
Multimodal fusion and
human-robot interaction control
of an intelligent robot

Tao Gong1†, Dan Chen1†, Guangping Wang2, Weicai Zhang2,
Junqi Zhang2, Zhongchuan Ouyang2, Fan Zhang2, Ruifeng Sun2,
Jiancheng Charles Ji1* and Wei Chen1‡

1Institute of Intelligent Manufacturing, Shenzhen Polytechnic University, Shenzhen, China, 2AVIC
Changhe Aircraft Industry (Group) Corporation Ltd., Jingdezhen, China

Introduction: Small-scaled robotic walkers play an increasingly important role in
Activity of Daily Living (ADL) assistance in the face of ever-increasing rehab
requirements and existing equipment drawbacks. This paper proposes a
Rehabilitation Robotic Walker (RRW) for walking assistance and body weight
support (BWS) during gait rehabilitation.

Methods: The walker provides the patients with weight offloading and guiding
force to mimic a series of the physiotherapist’s (PT’s) movements, and creates a
natural, comfortable, and safe environment. This system consists of an
omnidirectional mobile platform, a BWS mechanism, and a pelvic brace to
smooth the motions of the pelvis. To recognize the human intentions, four
force sensors, two joysticks, and one depth-sensing camera were used to
monitor the human-machine information, and a multimodal fusion algorithm
for intention recognition was proposed to improve the accuracy. Then the system
obtained the heading angle E, the pelvic pose F, and the motion vector H via the
camera, the force sensors, and the joysticks respectively, classified the intentions
with feature extraction and information fusion, and finally outputted the motor
speed control through the robot’s kinematics.

Results: To validate the validity of the algorithm above, a preliminary test with
three volunteers was conducted to study the motion control. The results showed
that the average error of the integral square error (ISE) was 2.90 and the minimum
error was 1.96.

Discussion: The results demonstrated the efficiency of the proposedmethod, and
that the system is capable of providing walking assistance.
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1 Introduction

In 2019, there were an estimated 12.2 million cases of apoplexy (95% uncertainty interval
(UI) 11–13.6 million) in the world, with an estimated 101 million sufferers according to the
Global Burden of Disease Study (GBD et al., 2021). The increase in stroke patients has resulted in
143 million cases of disability-adjusted life-years (DALYs), and there are currently around
1.3 billion people with disabilities according to data from theWorld Health Organization (Feigin
et al., 2022). Under this tough situation, the present healthcare system, lack of bridle-wise
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physiotherapists (PT), assistive technology, and effective rehabilitation
equipment cannot meet the increasing demand for rehab training, and
disability of the lower extremities limits functional independence in
activities of daily living and significantly deteriorates the quality of life of
the affected individual (Chen et al., 2020; Jarva et al., 2021; Lesaine et al.,
2022). Studies have shown that robot-assisted rehabilitation training is
more effective than traditional gait training in improving walking ability
and balance functions in stroke patients (Nam et al., 2017; Capecci et al.,
2019; Calabrò et al., 2021). Furthermore, rehab training using gait
assistance could help in providing intensive therapeutic exercises while
also allowing for a quantitative assessment of the recovery (Mirelman
et al., 2019). However, the trial-and-error learning hypothesis in motor
control research suggests that position-control-based movement might
decrease motor learning for some tasks, and the human-robot
interaction control is the main pain point of training aiding
(Reisman et al., 2010; Mojadidi et al., 2017).

During normal walking with the robotic walker, the control
system usually recognizes the human intentions via the
interactive sensors, then outputs the actuating speed of the
wheels based on the classification and interactions. In the
literature focused on human-robot interaction (HRI) strategy
for human mobility assistance, the cognitive Human-Robot
Interaction (cHRI) and the physical Human-Robot Interaction
(pHRI) with humans applied in wearable robotics are explained
by Pons et al. (2008). The cHRI is explicitly developed to obtain
the data acquired by a set of sensors to measure bioelectrical and
biomechanical variables. Takanori O. et al. developed an assist
robotic walker (JARoW-II) for elderly people, and proposed a
pelvic-based walking-support control technique without the use

of specific manual controls or additional equipment, via two laser
range finders (LRFs) to obtain coordinate data for the surface of
the user’s lower limbs (Ohnuma et al., 2017). The pHRI is based
on a set of actuators and a rigid structure that is used to transmit
forces to the human musculoskeletal system. For example,
Sierra M. et al. developed Smart Walkers to improve physical
stability and sensory support for people with lower limb
weakness via a haptic joystick with three operational modes
(Sierra M. et al., 2019), after that they proposed the AGoRA
Smart Walker with a human detection system and a user
interaction system, and the walker can estimate the
intentions via thehuman–robot–environment interface (Sierra
et al., 2019). However, the integration of classic Human-
Computer interfaces (HCi) with newer types of interfaces
facilitates effective interaction (Sharma et al., 1998), such as
speech or visual interfaces, tactile sensors, the LRF, the IMU,
and force/torque sensors. The ASBGO system proposed by the
University of Minho is a typical example, the walker was
equipped with load cells, an infrared sensor, the Inertial
Measurement Unit (IMU), and a real sense camera to detect
the postural and gait parameters of the user (Moreira et al.,
2019). To improve the accuracy of the task, a new multimodal
interface for walker-assisted gait is proposed, which involves
the integration of different modalities (Frizera et al., 2011). The
UFES’s smart walker combined force sensing and lower limbs
monitoring to detect the user’s legs and showed accurate
performance in all experiments (Valadão et al., 2016).
However, multi-modality information fusion facilitates better
use of the relationships between multiple types of data, which
can improve the model matching accuracy and effectiveness
(Cifuentes and Anselmo, 2016; Horii and Nagai, 2021; Su et al.,
2023). Therefore, this paper proposed a method for the
multimodal fusion and the HRI control, the video image
from the real sense camera, the interaction forces from the
load sensors, and the motion vector from the joysticks were
employed to detect the interaction information, based on the
multimodal fusion method, a new interactive controller was
designed to assist the patients.

The remainder of this brief is organized as follows. Section
2 contains a description of the RRW system. Section 3 describes the
modeling of the system, and formulation of the control problem as
well as the design and implementation of the desired controller.
Section 4 presents the setup and results of the preliminary test with
three volunteers. Finally, Section 5 concludes the brief.

2 System description

Generally, a human-robot interaction system works in
conjunction with a mobile platform to achieve gait assistance, the
robotic walker provides the user with a safe environment via balance
maintenance, meanwhile, sensors and encoders are employed to
detect the motion intention of the user and calculate the control
output (Zhao et al., 2020; Wang et al., 2023). Therefore, as shown in
Figure 1, we designed a robotic walker consisting of three main parts:
i) an omnidirectional mobile platform (OMP); ii) a body weight
support system (BWS), and iii) a pelvic assist mechanism (PAM),
the design details will be described.

FIGURE 1
Conceptual model of system.
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2.1 Hardware description

In this paper, we present a walking assist system facilitating
pelvic movements for several reasons. First, based on the walking
characteristics of the patients and the problem definition, pelvic
movement abnormalities lead to an increase in the double support
phase and abnormal gait. Second, pelvic obliquity and pelvic
rotation are the key parameters for lower extremity motor
function. And third, the pelvic motions are associated with the
gait. Therefore, we proposed the PAM to smooth the pelvic motions
and install the force/torque sensors, as shown in Figure 2, so we can
detect the middle-lateral and vertical displacement of the pelvis, as
well as pelvic obliquity and pelvic rotation. Based on the range of
pelvic motions during normal gait, the user can achieve normal gait
with the help of the PAM. The T5 corresponds to the middle-lateral
displacement, which consists of a set of ball splines and two springs,
and the displacement is monitored by the force sensors at the end of
the spring. Similarly, T6 and T7 are coupled and correspond to the
forward-back displacement and pelvic rotation, as the pelvis is
connected to the walker by the sliders of the two ball splines.
The pose information of the pelvis is given through calculating
sensor data. Then there is a revolute pair to achieve pelvic obliquity
and tilt, labeled as R8 and R9 respectively. Furthermore, one torque
sensor is installed on the joint pontes between the BWS and the
PAM to detect the vertical motion.

For weight offloading and reduction of the cardiopulmonary
burden, a servo motor is designed to realize the approximately
0.5 m vertical displacement of the pelvis and provide subjects with
appropriate body weight support via a guide screw and a set of linear
guideways. The error between the offloading value and sensor signal is
used to trace the pelvic motion, and the system control is

implemented in TwinCAT2 using a controller (Beckhoff PLC
CX5130). On the top of the BWS, the control platform is installed
to support the upper body weight and implement the interaction
control. Two joysticks and one depth-sensing camera (Surface Go 2)
were used to monitor the human-machine information, the user
manipulated the walker via the left or right joystick according to the
actual condition. The depth-sensing camera is used to obtain the facial
features, as the heading angle can reveal the motion intention.

The primary aim of the OMP is to provide over-ground
mobility, and thus achieve gait assistance. The OMP consists of
three active wheels to provide power, two passive castors to maintain
balance, and a U-shaped rigid steel frame to provide an installation
base. According to the motions of lower limbs, a U-shaped rigid steel
frame is designed to satisfy approximately 0.5 m of free space in the
medio/lateral direction, and 0.8 m of free space in the anterior/
posterior direction. For the active omnidirectional wheels, the
walker is capable of rotation with arbitrary radius.

As described above, the multimodal Human-Robot Interaction
(mHRI) is used to estimate the motion intention: the video image
from the real sense camera, which belongs to the cHRI. the
interaction forces from the load sensors and the motion vector
from the joysticks were employed to detect the interaction
information, which belongs to the pHRI.

2.2 Problem statement

In the interactive control process of lower limb rehabilitation
robot, it is easy to produce more interference signals for the
abnormal walking characteristics of the hemiplegic patients,
which leads to the indisposed control performance, and then the

FIGURE 2
The CAD model of the walker and coordinate system.
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robotic walkers cannot assist the users to finish the Activity of Daily
Living (ADL) tasks. For the problem at hand, mobile rehab robots
need to perceive the motion intentions via the cHRI or the pHRI. For
passive walkers, the problem is to detect the safety of the user and
brake at the right moment. For the active walkers, the HRI is more
important for that the system needs to identify the gait pattern
accurately and output appropriate velocity to trace the user.
According to the above analysis, the two major issues are: 1)
estimating the motion intentions; and 2) calculating output velocity.

For estimating the motion intentions, the JARoW-II active
robotic walker obtained the coordinate data for the surface of the
user’s lower limbs via the two LRFs (Hokuyo Automatic Co. Ltd.
model URG-04LX), the advantage of the scheme is capable of the
gait information acquisition, but the drawback is large amounts of
computation; the KineAssist rehab robot estimated the interaction
forces via two ATI force/torque sensors at both side of the pelvis, the
advantage of the scheme is capable of the pelvic information
acquisition, but the drawback is exorbitant price (Hurt et al.,
2015). To sum up, there exist some problems with the current
solution, such as high cost, poor intelligence, and inaccurate
intention recognition.

For calculating output velocity, the mobile robots following
behind a user is a common approach in walker-assisted
locomotion (Seo and Lee, 2009), and it is more natural and
comfortable for the person to control the walker if the robot is
placed in front of the user (Haoyong et al., 2003). But the control
problem is the position error between the mobile robots and
humans, for the signal delay from the cHRI or the pHRI. The
potential solution is to control the system to minimize the
tracking error between humans and the mobile robot

locomotion. A virtual spring model is used to absorb the gap
between the human and the mobile robot motion via the input
velocity generated on the basis of an elastic force (Morioka et al.,
2004). But for pHRI, this solution can lead to a radical change in
the interaction force.

Therefore, we present a method to obtain the heading angle E,
the pelvic pose F, and the motion vector H via the camera, the force
sensors, and the joysticks respectively, as shown in Figure 3, and go
through several steps to get the classification of gait pattern, then
output the velocity to minimize the tracking error, the methods are
detailed in the next chapter.

3 Modeling and control

In order to improve the movement performance and the
controllability of the robotic walker, the robot movement control
model was produced in this chapter based on the robot kinematics,
the active and passive joints were involved. The relation between the
tacking velocity and the output of the servo motors was derived. On
this basis, the control method was presented, which is two stages of
control: the first step performed themHRI detection via the camera,
the force sensors, and the joysticks; while the second step
corresponded to an inverse kinematic controller.

3.1 Kinematic model

The human-robot interaction model is shown in Figure 2, The
variables and parameters used in this paper are defined as follows:
the OXYZ is a global coordinate system, point o0 is the center of the
circle of the OMP, o0x0y0z0 is a local coordinate system attached to
the robotic walker, three omnidirectional wheels are uniformly
distributed along the circumference frame, with the center
oi(i � 1, 2, 3), and φi(i � 1, 2, 3) represents the position angle of
the three wheels. The BWS system is located at point D, through the
pelvic assistance mechanism connecting to the pelvic center op, point
C is the mass center of the robotic walker. Using the position,
orientation, and velocity of point o0 to indicate the position,
orientation, and velocity of the robotic walker, θ is the heading
angle of the mobile platform relative to the X-axis. r is the radius of
the driving wheel, s is the screw lead of the BWS’s precision ball
screw, φi(i � 1, 2, 3) is the distance from the mass center C to the
three omnidirectional wheels.

Defining the velocity matrix of the OMP relative to the global
coordinate system as _q � [ _x _y _θ ]T , the angular velocity of the
three driving wheels as ω � _θ1 _θ2 _θ3[ ]T, and the velocity matrix
relative to the local coordinate system as _qR � [ _xR _yR

_θR ]T . Under
the circumstances that the kinestate of driving wheels is pure rolling
without slide, and the mobile platform is able to do instantaneous
motion along the heading direction of the driving wheels. Defining
the velocity of the PAM, i.e., T4 relative to the global coordinate
system as _z. The angular velocity of the screw as _θ4.

According to robot kinematics and the earlier paper (Ji et al.,
2021), deducing the mapping relation H(q) between the tracking
velocity and angular velocity of the joints:

H q( ): Rn → Rl (1)

FIGURE 3
The physical prototype of the robotic walker.
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where Rn represents the set of the joint angle q, velocity _q and
accelerated velocity €q, and Rl represents the set of the generalized
position and posture vector x in the local coordinate system as
defined in Eqs 2, 3:

x ∈ Rl (2)
q, _q, €q∈ Rn (3)

Then, the velocity vector _x in the local coordinate system can be
obtained by the partial derivative about the mapping relation
H(q), as:

_x � ∂H q( )/∂q( ) _q � J q( ) _q (4)
where J(q) of Eq. 5 is the Jacobian matrix, which belongs to the
set Rl×n,

J q( ) ∈ Rl×n (5)
According to the derivation of the earlier paper, for the active

joints, the inverse Jacobian matrix can be obtained as Eq. 6,

J−1 � 1
r

−1 0 0 d1 cos π/2 − φ1( )
0.5 −0.866 0 d2 cos π/6 − φ2( )
0.5 0.866 0 d3 cos π/6 + φ3( )
0 0 2πr/s 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Through the matrix inverse in the MATLAB, the explicit
expression of the Jacobian matrix can be written as Eq. 7:

J q( ) � r

−2/3 1/3 1/3 0

0 − 

3

√ /3 

3

√ /3 0

0 0 0 3s/2πr

1
3d1 cos π/2 − φ1( ) 1

3d2 cos π/6 − φ2( ) 1
3d3 cos π/6 + φ3( ) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

For the passive part of the robotic walker, as shown in Figure 4,
the pelvic motions can lead to a change of position, so the D-H
method is used to calculate the relation between the current pelvic
pose and the passive joints, then we can obtain the current pelvic
pose through the inverse kinematics and sensor data.

For the passive joint i, the rotation matrix i-1Ri and
displacement vector b′i contain the static joint structure (i-1Rsi

and bsi′ ) and dynamic rigid motion (Rmi and bmi
′ ), which can be

expressed as Eqs 8, 9:

i-1Ri � i-1RsiRmi (8)
b′i � bsi

′ + bmi
′ (9)

According to Eq. 1, the position vector and rotation matrix of
the joint can be obtained as Eqs 10, 11:

0Pn+1 � ∑n

i�0
0Rib

′
i (10)

0Rn � ∏n

i�1
i-1Ri (11)

Via Eq. 4, a velocity vector in the local coordinate system can be
obtained. To translate into the velocity vector in the global
coordinate system, taking point o0 as a reference point, Eq. 4
premultiplies rotation matrix and tR � [ vR ωR ]T translates to
robot velocity in the global coordinate system tM:

tM � JGtR (12)
where tM � [ vM ωM ]T, JG is the rotation matrix. Then we can
obtain the velocity and angular velocity of the robotic walker in the
global coordinate system, which is used for error tracking.

3.2 Intention prediction

The multimodal human-robot interaction model is shown in
Figure 5, the facial recognition is the cHRI, which is used to detect
the Yaw, Roll, and Pitch angle of the head via a real sense camera,
then we can predict the direction the user wants to go and extract the
angle feature Ε. The force sensors and control levers are the pHRI,
which are used to interact with users. The force sensors installed on
the PAM can not only able to obtain the interaction force and torque
but also detect the current pelvic pose. By the signal combination of
the sensors and the principles of human motion, the motion
intentions of the lower limbs can be obtained as F. Secondly, the

FIGURE 4
Mechanical construction of the PAM.
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control levers are used to interact with the hands, and we can obtain
the motion intentions by the information vector, defined asΗ. After
the feature extraction, we combine the feature via multimodal
fusion, which classifies the motion intention into seven types:
forward, backward, turn left, turn right, front-left, front-
right, and stop.

For the control levers, we can control the walker with two
levers as described in the previous paper (Ji et al., 2021). This
paper addressed the prediction pattern with a single control lever,
defining the lever vector as H, the magnitude of the vector as |H|,
the direction of the vector as Φ, and the method to obtain the
motion intentions is as follows:

1) Classify the workspace of the lever into five regions OABCD,
defined as Eqs 12a–16:

O ∈ H| |≤ t,−π<Φ≤ π (12a)
A ∈ t< H| |≤m,−π/12≤Φ≤ π/12 (13)

B ∈ t< H| |≤m,−17π/18<Φ< − π/12 (14)
C ∈ t< H| |≤m, 17π/18≤Φ≤ − 17π/18 (15)
D ∈ t< H| |≤m, π/12<Φ< 17π/18 (16)

where t is the threshold value, m is the maximum value.
2) signal collection of the lever vector, as shown in Figure 6, obtain

the direction and magnitude of the vector, save the data in time order;
3) predict the motion intention via the current region and

change of the region, the relation between the change rule and
the motion intention is shown in Table 1.

The basic movement pattern of the robotic walker is shown in
Table 1, forward, backward, turn left, turn right, front-left, front-right,
and stop respectively.When the change rule is of the O-A, B-A, or D-A,
the system predicts the human intends to move forward; when the

change rule is of the O-C, the system predicts the human intends to
move backward; when the change rule is of the O-B, the system predicts
the human intends to turn left; when the change rule is of the O-D, the
system predicts the human intends to turn right; when the change rule
is of the A-B, the system predicts the human intends to move to front-
left; when the change rule is of the A-D, the system predicts the human
intend to move to front-right; and the walker will stop with other
conditions. Besides, when the interaction forces show abnormal values
or rapid change, or the real sense camera detects a dangerous

FIGURE 5
The multimodal human-robot interaction model of the robotic walker.

FIGURE 6
Definition of the five regions OABCD.
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expression, or the emergency stop button is pressed, the walker
performs the Stop action.

The decision rule by the interaction forces has been discussed in the
previous paper (Ji et al., 2020). For facial recognition, we use a real sense
camera to detect the Yaw, Roll, and Pitch angle of the head, the angle
feature Ε is used to assist the prediction. When the angle feature
Ε ∈ [ −π/12 π/12 ], the system predicts the human intends to move
forward, and we define that Ε � 1; when the angle feature
Ε ∈ [ −π/2 −π/12 ], the system predicts the human intends to turn
left, and we define that Ε � 2; when the angle feature Ε ∈ [ π/12 π/2 ],
the system predicts the human intends to turn right, and we define that
Ε � 3; we define that Ε � 0 with other conditions. In practice, apply the
comprehensive methods to improve the recognition precision, and
classify the move patterns via the multimodal fusion.

Then the controller calculates the output based on the
classification results and interaction single, the function
relationship can be expressed as Eq. 17:

f vR ,ωR , rR( ) � g H, F, E( ) (17)
After the signal has been processed, we define the dead zone to

improve stability, then the robot velocity in the local coordinate
system can be expressed as Eqs 18, 19:

vR � kpΗ + kd _Η + kF∑2
i�1
Fi, E> 0

0, E≤ 0

⎧⎪⎪⎨⎪⎪⎩ (18)

ωR � kpΗ sinΦ + kd _Η sinΦ + kFΔFi, E> 0
0, E≤ 0

{ (19)

rR � m

Η sinΦ| | − 1, ∈ 0,+∞( ) (20)

where kp and kd are the PD gain coefficient, and kF is the gain
coefficient of the interaction force.

Then by Eq. 12 to calculate the robot velocity in the global
coordinate system tM, which is used to obtain the motion trail in the
plane OXY, so we can compare the reference path and the actual
path, and evaluate the effectiveness of the control method.

4 Experiment and verification

To prove the effectiveness of the proposed control method, a
preliminary experiment with three healthy volunteers was carried
out in this study. In the preliminary experiment, three healthy
volunteers were asked to finish a task within the required time.
Three kinds of trajectories were chosen to simulate the ADL task
which were printed on the ground, and then the actual path data was
recorded by the Programmable Logic Controller (PLC).

4.1 Experimental setup

The robotic walker was tested with the proposed control method
and three health volunteers. The “∞” path, “○” path, and “□” path were
used to test if the robotic walker could allow the volunteers to walk
naturally. The experiment was carried out to evaluate the control
performance by asking the three healthy volunteers to walk along
the three given paths respectively. Three healthy adults were selected for
the experiment study, and three menwith an average age of 30.7, height
of 173.3 cm, and weight of 71.7 kg were involved. Before the
experiment, the volunteer wore a harness to connect with the
robotic walker and adjusted the pelvic width. Inclusion criteria are
no abnormalities in the nervous system, muscle-bone system, or found
during physical examination, and having had no special balance
training previously. A commonly used “∞” curve was firstly painted
in black on the ground as the target path that the volunteers were asked
to follow, and then the “∞” curve was replaced with a “○” and “□”
curve, respectively. Each person had one chance to try the three paths
and the experiment results were recorded by the encoders of the three

TABLE 1 Basic movement pattern of the robotic walker.

Region O A B C D

O — Forward Turn left Backward Turn right

A Stop — Front-left — Front-right

B Stop Forward — Stop —

C Stop — Stop — Stop

D Stop Forward — Stop —

FIGURE 7
Verification experiment to finish the “∞” curve with three healthy adults. The heavy line is the reference path and the dashed line represents the
actual path.
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omniwheels. In the experiment, the volunteers were asked to familiarize
the operation of the robotic walker for 5 min and then finish the task
within 60 s.

4.2 Data processing

For the tracking error analysis, the three target paths were
mathematized in MATLAB to ensure the consistency between
the painted curve and the mathematized curve. The actual
position and orientation of the robotic walker were calculated by
the three encoders of the driving wheel, which were calculated by the
previously derived formulas. Then calculating the error between the
actual path and reference pose samples, for comparison, the amount
of the discrete point was processed into consistent. The normalized
integral square error (ISE) cost function was used to evaluate the
path-tracking error.

Descriptive and analytical statistics were performed by the SPSS
22.0 andMATLAB 2016b. The actual paths were time normalized to
100% reference path. The error mean and standard deviation of
position and orientation is defined by the difference between the
target path and the reference path. The experimental results are
shown in Figures 7–9.

5 Discussion

The three experimental results are shown in Figures 7–9, the
volunteers finished the task within the prescribed time, it can be seen
that the volunteers can follow the three given paths within an
acceptable error range, and the “∞” curve is the most difficult
task, indicating that the robotic walker allows the person to walk
naturally under the mHRI and control with very minimal effort. As
shown in Figure 7, the initial point and the endpoint are in the center

FIGURE 8
Verification experiment to finish the “○” curve with three healthy adults. The heavy line is the reference path and the dashed line represents the
actual path.

FIGURE 9
Verification experiment to finish the “□” curve with three healthy adults. The heavy line is the reference path and the dashed line represents the
actual path.
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of the curve, and volunteer 1 and volunteer 2 showed relatively big
errors, and the ISE results are 2.69, 3.84, and 3.43 respectively,
compared with the previous experimental results, the proposed
method has a significant improvement. For the verification
experiment to finish the “○” curve, the volunteers easily finished
the task within the prescribed time, and the ISE results are 2.85, 2.15,
and 3.76 respectively. For the “□” curve experiment, the volunteers
easily finished the task within the prescribed time, and the ISE
results are 2.44, 2.96, and 1.98 respectively. The results show that
subjects can operate the walker to follow the prescribed curve, and it
is evident that the walker can recognize the motion intent accurately
and the volunteers can control the walker to fulfill the given task.
This tracking experiment paves the way for the clinical application.

6 Conclusion

The present work demonstrates that the robotic walker is capable of
intent recognition with the proposed mHRI system, in the ADL
assistance, the robotic walker has the potential to reduce the stress
on relatives of the patient. The proposed control algorithm for the
motion control is derived via the robot kinematics and multimodal
fusion human-robot interaction and proved to be effective in the pursuit
movement by the preliminary experiment with three health volunteers.
The experiment result shows that the robotic walker can effectively
predict the user’s movement intention and provide appropriate output
velocity to track. The RRW system may be used to improve the gait
function of stroke survivors which is crucial to their quality of life.
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