSCs have a high rate of growth and self-
renewal, share many of the characteristics as MSCs, including
therapeutic applications, broad availability, and excellent
biocompatibility, and therefore offer a promising new avenue for
research in stem cell regenerative medicine (Gu et al., 2015).
MenSCs have been found to be useful in treating diseases, including
ovarian failure, autoimmune diseases, diabetes, and inflammatory
response (Zhang et al., 2021; Li et al., 2022; Mirzadegan et al.,
2022). Nevertheless, MenSCs, as well as other MSCs, have been
observed to be inconstant in treatment efficacy, probably due to
their uncontrollable periods of stay in the lesion and highly variable
local environments (Galipeau and Sensebe, 2018;Wechsler et al., 2021).

VitroGel MMP is a xeno-free hydrogel system that has been
enhanced on biocompatibility and biodegradability with matrix
metalloproteinase (MMP)-sensitive peptides. Designed for
providing optimized environment for cell growth, it supports
various biological activities, such as cell proliferation, migration,
differentiation, angiogenesis, and apoptosis. More importantly,
hydrogels have wild clinical potentials. Being developed as carrier
of MSC treatments, it has been reported to promote the functional
and structural recovery of colitis (Cao et al., 2020), to regulate
neuronal differentiation and suppress inflammatory reaction (He
et al., 2021), to limit secondary injury after traumatic brain injury
(Alvarado-Velez et al., 2021), to enhance vascularized sweat gland
regeneration, to promote craniofacial bone regeneration (Hasani-
Sadrabadi et al., 2020), as well as to increase functional
osteochondral regeneration and chondrogenesis (Kwon et al.,
2018). In this study, we examine whether VitroGel MMP could
support and improve MenSCs to inhibit IUA and promote fertility
in a rat model, and find the effectiveness of this combined treatment.

2 Materials and methods

2.1 Isolation and culture of MenSCs

Three healthy women who were experiencing their periods
voluntarily donated their menstrual blood to Shanghai First
Maternity and Infant Hospital. All of the above volunteers were

between the ages of 30–35, with BMI ranging 18.5–24, had regular
menstruation, and had no history of gynecological, cardiovascular,
respiratory, neurological, immune, digestive or endocrine diseases.
Before the start of the study, written informed consent was provided
by each donor. The study was proved by the ethical committee of
Shanghai First Maternity and Infant Hospital affiliated with Tongji
University School of Medicine. The menstrual blood samples were
taken for 3 h with menstrual cups (Diva International, Inc., Canada)
on day 2 and/or 3 of the menstrual cycle. Mononuclear cells were
separated using Ficoll-Paque (Cytiva, US) within 0.5 h after
collection. The harvest fraction was then gently transferred into
an equal volume of phosphate-buffered saline (PBS) containing
0.25 mg/mL amphotericin B, 100 U/mL penicillin, 100 mg/mL
streptomycin, and 2 mM ethylenediaminetetraacetic acid (EDTA)
(Cytiva). After centrifuging at 100 g, room temperature for 10 min,
and washed with PBS twice, the cell pellet was generally suspended
in MenSC culture medium (E-vans Biotech, China). Cells were then
seeded into a culture flask and cultivated in a humid incubator at
37°C with 5% CO2. Cells were washed by PBS to discard the non-
adherent cells after 2 days of incubation. Every 3–4 days, the
medium was renewed until adherent cells reached 80%–90%
confluency (P0), at which point cells were dissociated with 0.25%
trypsin-EDTA (NCM Biotech, China) and seeded into new flasks
with a 1:4 ratio. Passage of MenSCs was tracked during cultivation.

2.2 Flow cytometry

MenSCs were dissociated with 0.25% trypsin-EDTA and
suspended in the staining solution (PBS). A total of 3 × 106

MenSCs were incubated for 30 min in the dark at 4°C with each
antibody according to the manufacturer’s instructions: APC anti-
human CD73 (Cat. No. 344005; BioLegend, US), APC anti-human
CD90 (Cat. No. 328113; BioLegend), APC anti-CD105 (Cat. No.
800507; BioLegend), PE anti-human CD276 (Cat. No. 331606;
BioLegend), APC anti-human HLA-A, B, C (Cat. No. 311409;
BioLegend), FITC Mouse Anti-Human CD34 (Cat. No. 560942;
BD Pharmingen, US), APC anti-human CD44 (Cat. No. 338805;
BioLegend) and FITC Mouse Anti-Human HLA-DR (Cat. No.
560944; BD Pharmingen). The cells were then acquired in a BD
FACSCalibur flow cytometer (BD Biosciences, US) and analyzed
using the FlowJo software (version 10.8.1).

2.3 ELISA assay

On the third day after the MenSCs were seeded at passage 5 with
the full culture medium containing fetal bovine serum, when the cell
density was approximately 70%–80%, the conditioned medium was
collected and spin down at 12,000 g, room temperature for 15 min.
The cell-free supernatant was used in the ELISA assay. The fresh full
culture medium was used as the negative control. ELISA assay was
performed following the manufacturer’s instructions. Target-
specific ELISA kits were purchased from WELLBIO (China) for
human VEGF (Cat. No. EH6532S), human TGF-β1 (Cat. No.
EH6481S), human PDGF-BB (Cat. No. EH6403S), and human
MMP-3 (Cat. No. EH6370S). OD450 values were measured with
a microplate reader (Thermo Fisher Scientific, US).

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Wu et al. 10.3389/fbioe.2023.1310149

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1310149


2.4 Rat model of IUA

SD rats (150–200 g, 6–8 weeks old) were purchased from
Charles River (US) and were raised in a pathogen-free
environment with a constant temperature of 23°C ± 2°C, a light-
dark cycle of 12 h, and a relative humidity of 50%. The rats had free
access to water and standard rat chow, and they were observed for a
full week before the experiments began to make sure they were in
good health.

The estrous cycle of female rat was determined by flushing
vagina with sterile saline at 7:30 a.m., drying 50 uL lavage on the
glass slide, and staining with Wright and Giemsa solution
(Servicebio, China). Female rats were randomly assigned into five
groups after two estrous cycles (around 8 days): Sham, PBS,
MenSCs, VitroGel, and MenSCs + VitroGel. To establish the
IUA model, rats were injected at the gluteus maximus for general
anesthesia with Zoletil 50 (tiletamine hydrochloride: zolazepam
hydrochloride = 1 : 1; 40 mg/kg; Virbac Laboratory, France) after
fasting for 12 h, their belly cavities were opened and uteri was
exposed, and then the left horns of the uteri were scratched with a
20-gauge syringe until the uterine walls became congested and rough
to establish IUA pathology for all rats, except for the Sham group in
which the abdomens were cut open without scratching the uteri.
One week later, we slowly injected 200 ul PBS, 1 × 105 MenSC cells
(P5) suspended in 200 uL PBS, 200 uL VitroGel MMP solution, and
1 × 105 MenSC cells (P5) suspended in 200 uL VitroGel MMP
solution with 1 mL syringes into the left horns of the uteri after
opening belly cavities, for the PBS group, the MenSCs group, the
VitroGel group, and the MenSCs + VitroGel group, respectively.
Rats were euthanized with CO2 inhalation. All animal studies and
euthanasia procedures were approved by Tongji University’s Animal
Care Committee (protocol code TJBG02022201).

2.5 Histological analysis

Rat uteri tissue was collected and fixed with 4%
paraformaldehyde (Sangon, China), then dehydrated, and
embedded in paraffin. A series of 4-μm sections were prepared
and two of every five sections were selected for hematoxylin and
eosin staining (H&E) and Masson staining. The slides were
evaluated under the light microscope (E100, Nikon, Japan). The
total number of vessels and glands were counted and the fibrosis
condition was evaluated.

2.6 Immunohistochemistry

Paraffin sections were dewaxed with a dewaxing solution and
rehydrated with anhydrous ethanol before immunohistochemistry.
Following high-temperature and high-pressure antigen retrieval, the
sections were treated with 3%H2O2 at room temperature in the dark
for 25 min to inhibit endogenous peroxidase activity, and then
washed with PBS for 3 times. Subsequently, the sections were
incubated with 3% BSA at room temperature for 30 min. After
the serum blocking buffer was shaken off gently, the sections were
incubated with the primary antibodies (TGF-β1 Rabbit pAb,
A15103, ABclonal, China; PDGFβ Rabbit pAb, A1195, ABclonal)

at a dilution of 1:200 at 4°C overnight. On the next day, all sections
were washed with PBS and incubated with the secondary antibody
(GB21303, Servicebio) for 50 min at room temperature, and then
stained using 3, 3′-diaminobenzidine (DAB). Finally, the sections
were counterstained with hematoxylin for 3 min and washed with
PBS. The positive signals were observed and evaluated by an optical
microscope (E100, Nikon), and the IOD/area (Integrated Optical
Density) and percent positive rate were analyzed by Image Pro Plus
6.0 software.

2.7 RT-qPCR

Total RNAwas isolated from rat uterine tissue using the RNAiso
Plus Reagent (Takara, Japan) following the manufacture’s
instruction, and quantified using a NanoDrop 2000c
Spectrophotometer (Thermo Fisher Scientific). Reverse
transcription was performed using the Evo M-MLV RT Premix
kit (Accurate Biotechnology, China), and cDNA was input into
qPCR system with the SYBR Green Pro Taq HS Premix Kit
(Accurate Biotechnology). Reaction of qPCR was run in technical
duplicates on an ABI ViiA 7 platform (Thermo Fisher Scientific).
The primer sequences for RT-qPCR are shown in Table 1. Specificity
of qPCR reaction was confirmed by single peak in melting curve.
The relative expression of each gene was normalized to GAPDH.

2.8 Fertility test

After mating one female with one male rats, the day 0.5 of
gestation was determined when sperms were observed in vaginal
smears. Then the number of embryo implantation was recorded at
16.5 days of gestation. No structural abnormalities of the fetus and
placenta were observed (fetus with no eyes, no face, few fingers or
deformity, no anus, and placenta with hypertrophy, atrophy, and
necrosis). The rate of embryo implantation was calculated by
dividing embryo count on left horn by total embryo count on
both horns.

2.9 In vivo imaging

MenSCs were labeled with DiR iodide (Cat. No.22070, AAT
Bioquest, US) before uterine transplantation. 3 × 105 cells were

TABLE 1 Sequences of primers used in RT-qPCR.

Gene Forward primer 5′→3′ Reverse primer 5′→3′

collagen I ATGTTCAGCTTTGTGGAC GAGATGATGCTTTGA
CAGATG

HB-EGF TCTGTCTGTCTTCTTGTCAT TTCCAAGTCATAACCTCCTC

IL2 TGAGTGCCAATTCGATGAT GAGATGATGCTTTGA
CAGATG

Lif CCCTACTGCTCATTCTGC AGTTGACTCTTGATCTGGTT

αvβ3 CATCTGTACCACGAGAGG AGACTCATCTGAGCACCA

IL10 GTAGCCACCCAACAAACA GAGACAGACAAGCAAGAGAT
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incubated in 5 μM DiR solution at 37°C for 20 min, then washed
twice with PBS. Next, the DiR-labeled MenSCs were
transplanted into rat uterus. The image capture and analysis were
done by an in vivo imaging system (Tanon, China) at day 0, day
4 and day 8.

2.10 Statistical analysis

The mean values of experiments performed in triplicate are
expressed as the mean ± SD. Statistical analysis of the results of all
data were performed using GraphPad Prism 9 software to perform

FIGURE 1
Characteristics of human MenSCs. (A) Spindle-shaped morphology of isolated MenSCs at passage 5 under the microscope (40 um). (B) Verification
of MenSCs by flow cytometry with both positive (CD73, CD90, CD105, CD276, and HLA-A, B, C), and negative surface markers (CD34, CD44, and HLA-
DR). (C) Secreted stem cell factors quantified by ELISA, including PDGF-β1, TGF-β1, VEGF, and MMP3. Blank: Cell suspensions without antibody. N = 4;
****, p < 0.0001; t-test. FM, fresh medium; CM, conditioned medium.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Wu et al. 10.3389/fbioe.2023.1310149

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1310149


Student’s t-test or one-way analysis of variance (ANOVA) followed
by Fisher’s LSD test, after confirming normal distribution using K-S
test. Significance was defined as *p < 0.05, **p < 0.01, ***p < 0.001.

3 Results

3.1 Verification of primary MenSCs

We isolated MenSCs from human menstrual blood and kept their
primary culture at low passages (up to 24). MenSCs were firstly verified
by light microscope for their typical fibroblast-like morphology
(Figure 1A) (Tan et al., 2016). Molecular Identification of MenSCs
was performed upon the 5th passage using a broad range of surface
markers by flow cytometry, based on summarization of various
previous studies (Alcayaga-Miranda et al., 2015). More than 98.9%
of cultured MenSCs were positive with stem cell markers, including
CD73, CD90, CD105, CD276, andHLA-A, B, C (Figure 1B).Moreover,
the culturedMenSCs were also negative on CD34, CD44, andHLA-DR
signals for discrimination from hematopoietic stem cells, white blood
cells, and activated T cells, respectively (Figure 1B). Mesenchymal stem
cells are known to secret diverse factors supporting their functions
(Uccelli et al., 2008). Consistently, ELISA assays on conditioned

medium of MenSCs quantified strong secretion of PDGF-β1, TGF-
β1, VEGF, and MMP3 (Figure 1C). All these observations confirmed
the identity of MenSCs.

3.2 The combination of MenSCs and
VitroGel rebuilt the histological structure of
uterus in IUA rat model

The workflow of our rat experiment is illustrated in Figure 2.
After random assignment (on D0), female rats were either wounded
by uterine scraping (group II) or treated with a sham procedure
(group I). Seven days later, six random rats from groups I and II (N =
3 vs. 3) were dissected to ensure the establishment of the IUAmodel.
In vivo imaging analysis showed that MenSCs stayed within uteri
and decreased gradually (Supplementary Figure S1). H&E staining
demonstrated that discontinuous luminal surface, damaged uteri,
and loss of the luminal cavity (Figure 3A). Masson staining further
showed increased fibrosis in the wounded uterus (Figure 3A). On
D8, rats in group II were randomly assigned to four subgroups for
different treatments (Figure 2). Eighteen days later, rats with control
treatment (PBS) still had IUA histology: narrow uterine cavity,
endothelial damage (Figures 3B, C), and widespread fibrosis

FIGURE 2
The workflow of the rat experiment.
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(Figures 3D, E). Both VitroGel and MenSCs individually increased
endometrial thickness significantly comparing to PBS treatment, yet
their combination (VitroGel + MenSCs group) further thickened
endometrium to a level even comparable to the sham group (Figures
3B, C). Meanwhile, although each of VitroGel and MenSCs reduced
fibrotic areas mildly and non-significantly, VitroGel-supported
MenSCs diminished fibrosis more strongly with statistical
significance comparing to the PBS group (Figures 3D, E).

3.3 IUA was repaired via anti-inflammation
and angiogenesis

TGF-β1 is a crucial driver of fibrosis (Su et al., 2020). Its protein
level was lowered by VitroGel and MenSCs (Figures 4A, B),
suggesting the retard of fibrosis initiation. In agreement with
Masson staining, RNA expression of collagen I confirmed, at the
molecular level, that VitroGel and MenSCs interrupted fibrosis

FIGURE 3
Histological examination of uteruses in rat IUA model with differential treatments. (A) H&E and Masson staining of rat uteruses with or without IUA
wound on Day 7. (B) Representative H&E staining of rat uteruses after various treatments on Day 26. (C)Quantified endometrial thickness based on H&E
staining (N = 3). (D) Representative Masson staining of rat uteruses after various treatments on Day 26. (E)Quantified fibrotic area ratios based on Masson
staining (N = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ANOVA followed by Fisher LSD test.
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progression significantly (Figure 4C). Besides, inflammatory IL2 and
anti-inflammatory IL10 were down- and upregulated by VitroGel
and MenSCs comparing to the PBS group, respectively (Figures 4D,
E). These observations suggested that the combination of MenSCs
and VitroGel alleviated the IUA damage by creating an anti-
inflammatory environment and halting the fibrosis process.

Moreover, VitroGel and MenSCs, and more significantly their
combination, rebuilt the endometrium via angiogenesis (Figures
5A, B) and, more importantly, recovered expression of several
markers for endometrial receptivity, including Lif, αβγ3, and HB-
EGF (Figures 5C–E). Such recoveries suggested functional
endometrial repair by combining MenSCs and VitroGel.

FIGURE 4
Molecular characteristics of IUA damages in rat IUA model with differential treatments on Day 26. (A,B) Representative immunohistochemistry (A)
and quantification (B) of TGF-β1 in uteruses (N = 3). (C) RNA level of collagen I in uteruses (N = 3). (D,E) RNA level of IL2 and IL10 in uteruses (N = 3). *, p <
0.05; **, p < 0.01; ***, p < 0.001; ANOVA followed by Fisher LSD test.
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3.4 VitroGel-supported MenSCs restored
fertility of IUA rats

Infertility is one of the most devastating symptoms for IUA
patients. Indeed, IUA compromised fertility on the rat model, as

evidenced by a reduced implantation rate of embryo in the
performed left horns of the uterus, comparing the PBS group
with the sham group (Figures 6A, B). Although MenSCs and
VitroGel could individually repair IUA damages on various
histological and molecular characteristics (Figures 2–5), neither

FIGURE 5
Molecular characteristics of endometrial recovery in rat IUA model with differential treatments on Day 26. (A,B) Representative
immunohistochemistry (A) and quantification (B) of PDGFβ in uteruses (N = 3). (C–E) RNA level of Lif, αβγ3 and HB-EGF in uteruses (N = 3). *, p < 0.05;
**, p < 0.01; ***, p < 0.001; ANOVA followed by Fisher LSD test.
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significantly increased rate of embryo implantation, comparing to
PBS group (Figures 6A, B). To be noted, the combination of MenSCs
and VitroGel fully recovered the fertility of IUA rats with significant
increase than PBS group, showing a highly promising treatment
strategy with strong clinical relevance (Figures 6A, B).

4 Discussion

Several clinical and animal researches have revealed that
hydrogels and MSCs are safe in treating various diseases
(Chaudhuri et al., 2016; Li et al., 2019; Hasani-Sadrabadi et al.,
2020; Wang et al., 2020; Zheng et al., 2020; Chen et al., 2022; Tang
et al., 2022). In this study, we demonstrated that the application of
MenSCs or VitroGel alleviated adhesions to some extent in a rat
model of IUA, characterized by the reduced endometrial fibrosis,
increased endometrial tolerance, and weakened inflammatory
response compared to the PBS group, while the combination of
MenSCs and VitroGel was more effective, and recovered the upmost
important function of uterus - embryo implantation, which is
consistent with existing studies (Liu et al., 2019; He et al., 2022;
Xin et al., 2022). These results suggest that MenSCs combined with
VitroGel might have a functional therapeutic effect against
endometrial damage.

Affecting approximately 1.5%–21.5% of women worldwide, IUA
is induced by a variety of endometrial damages, including
endometrial inflammation, uterine surgery, spontaneous abortion
and retained products of conception. During the healing process, the
contralateral uterine wall may adhere, causing partial or total
occlusion of the cervical canal and uterine chamber, leading to
atypical menstruation, infertility, repeated miscarriages (Yu et al.,
2008), or other serious gynaecological issues (Wang et al., 2022). A
series of strategies have been developed to prevent and treat IUA,
such as microneedle patches (Liu et al., 2019; Gomaa et al., 2021;
Zhang et al., 2022), uterine cavity balloons (Chen and Xie, 2016),
transcervical resection of adhesion (Deans and Abbott, 2010), and
intrauterine scaffolds (Ebrahim et al., 2018; Cai et al., 2019; Ji et al.,
2020; Li et al., 2020). With certain level of therapeutic effects, these
techniques, however, are still facing many challenges, including high
postoperative recurrence rates, frequent dislocation, and biological
incompatibility.

MSCs are a type of pluripotent stem cells with ability of self-
renewal and multidirectional differentiation, which were initially
uncovered in 1976 (Wan et al., 2006) in the bone marrow, and first
proposed as a cell therapy in 1995 (Lazarus et al., 1995). A dozen of
MSC treatments have been approved thus far, such as the Temcell
against acute graft-versus-host disease, and the Alofisel for the
treatment of Crohn’s related enterocutaneous fistular disease

FIGURE 6
Comparison of fertility after differential treatments in rat IUA model. (A) Representative photos of rat uteruses and fetuses. IUA wounds and
treatments were performed only on the left sides of uteruses, while the right sides without any operation were used to rule out confounding pregnancy
factors. (B) Rate of embryo implantation on the left sides of uteruses (N = 5). L = Left; R = Right; rate = embryo count on left horn/total embryo count on
both horns. **, p < 0.01; ***, p < 0.001; ANOVA followed by Fisher LSD test.
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(Phinney et al., 2013). MSC therapies for many other clinical
applications are also in progress, including acute myocardial
infarction, acute ischemic stroke, acute tissue injury syndromes,
as well as chronic degenerative and inflammatory diseases (Hare
et al., 2012; Gao et al., 2015) MSCs can be isolated from a variety of
tissues or body fluids. However, MSCs derived from adipose tissue
or umbilical cord blood have frequent rejection and ethical
restrictions, while bone marrow MSCs often have pain and
infection problems. MenSCs are a novel provenance of MSCs
isolated from menstrual fluid (Khoury et al., 2014). MenSCs are
simple to obtain non-invasively, have low immunogenicity, and can
be autologously transplanted. Therefore, MenSCs are more suitable
source of MSCs for stem cell therapy, and consistently with previous
reports (Zheng et al., 2018; Chang et al., 2020), show ability to help
repair endometrial damage and alleviate symptoms of IUA in a rat
model. Beyond using MenSCs directly, a recent study used MenSCs-
derived exosomes and found prevention of endometrial fibrosis in
IUA model via modulating YAP ubiquitination (Zhang et al., 2019;
Qi et al., 2023).

Adhesion and retention at the application site as well as the
regenerative properties of the MSCs are vital factors for successful
tissue repairing and regeneration. Therefore, various hydrogels are
being developed to deliver stem cells in diverse clinical applications
due to their mechanical properties (Qiao et al., 2021; Han et al., 2022;
Tang et al., 2022; Jirigala et al., 2023). We used a new material,
VitroGel, modified with MMP-sensitive peptides, in this study with
the balanced considerations that it supports MenSCs for enough
period to allow functioning while does not last too long so as to avoid
any biosafety concerns. MMPs, secreted by MenSCs (Figure 1C),
were proved to contribute in various biological processes, such as
tissue growth and remodelling, trauma repair, tissue defence
mechanisms, and immune response (Lindsey, 2018; Zinter et al.,
2019; Shen et al., 2021; de Almeida et al., 2022). In combination with
MenSCs for treating IUA in rats, which has not been reported so far,
the tunability of the hydrogel creates an optimized
microenvironment for cell growth and thus enhances the
repairment function of MenSCs. Although the detailed molecular
mechanism on interaction between VitroGel andMenSCs is not well
depicted, many studies consider biosupport, rather than cell
signalling, as the major role of hydrogel (Wisdom et al., 2018; Jin
et al., 2023; Xu et al., 2023).

We further explored the underlying mechanism of MenSC
effectiveness on treating IUA. Type 1 collagen (Collagen I) is the
most abundant collagen in many human tissues, such as bone, skin
and tendons. Collagen I expression levels are regulated by multiple
mechanisms, and Collagen I overexpression is positively associated
with tissue fibrosis diseases. It has also been documented that
Collagen I contributes to fibrosis after tissue injury in diabetic
cardiomyopathy where its expression is significantly increased
(Rajesh et al., 2010). In the present study, the extent of
endometrial fibrosis was verified in rat IUA model by Masson
staining along with the RT-qPCR validation of Collagen I, of
which expression is a prognostic molecule in response to tissue
damage as fibrosis. Transforming growth factor-β (TGF-β) family
mediate cell fate-determining activities during growth, tissue
homeostasis and regeneration, and are key participants in
oncogenesis, fibrotic diseases, immune dysfunction and various
genetic disorders (Heldin et al., 2012; Meng et al., 2016; Su et al.,

2020). Both these well-known markers of fibrosis indicate
exceptional defibrosis capability of VitroGel-supported MenSCs.

Physiologically, inflammation is usually the development of a
pattern after tissue damage and is a critical stage of healing after
injury, divided into several processes, including alteration of tissue,
exudation of the inflammatory cells, release of inflammatory factors,
and proliferation of local cells (Eming et al., 2017). In rat IUAmodel,
the combination of MenSCs and VitroGel deactivates the wound-
induced expression of IL-2 and derepresses IL-10. Such observation
not only suggests the role of inflammation in IUA repairment, but
also indicates the safety of both involved materials in terms of
autoimmune concerns.

In summary, we find that MenSCs combined with VitroGel
impede the fibrosis and facilitate the wound repair in IUA via anti-
inflammation and angiogenesis, and eventually restore the fertility
by increasing the endometrial receptivity, superiorly to either
component individually. Although the more detailed underlying
mechanism remains to be further elucidated, and the trajectory of
the injected material warrants to be monitored for safety
measurement by future studies, the present study shines
promising light on high effectiveness of the combined treatment
against IUA.
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