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Clustered regularly interspaced short palindromic repeat (CRISPR)-based genome
editing (GED) technologies have unlocked exciting possibilities for understanding
genes and improvingmedical treatments. On the other hand, Artificial intelligence
(AI) helps genome editing achieve more precision, efficiency, and affordability in
tackling various diseases, like Sickle cell anemia or Thalassemia. AI models have
been in use for designing guide RNAs (gRNAs) for CRISPR-Cas systems. Tools like
DeepCRISPR, CRISTA, and DeepHF have the capability to predict optimal guide
RNAs (gRNAs) for a specified target sequence. These predictions take into account
multiple factors, including genomic context, Cas protein type, desired mutation
type, on-target/off-target scores, potential off-target sites, and the potential
impacts of genome editing on gene function and cell phenotype. These
models aid in optimizing different genome editing technologies, such as base,
prime, and epigenome editing, which are advanced techniques to introduce
precise and programmable changes to DNA sequences without relying on the
homology-directed repair pathway or donor DNA templates. Furthermore, AI, in
collaboration with genome editing and precision medicine, enables personalized
treatments based on genetic profiles. AI analyzes patients’ genomic data to
identify mutations, variations, and biomarkers associated with different diseases
like Cancer, Diabetes, Alzheimer’s, etc. However, several challenges persist,
including high costs, off-target editing, suitable delivery methods for CRISPR
cargoes, improving editing efficiency, and ensuring safety in clinical applications.
This review explores AI’s contribution to improving CRISPR-based genome editing
technologies and addresses existing challenges. It also discusses potential areas
for future research in AI-driven CRISPR-based genome editing technologies. The
integration of AI and genome editing opens up new possibilities for genetics,
biomedicine, and healthcare, with significant implications for human health.
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1 Introduction

Genome editing (GED) technologies allow for the precise
alteration of DNA sequences in living cells (Ma and Liu, 2015).
This has transformed our ability to study gene functionality and
develop new therapeutic strategies. The three most advanced GED
technologies (Figure 1) are zinc-finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and
CRISPR-Cas-associated nucleases (CRISPR/Cas9) (Gaj et al.,
2013; Gaj et al., 2016; Siva et al., 2021). CRISPR/Cas9 is the most
commonly used GED technology due to its versatility, effectiveness,
and ease of use (Zhu, 2022; Adli, 2018; Arora and Narula, 2017). The
cell and gene therapy sector are constantly evolving, and recent years
have seen remarkable progress in the creation of CRISPR-based
treatments, leading to the commencement of numerous clinical
trials (CTG Labs - NCBI, 2023a; CTG Labs - NCBI, 2023b; CTG
Labs - NCBI, 2023c; CTG Labs - NCBI, 2023d). GED technologies
can be used to treat human diseases in a number of ways (Li et al.,
2020). For example, it can be employed to address disease-causing
mutations, such as those in tumor suppressor genes or

cardiovascular diseases like long QT syndrome and hypertrophic
cardiomyopathy. Additionally, it can be used to knock out defective
genes, insert new genes into cells, and tackle genetic diseases such as
sickle cell anemia and cystic fibrosis. Furthermore, it can target genes
responsible for neurodegenerative diseases like Alzheimer’s and
Huntington’s. Lastly, it can create cells resistant to viral infections
such as HIV and Hepatitis B (Li et al., 2020). CRISPR-based GED
techniques have evolved to encompass base editing (BED)
(Gaudelli et al., 2017), prime editing (PED) (Anzalone et al.,
2019), and epigenome editing (epi-GED) (Goell and Hilton,
2021). Each of these methods offers distinct benefits and
drawbacks and can be valuable in specific circumstances. There
is a need for interventions and decisions at multiple levels, as
illustrated in Figure 1 and Figure 2. This emphasizes the
importance of AI in the process of making appropriate choices
that are specifically tailored to address distinct situations in the
genome editing process.

Using AI in GED is imperative and holds the promise to
revolutionize the healthcare sector. CRISPR-based editing
technologies like CRISPR/Cas9 allow for precise and targeted
editing of the genetic code of organisms, which is a major
breakthrough in biotechnology (Tyagi et al., 2020). However, AI’s
integration with CRISPR, improves the overall GED pipeline,
providing new insights, capabilities, and opportunities for
manipulating and understanding the genetic code. The recent
advances in multi-omics technologies that can produce big data
from different sources, such as genes, RNA, proteins, and DNA
modifications, have made AI necessary for analyzing medical
information (Hamet and Tremblay, 2017). Deep learning (DL)
and Machine Learning (ML) models have been used to analyze
and comprehend large and complex genomic data sets (Quazi,
2022). These studies could prove valuable in identifying more
appropriate features for AI models, thereby enhancing their
ability to predict editing outcomes such as off-target editing. For
example, in cancer, AI models can utilize genomic data to identify
cancer subtypes, and CRISPR-based GED can assist in engineering
immune cells capable of targeting these subtypes or disrupting
oncogenes (Katti et al., 2022). Leenay et al. (2019) developed an
ML algorithm called SPROUT that can predict the repair outcomes
of GED in primary T cells with high accuracy. SPROUT was
trained on a large dataset of CRISPR-Cas9 editing events, and it
can be used to design CRISPR experiments to maximize the desired
editing outcome. It is a valuable tool for researchers who are using
CRISPR-Cas9 to develop new therapies for cancer and other
diseases. CRISPR technology is advancing quickly. As shown in
Figure 1, Cas9 is not the only option for GED. There are other
variants of Cas proteins that are being investigated for this
purpose. Some examples are CRISPR-Cas12 (Xiao et al., 2021;
Senthilnathan et al., 2023), CRISPR-Cas13 (Kavuri et al., 2022),
CRISPR-Cas3 (Morisaka et al., 2019), and many others. Therefore,
the role of AI approaches should become more important. The
complete list of abbreviations and their full forms used in this
paper is provided in Table 1.

The review on “Advancing Genome Editing with AI:
Opportunities, Challenges, and Future Directions” highlights
several key contribution points. It emphasizes the critical role of
AI in advancing GED, especially in the context of CRISPR-based
technologies. It underscores howAI enhances the precision, efficiency,

FIGURE 1
Various aspects of GED. CRISPR encompasses various gene-
editing approaches. The most well-known is CRISPR-Cas9, utilizing
Cas9 endonuclease guided by sgRNA to target and modify specific
DNA sequences. Numerous other Cas nucleases have been
identified in the recent past. CRISPR-Cas12 offers a different target site
and has diagnostic advantages. Cas13 functions as an RNA-guided
RNA endonuclease, specifically targeting and cleaving RNA. Base
editing allows precise changes without double-strand breaks, while
Prime editing enables versatile DNA sequence modifications.
Epigenome editing controls gene expression via epigenetic marks,
while CRISPRi and CRISPRa regulate gene expression without altering
DNA. These techniques each have distinct applications in genetics and
medical research, selected based on specific objectives and genetic
contexts. [TALENs: Transcription activator-like effector nucleases,
ZFNs: Zinc-finger nucleases, sgRNA: single-guide RNA
(Abbreviation: Table 1)].
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and cost-effectiveness of gene editing, making it a powerful tool in
addressing a broad range of human diseases. One of the key
contributions is the discussion of AI models used for designing
guide RNAs (gRNAs) in CRISPR-based GED. It explains how AI
models, including ML and DL, are employed to predict gRNA
efficiency, offering remarkable accuracy in identifying optimal
gRNAs for specific applications. The review delves into the role of
AI in improving BED, PED, and epi-GED techniques. It describes
how AI models have been developed to predict base efficiency and
editing patterns with high accuracy, thus facilitating the correction of
genetic mutations. The review points out the potential of AI, CRISPR,
and precision medicine in personalizing treatments based on
individual genetic profiles. AI is depicted as a critical component
for analyzing patient data and suggesting specific gene modifications
to tailor treatments to individual patients, ensuring therapies are more
precise and effective. It also contributes to the field by providing a
comprehensive overview of the synergistic relationship between AI
and GED. It showcases the transformative potential of this
collaboration and its implications for healthcare, biomedicine,
and genetics.

1.1 Research methodology and the
literature sources

This study offers insights from various online databases such as
PubMed Central, Scopus, Medline, and Google Scholar. It compiles

information from studies and research findings that explore the
utilization of ML and DL approaches for genome editing
technologies. Table 2 displays the keywords used for the database
searches. Additionally, this assessment examined the work of other
academics and made fresh research recommendations.

1.1.1 Inclusion criteria
The inclusion of articles in the review was based on their

eligibility and the distinctiveness of the topic. The selection was
confined to papers published in English. Furthermore, this
assessment did not consider case studies, comments, or letters to
the editor.

1.1.2 Elimination criteria
The first level of exclusion involved the evaluation of abstracts.

The subsequent steps included data extraction and a thorough
analysis of the full texts. The articles were then disregarded due
to their lack of relevance, English language proficiency, or
bad writing.

1.1.3 Results
A total of 460 unique publications were acquired from PubMed

Central, Scopus, Medline and Google Scholar, and other sources.
After screening the titles and abstracts, 25 papers were excluded.
Additionally 38 articles were removed based on full text analysis,
leaving behind 106 articles for final assessment. Figure 3 shows the
article selection using the PRISMA methodology.

FIGURE 2
Challenges associated with genome editing using CRISPR technology. One of themost acknowledged challenges in CRISPR-based genome editing
is the efficiency of on-target editing and the potential off-target effects. Researchers have explored the use of AI-based tools, such as AlphaFold2, for the
prediction of more effective Cas variants and effector proteins. While designing linker peptides is currently not a major obstacle, it remains crucial when
connecting an effector protein to a Cas nuclease. (Abbreviation: Table 1).
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2 Understanding AI

AI is a branch of computer science that focuses on creating
systems or machines capable of performing tasks that typically
require human intelligence. AI, particularly ML and DL, has
emerged as a transformative force, revolutionizing the way we
approach diagnostics, treatment, and even gene editing. When it
comes to gene editing, AI models play a pivotal role in deciphering
complex genetic information, identifying patterns, and predicting

potential outcomes. The creation of these models involves a multi-
faceted process that leverages both ML and DL techniques.

2.1 Data collection and preprocessing

The first step in developing AI models for gene editing involves
the collection of extensive genetic data. This data may include
information from various sources, such as genomic sequencing,
patient records, and experimental results. Once collected, the data
undergoes thorough preprocessing to ensure its quality and
relevance. This step is crucial to remove noise and irrelevant
information, allowing the AI models to focus on
meaningful patterns.

2.2 Model selection

Choosing the right type of model is essential for the success of AI
applications in gene editing. In this context, both traditional ML
algorithms and sophisticated DL architectures are considered. ML
models, like decision trees or support vector machines, may be
employed for simpler tasks, while DL models, especially deep neural
networks, are preferred for handling the intricate relationships
within complex genetic data.

2.3 Training the model

Training the AI model involves exposing it to a labeled dataset
where it can learn the patterns and relationships within the genetic
information. Supervised learning techniques are often employed,
where the model is trained on examples with known outcomes. The
model adjusts its parameters iteratively until it can accurately predict
outcomes based on new, unseen data.

2.4 Optimization

Once themodel is trained, optimization is performed to enhance
its performance. This involves fine-tuning parameters, adjusting
architectures, and employing optimization algorithms to maximize
the accuracy and efficiency of the gene editing predictions.
Continuous feedback loops may be established to update the
model as more data becomes available or as our understanding
of genetic processes evolves.

2.5 Integration into healthcare systems

The finalized AImodels are integrated into healthcare systems to
assist clinicians in making informed decisions regarding gene
editing. These models can provide insights into potential genetic
disorders, identify optimal gene editing strategies, and predict
patient responses to specific interventions.

AI holds significant promise in optimizing various facets of the
genome editing process (Figure 4). The collection of multi omics
data from individuals undergoing gene therapy provides a rich

TABLE 1 A list of all the acronyms and their full names used in this article.

Acronym Definition

ABEs Adenine base editors

AI Artificial Intelligence

BED Base editing

Bi-LSTM Bidirectional long short-term

CBEs Cytosine base editors

CRISPR Clustered regularly interspaced short palindromic repeat

CNN Convolutional neural network

dCas9 Dead Cas9

DL Deep learning

DNA Deoxyribonucleic Acid

epi-GED Epigenome editing

gRNAs Guide RNAs

GED Genome editing

HDAC3 Histone Deacetylase 3

indels Insertion or deletion of small fragments

KRAB Krüppel-associated box

LR Linear regression

MMEJ Microhomology-mediated end-joining

ML Machine learning

mRNA Messenger Ribonucleic Acid

nCas9 Nickase Cas9

ngRNA Nick Guide RNA

NHEJ Nonhomologous end-joining

PED Prime editing

RNN Recurrent Neural Network

RT Reverse Transcriptase

sgRNA single-guide RNA

SNVs Single Nucleotide Variant

SVM Support vector machine

TET3 Tet methylcytosine dioxygenase 3

TALENs Transcription activator-like effector nucleases

ZFNs Zinc-finger nucleases
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dataset that can be leveraged by AI algorithms. Through the analysis
of this data, AI can forecast the likelihood of successful gene editing
outcomes for specific patients based on patterns observed in
previous cases. Moreover, AI plays a pivotal role in guiding the
genome editing process by aiding in the selection of optimal editing
strategies. This includes the design of guide RNAs (gRNA) with
heightened precision—minimizing off-target effects while
maximizing on-target editing efficiency. AI algorithms also
contribute to the identification of the most suitable delivery
strategies for the genome editor. In the post-infusion phase, it
facilitates real-time monitoring and assessment of patients,
enabling a dynamic evaluation of therapeutic efficacy and
potential complications. Subsequent iterations of the workflow
benefit from AI-driven enhancements, refining predictions and
strategies for future patients.

3 AI in gRNA design for CRISPR/
Cas-based genome editing

The effectiveness of GED relies on the selection of the gRNA
sequence. Certain gRNAs have the capacity to disrupt nearly all
target alleles within a cell population, while others exhibit minimal
or no observable activity (Lee et al., 2018). Consequently, a range of
gRNA design tools have been developed, primarily employing ML
and DL algorithms to address this challenge. Figure 5 illustrates the
modular nature of CRISPR-based editing technologies.

Several ML and DL models have been developed for
predicting the efficiency of gRNAs. In accordance with prior
research, the selection of an appropriate methodology holds
paramount importance in the development of reliable models
for predicting gRNA efficiency (on-target/off-target binding)
(Doench et al., 2016). While Linear Regression (LR) has
shown a certain level of effectiveness (Moreno-Mateos et al.,
2015), more efficient models utilize advanced methods like
Support Vector Machines (SVM) (Chari et al., 2015; Wong
et al., 2015) and Gradient Boosted Trees (GBT) (Doench
et al., 2016). These advanced techniques are particularly
advantageous as they incorporate considerations of intricate
feature interactions (McKinney et al., 2006). Several tools were
developed to predict the efficiency of these guides. Wessels et al.
(Wessels et al., 2023) developed a CNN named TIGER to forecast
efficacy based on guide RNA sequence and context. Almost

200,000 RfxCas13d guide RNAs were created and tested that
deliberately included designed mismatches, insertions, and
deletions (indels) to target crucial genes in human cells. It was
observed that utilizing gRNA efficacy estimates from the TIGER
combination model could effectively distinguish between vital
genes and control genes. TIGER outperformed the present AI
models in predicting on-target/off-target activity. Xiang et al.
(2021) developed a DL model called CRISPRon that can predict
the efficiency of gRNAs with high accuracy. A dataset of on-target
gRNA activity combined with additional published data was
created, and the CRISPRon model was trained on
23,902 gRNAs. The model’s primary constraint arises from the
fact that the double-strand breaks (DSBs) induced by
Cas9 undergo repair through MMEJ and NHEJ pathways.
Consequently, this repair process results in small indels at the
site of the DSB or large translocations. There are several other
DL-based models like DeepHF, developed by Wang et al. (2019)
that outperformed other gRNA design tools for highly specific
Cas9 variants. Zhang et al. (2021) proposed attention-based
CNNs, CRISPR-ONT (T: Target) and CRISPR-OFFT, for
predicting on-target and off-target activities of sgRNAs. Xue
et al. (2018) introduced DeepCas9, a DL framework based on
CNN, which accurately predicts functional sgRNAs for the
CRISPR-Cas9 system.

Recently, there has been ongoing progress in the development
of off-target prediction algorithms. These algorithms are
typically trained using data obtained from in vitro cleavage
assays, which involve using immortalized cell lines (Störtz and
Minary, 2021). Immortalized cell lines provide a controlled
environment for conducting experiments related to GED
(Mehravar et al., 2019), which makes them a valuable resource
for training predictive models. It has been observed that these off-
target prediction algorithms tend to rely heavily on sequence-
based information, which demonstrates a strong connection with
the actual cleavage activity of CRISPR/Cas9 or similar gene-
editing systems. Physical attributes of the genome such as
chromatin accessibility and DNA methylation pattern features,
currently underutilized in AI models, provide valuable insights
into the three-dimensional structure and packaging of DNA in
the cell, which can impact the accessibility of specific genomic
regions for gene editing. In their study, Störtz et al. (2023)
developed a method known as piCRISPR, which considers a
combination of sequence-based attributes and physically

TABLE 2 Queries made using specific keywords in databases.

Search term Set of keywords

Editing Genome editing, CRISPR/Cas9 editing, Base editing, Prime editing, Epigenome editing

Deep Deep learning, Deep neural network

Machine Machine learning

AI AI in genome editing, AI in gRNA design

Deep learning techniques Recurrent neural networks, Deep autoencoders, long short-term memory, Deep neural network,
deep belief network, deep convolutional neural network, deep Boltzmann machine, deep
reinforcement learning, extreme learning machine

Machine learning techniques Artificial neural network, naïve Bayes, decision tree, k-nearest neighbors, k-means clustering,
random forest, support vector machines, ensemble learning
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informed features, including factors like chromatin accessibility
and DNA methylation. Through an extensive assessment using a
substantial dataset of CRISPR/Cas9 editing occurrences,
piCRISPR exhibited superior performance compared to all
other existing prediction methods for off-target cleavage

activity. The CNN models yielded the best performance
benchmarks, with CNN S5E2 achieving the highest accuracy
(AU - ROC = 0.998). piCRISPR can also effectively pinpoint
new off-target cleavage sites and facilitate the design of CRISPR/
Cas9 experiments with reduced off-target cleavage potential.

FIGURE 3
Article selection using the PRISMA ScR methodology.
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Exon skipping is a promising therapeutic approach for genetic
diseases caused by mutations in exons. CRISPR/Cas9 GED can be
used to induce exon skipping by targeting the splice acceptor or
donor sites of the target exon. SkipGuide (Louie et al., 2021) is a tool
that helps design CRISPR/Cas9-based therapies for genetic diseases
by inducing exon skipping. It tested over 1,000 guide RNAs on
791 splice sequences in mouse cells and predicted the exon-skipping
frequencies with high accuracy. SkipGuide can save time and
resources by finding effective guide RNAs for exon skipping. The

precise selection of guide RNA sequences is crucial for successful
GED, and various ML and DL models have been developed to
predict the efficiency of these sequences. These advanced techniques,
such as SVMs, GBTs, and CNN-based models like TIGER and
CRISPRon, have shown remarkable accuracy in predicting on-target
and off-target activities, making them valuable tools in designing
and optimizing CRISPR-based therapies. These advancements mark
a significant leap toward harnessing the full potential of CRISPR/Cas
technology for precise and effective GED.

FIGURE 4
AI driven gene therapy process.

FIGURE 5
Modular nature of CRISPR-based editing technologies. CRISPR/Cas technology consists of various elements, and the complexity grows in advanced
editing methods, such as epigenome editing, where the selection of the effector and the appropriate effector combination varies according to specific
needs. [ TET3: Tetmethylcytosine dioxygenase 3, KRAB: Krüppel-associated box, HDAC3: HistoneDeacetylase 3, RT: Reverse Transcriptase, dCas9: Dead
Cas9, nCas9: Nickase Cas9, ABEs: Adenine base editors, CBEs: Cytosine base editor (Abbreviation: Table 1)].
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4 Role of AI in enhancing advanced
genome editing pipelines

AI can be used to enhance advanced GED pipelines by providing
tools and methods for designing, optimizing, and evaluating GED
experiments. AI-driven models and tools are instrumental in
enhancing the precision, efficiency, and cost-effectiveness of GED
techniques, making them a robust tool for addressing a wide range
of human diseases. Table 3 provides a comprehensive list of databases
that are associated with GED research, serving as valuable resources for
the development of AI models. These databases offer a wealth of
information, ranging from genetic sequences and variations to
experimentally verified data on GED outcomes. Table 4, on the
other hand, compiles ML and DL-based tools specifically designed
for variousGED applications. AI-poweredmodels and tools play crucial
roles within sophisticated genome editing pipelines. Their contributions
can be classified into the following categories: tools for designing gRNA
to predict on-target and off-target editing, and tools specifically
developed for predicting outcomes in advanced genome techniques.

4.1 Base editing and AI

Base editing is a powerful GED method that allows precise
conversion of individual genomic nucleotides with high efficiency
without requiring double-stranded breaks (Rees and Liu, 2018). In
their work, Evanoff et al. (Evanoff and Komor, 2019) present a
comprehensive summary of base editors, highlighting their modular
design (Figure 5) and the range of options for every part. Several ML
and DL models have been created with the aim of enhancing the
efficiency of base editors with a primary focus on improving editing
outcomes. Arbab et al. (2020) developed BE-Hive, an MLmodel that
uses a deep conditional autoregressive model to predict editing
sequences and base effectiveness. The model achieved high accuracy
in predicting BED genotypic outcomes and efficiency. BE-Hive was
later used to design BED strategies for correcting many SNVs linked
to the disease with ≥90% accuracy, some containing bystander
nucleic acids.

Pallaseni et al. (2022) developed an ML model to predict the
efficiency and patterns of BED. The model used sequence features

TABLE 3 Databases associated with genome editing research for the development of AI models.

Dataset name Data description Data link Type of
editing

Target Machine learning
model used

CHANGE-seq data
Lazzarotto et al.
(2020), (publicly
available)

There are a total of 201,934 off-
target sites scattered throughout
the human genome

https://github.com/tsailabSJ/changeseq CRISPR-
Cas9
genome-
editing

Off-target GBT

DeepHf data Wang
et al. (2019), (publicly
available)

For each nuclease, there are
50,000 gRNAs available,
collectively targeting
approximately 20,000 genes

http://www.deephf.com/ CRISPR-
Cas9 GED

On-target RNN (Recurrent Neural
Network), Bi-LSTM
(bidirectional long
short-term)

Abadi et al. (2017),
(publicly available)

This comprises 33 sets of
sgRNAs, each associated with
its specific targets

https://doi.org/10.1371/journal.pcbi.1005807.s014 CRISPR-
Cas9 GED

Off-
targets

Random forest

Genome CRISPR
database Rauscher
et al. (2017), (publicly
available)

There is a total of
400,000 sgRNA sequences from
the GenomeCRISPR project
dataset.

http://genomecrispr.org/ CRISPR-
Cas9 GED

On-
targets

CNN (named as
DeepSgRNA)

GUIDE-seq data Tsai
et al. (2015), (publicly
available)

Nucleases guided by RNA from
two human cell lines, U2OS and
HEK293, were examined at
different sites

https://github.com/tsailabSJ/guideseq CRISPR-
Cas9
genome-
editing

Off-
targets

CRISTA (CRISPR
Target Assessment using
RF regression)

Arbab et al. (2020),
(publicly available)

Data from as many as
10,638 sgRNA-target pairs was
randomly divided into
partitions

https://www.google.com/url?q=https://ars.els-cdn.com/
content/image/1-s2.0-S0092867420306322-mmc5.
csv&sa=D&source=docs&ust=
1698141109170457&usg=
AOvVaw1eJY32CwBjGjzLD64EITS8

BED On-target Be-Hive (autoregressive
neural network)

Kim et al. (2023),
(publicly available)

Nine Cas9 variants https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA821929/

BED On and
Off-target

SVM, L1-regularized LR,
L2-regularized LR,
AdaBoost, and Random
Forest

Pallaseni et al. (2022),
(publicly available)

Used the dataset from (Arbab
et al., 2020; Song et al., 2020)

https://www.ebi.ac.uk/ena/browser/home BED Off-target GBT

Li et al. (2022), Private 1134 target sequences https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA885770/

BED On-target XGBoost

Kim et al. (2021),
(publicly available)

There are 54,836 pairs
consisting of pegRNAs and
their corresponding target
sequences

https://github.com/julianeweller/MinsePIE PED On and
Off-target

DeepPE
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TABLE 4 ML and DL-based tools for Genome editing applications.

Ref ML models
used

Dataset Description and key
contribution

Performance
evaluation
metrics

Limitation Target

Chuai
et al.
(2018)

DeepCRISPR
(DCDNN)

Thirteen distinct human cell
lines produced a total of
0.68 billion sgRNA sequences

This computational framework
surpasses existing in silico tools by
combining sgRNA on-target/off-
target site prediction into a single
system with DL.

Spearman: 0.246,
AUROC: 0.804,
AUPRC: 0.303

The model acquires an
understanding of which
attributes are crucial for
improved sgRNA structure,
even when trained with a
limited number of samples

On and
Off-target

Lin and
Wong
(2018)

CNN and FNN,
Random Forest,
GBTs, and LR

GUIDE-seq Tsai et al. (2015),
CRISPOR Concordet and
Haeussler (2018)

The key contribution of this paper
is the development and
implementation of a deep CNN
for accurately predicting off-
target mutations in CRISPR-Cas9
gene editing

AUROC: 97.2% for
CNN, AUROC: 97%
for FNN

— Off-target

Xue et al.
(2018)

DeepCas9
(1D CNN)

Wang Wang et al. (2014),
Doench V1 Doench et al.
(2014), Doench V2 Doench
et al. (2016), C.elegans (F et al.
(2015) HCT116 Hart et al.
(2015), Z fish Gagnon et al.
(2014); Moreno-Mateos et al.
(2015); Varshney et al. (2015),
Chari Chari et al. (2015),
Haeussler Haeussler et al.
(2016), HL-60 Xu et al. (2015)

It is the first DL technique that
can recognize
CRISPRCas9 sgRNA activity
directly from genetic sequences
without the need for feature input

Spearman: 0.23-0.61 These datasets’ sgRNA
activity was completely
limited to clinical assays,
where the measured
cleavage efficiency served as
a clear indicator of KO
efficacy

On-target

Liu et al.
(2019)

SeqCrispr (RNN +
CNN + transfer
learning)

DeepCRISPR Chuai et al.
(2018), CRISPR-Cpf1 Zaidi
et al. (2017)

SeqCrispr is a DL model, which
integrates gene network features
specific to a given context into the
model

Spearman: 0.77 The limited knowledge of
gene activity and its
fluctuating effects on
phenotype, and the
challenging biological
interpretation of
computational models all
restrict the predictive
model’s efficiency

On-target

Wang
et al.
(2019)

DeepHF (RNN) With approximately
50,000 gRNAs, DeepHF is the
biggest gRNA on-target
activity set for cells from
mammals

To create the final model,
DeepHF extracts features using a
Bi-LSTM and combines them
with biological features that are
manually created. Important
sequence characteristics linked to
gRNA activity were found in the
study, which also assessed several
ML algorithms for gRNA activity
prediction

Spearman: 0.867,
0.862, and 0.860

They were unable to
determine which algorithm
performed more effectively
than others on endogenous
sites because of the small
amount of data available

On-target

Shrawgi
and
Sisodia
(2019)

DeepSgRNA (CNN,
with Hierarchical
feature generation
abilities)

40,000 sgRNA sequence
examples taken from the
GenomeCRISPR project
database

DeepSgRNA finds and forecasts
RNA guides to improve
performance. There is no need to
create any features with the
suggested model

Spearman: 0.82,
AUROC: 0.85

Specific sgRNA’s off-site
effects have not been
considered in this
investigation

On-target

Wang and
Zhang
(2019)

CNN with 5layers +
transfer learning

Cas9, eSpCas9, Cas9 (/\recA)
Yue et al. (2020)

The main contribution of this
paper is the development of a
CNN_5 layers network for
predicting sgRNA activity in
prokaryotic and eukaryotic
species. The model takes 43nt-
long DNA sequences as input and
predicts on-target activity

Spearman: 0.582,
0.7105, 0.360

The limitation of this model
is that it does not perform
well in predicting the on-
target activity for the Cas9
(/\recA) scenario

On-target

Aktas et al.
(2019)

CNN, MLP, Bi-
LSTM

DeepCRISPR Chuai et al.
(2018)

In this work, sgRNA target
estimate for CRISPR/CAS9 with
DL was carried out to reduce these
genomic aberrations

Accuracy: 96.7% Some of the mistargeted
positions caused unwanted
genome distortions

Off-target
and on-
target

Kim et al.
(2019)

DeepSpCas9 (3
1D-CNN)

DeepSpCas9 It accurately predicted the activity
of the SpCas9 enzyme

Spearman: 0.73 The size of the training
datasets was not ideal

On-target

(Continued on following page)
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and position information to predict editing outcomes for different
types of base editors. The model showed better generalization across
various datasets with a precision varied from 0.49 to 0.72 among
editors. A significant finding from the research pertains to BED,
highlighting that its efficacy is influenced by the sequence,
particularly with the most pronounced impact originating from
the nucleotides surrounding the target base. This makes it difficult to
predict whether a particular target will be edited efficiently, and how
many bystander mutations will be introduced. To overcome this,
Song et al. (2020) trained a DL model that considered both
sequence-based features and the positions of the target
nucleotides within the genome. The model outperformed existing
models in the efficiency prediction of ABEs and CBEs with high
accuracy, exhibiting Pearson correlation values between 0.50 and
0.95. Predicting the outcomes of BED has been a widely explored
subject in this domain, with DL being the predominant approach
used inmost instances. Marquart et al. (2021) developed BE-DICT, a
DL model that predicted the outcomes of adenine- and cytosine-
based editors using an attention-based algorithm. It uses a
protospacer sequence as input and calculates the editing
probability as an output for every target nucleotide. This model
was trained on different datasets and found different AUCs:
ABEmax: 0.86, CBE4max: 0.94, ABE8e: 0.66, and TargetAID:
0.97. Park and Kim (2023) present two DL models, DeepABE
and DeepCBE, available as web tools, for predicting the BED
efficiencies and outcomes of ABEs and CBEs, respectively. Kim
et al. (2023) assessed nine Cas9 variants, each designed to recognize
distinct PAM (Protospacer Adjacent Motif) sequences. A DL model
called DeepCas9variants was designed to predict the most effective
Cas9 variant for targeting specific sites based on the intended
patterns. Later a computational model called DeepBE was also
developed to forecast the editing efficiency and productivity of
63 base editors. It was discovered that the Pearson and Spearman
correlation coefficients ranged from 0.82 to 0.95 and 0.80 to 0.94,
respectively. Li et al. (2022) developed CAELM, an ML model that
predicts the efficiency of cytosine base editors (CBEs) using
chromatin reachability and sequence context. CAELM was shown
to accurately forecast the outcome of in-situ BED. They previously
used CNN (Feng et al., 2019) to predict the efficiency of GBE base
editing, but in this study, they chose the XGB Regressor because
their dataset only included the editing results for 1134 target
patterns, and the XGB Regressor frequently performed better
than DNNs when working with small datasets (Fernoaga et al.,
2020). The model’s accuracy was evaluated using Pearson’s
correlation value, which yielded a r value of 0.64 within the
predicted and measured values. Chen et al. (2022) created
CGBEs (C•G•toG•C base editors) with a variety of editing

profiles. In mammalian cells, on a collection of
10,638 genomically merged target locations, they described ten
promising CGBEs. Using this information (Koblan et al., 2021),
developed ML models that correctly predicted the quality and yield
of editing results (R = 0.90). These CGBEs allow for the >90% precise
and up to 70% efficient repair of 546 transversion single-nucleotide
mutations linked to diseases that affect the wild-type coding
patterns. AI-supported structural predictions like AlphaFold2 or
diffusion models can be employed to develop better variants of base
editors. Huang et al. (2023) used AlphaFold2 to develop new
cytosine base editors with distinct features. AlphaFold2 is a tool
for predicting protein structures with remarkable accuracy.
However, it has its limitations when dealing with proteins that
share a very high degree of sequence similarity. When proteins have
sequences that are nearly identical, AlphaFold2 may struggle to
differentiate between them, and it might face challenges in
accurately characterizing structural differences or functional
distinctions that arise from Single Nucleotide Polymorphisms
(SNPs). The role of AI in advancing BED technologies is
undeniably transformative. AI-driven predictions have greatly
enhanced our ability to design more efficient and precise base
editors, significantly impacting GED and potential therapeutic
applications. Moreover, AI’s potential is not limited to sequence-
based predictions alone; it extends to structural innovations as well.
The integration of AI, exemplified by tools like AlphaFold2, allows
us to venture into the development of novel base editors with
distinct features, further illustrating the profound impact AI has
in shaping the future of genetic medicine and GED.

4.2 Prime editing and AI

Prime editing is an emerging technique that utilizes reverse
transcription to insert programmed sequence modifications into
DNA sequences (Yan et al., 2020). It is an adaptable GED tool,
capable of making a wide range of genetic changes, but achieving
high editing efficiency and product purity necessitates PED guide
RNA (pegRNA) experimental optimization (Mathis et al., 2023). It
consists of three main components: a reverse transcriptase, pegRNA,
and a Cas9 nickase. The pegRNA contains both the target sequence
and the edit sequence, which are used to direct the desired
modification in the DNA. Creating pegRNAs presents a greater
challenge compared to designing guides for other CRISPR-based
editing methods. Fortunately, tools such as Easy-Prime (Li et al.,
2021) and PrimeDesign (Hsu et al., 2021) are available to assist in
this complex design process. Easy-Prime was created by Li et al. (Li
et al., 2021) and trained on previously released PED datasets. To

TABLE 4 (Continued) ML and DL-based tools for Genome editing applications.

Ref ML models
used

Dataset Description and key
contribution

Performance
evaluation
metrics

Limitation Target

Liu et al.
(2020)

CnnCrispr (Bi-
LSTM and CNN)

DeepCRISPR Chuai et al.
(2018)

To forecast the off-target
tendency of sgRNA at particular
DNA fragments, CnnCrispr was
proposed

AUROC: 0.957,
AUPRC: 0.429

RNNs are capable of
implementing memory
functions, but their capacity
is restricted due to the
possibility of gradient
explosion or disappearance

Off-target
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prioritize pegRNA candidates and forecast their editing
effectiveness, Easy-Prime makes use of well-known and recently
discovered traits, as well as projected RNA folding and secondary
structure. They have shown optimization of prime editor guides for
correcting mutations in 89.5% of the 152,351 Genome-Wide
Association Studies (GWAS) variants. Easy-Prime can also
generate optimum pegRNAs for many genetic variations
associated with diseases. PrimeDesign is another tool for pegRNA
design, developed by Hsu et al. (2021), designed for a number of
different editing tasks, containing single nucleotide substitutions,
additions, deletions, and inversions. To address these harmful
alleles, they created potential pegRNAs and ngRNAs using
harmful human genetic variations according to ClinVar8 (n =
69,481). They discovered that 91.7% of these pathogenic variants
are susceptible to targeting preferably by one pegRNA spacer with
34 replica maximal length nucleotides. They tested the pegRNAs
and ngRNAs that PrimeDesign created to make different
modifications, and they found that not every design produced the
intended adjustments at elevated frequencies. As a result, users of
PrimeDesign might still be required to modify their pegRNA
selections after evaluating the original suggestions.

Several ML and DL tools have been developed for predicting the
outcome of PED. Koeppel et al. (2023) investigated the factors
influencing the efficiency of PED insertions. Based on their
findings, they developed an ML model to predict PED insertion
efficiencies. The model considers the nucleic acid’s structure, length,
and the insertion sequence’s secondary structure, as well as the
expression levels of TREX1 and TREX2. This is because TREX1 and
TREX2 degrade the 3′ flap of DNA, which is necessary for PED
insertions. An ML model was also developed to predicts the
insertion efficiency of the PED technique. The model uses
sequence features, including the length and composition of the
insert sequence, in addition to the flanking DNA sequence and
DNA repair proteins as inputs. The model was trained and tested on
different sequences, locations, and human cell lines. The model
found that the insertion rate depends on the sequence length,
composition, and structure. Mathis et al. (2023) created
PREDICT, a DL model that predicts the outcomes and rates of
PEDs. It uses an RNN to learn from a large dataset of over
90,000 PED experiments. With a Spearman’s R for planned and
accidental edits of 0.85 and 0.78, respectively, PREDICT accurately
predicts editing rates for all small-sized genomic alterations. PED
offers versatile genetic modifications, including base changes,
insertions, and deletions, and holds promise for rectifying
disease-related human mutations. Its efficiency relies on factors
like the target and edit sequences, along with the DNA mismatch
repair pathway. Current research predominantly focuses on
augmenting AI models with novel factors to improve prediction
accuracy, exemplified by discoveries such as TREX1 and TREX2.

4.3 Epigenome editing and AI

Unlike traditional gene editing, which focuses on altering the
genetic code, epi-GED allows for targeted modifications in the way
genes are regulated, turned on or off, without changing the DNA
sequence itself. It allows the manipulation of DNA methylation
patterns, histone modification, and RNA editing, to alter gene

expression. It has potential applications in disease treatment,
functional genomics research, and stem cell therapies. By using
epi-GED, researchers and clinicians can target specific genes or
pathways that are involved in various diseases or cellular functions,
and modulate their expression.

CRISPR/Cas-based epi-GED is a powerful technique that can be
employed to regulate gene expression without changing the DNA
sequence. This is achieved by targeting specific DNA sequences with
CRISPR/Cas nucleases and fusing them with epigenetic modifiers
(Goell and Hilton, 2021). Rauschert et al. (2020) andMachnicka and
Wilczynski (2020) discuss the application of ML and DL methods in
analyzing epigenomic data, which can aid in understanding
epigenetic mechanisms and reconstructing the epigenetic code.
Epigenome editing utilizes a completely distinct approach to gene
regulation when compared to other CRISPR-based editing
techniques. Researchers have recognized this distinction and have
initiated the development of dedicated AI tools to meet the
requirements of epi-GED. EpiCas-DL (Yang et al., 2023) is a tool
that uses DL to predict the activity of sgRNAs for CRISPR-mediated
epi-GED. It incorporates four types of epigenetic features, including
gene expression, methylation, chromatin accessibility, and the
separation between the transcription start site and the target site,
to enhance prediction accuracy. EpiCas-DL outperforms other
existing methods with an AUC of 0.87 and also identifies the key
factors that influence the effectiveness of sgRNA in activating and
silencing genes. It can be utilized to enhance the sgRNA design for
gene regulation without altering the DNA sequence. The application
of AI algorithms in the field of epi-GED is still an emerging and
relatively unexplored area when compared to base and prime
editing. One reason for this could be the dynamic nature of
epigenomic data, which includes DNA methylation patterns,
histone modifications, and chromatin accessibility.

5 AI, CRISPR, and precision medicine

Precision medicine involves personalizing medicine to tailor
treatment based on biological or molecular profiling, for a particular
population or even a single patient. This might be achieved using the
information pertaining to the genome, transcriptome, epigenome, or
proteome. CRISPR-Cas9 enables precise and efficient editing of the
human genome, which can be utilized to fix mutations that cause
tumors, disable oncogenes, or activate tumor suppressor genes (Das
et al., 2022). For instance, CRISPR-Cas9 could be employed to develop
new genetic tests for identifying individuals at risk of developing certain
diseases. It could also be used to create novel gene-editing therapies for
treating genetic disorders and cancer (Semiz and Aka, 2019). The
convergence of AI, CRISPR gene editing, and precision medicine
represents a transformative frontier in healthcare and biomedical
research. By harnessing AI’s data analysis and predictive capabilities,
gene editing techniques like CRISPR can become more precise and
effective in altering genes responsible for various diseases. AI-driven
genomic analysis helps in identifying genetic variations associated with
diseases or patient’s response to a particular treatment. CRISPR can be
used to modify these genes, either to correct mutations or enhance the
patient’s response to treatment, taking into account their genetic
makeup. ML-based tools, like AlphaMissense, can predict the
pathogenicity of missense variants in human proteins with high
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accuracy (Cheng et al., 2023). In another study, Sundaram et al. (2018)
exhibited that deep neural networks could be applied to determine new
candidate genes for rare diseases. CRISPR-based genetic modification
can then be employed to correct these disease mutations (Cai et al.,
2016). Genetic profiling through CRISPR (Bock et al., 2022) and AI can
help in identifying an individual’s predisposition to certain diseases,
enabling early intervention and preventive measures. Precision
medicine, focusing on personalizing treatment based on genetic and
molecular profiling, holds the promise of more effective and targeted
medical interventions. CRISPR-Cas9, with its precise GED capabilities,
provides the opportunity to fix mutations that cause disease and enable
the development of innovative diagnostic tests and therapies. Moreover,
ML-based tools, such as AlphaMissense and deep neural networks,
exhibit high accuracy in assessing genetic variants and identifying
candidate genes for rare diseases, offering invaluable support for
CRISPR-mediated gene editing.

6 Open challenges

The two major challenges in CRISPR technology are high costs
and the need for more efficient GED processes. For instance, the
approval of Hemgenix gene therapy for Haemophilia B costs a
staggering $3.5 million per treatment, making it the most expensive
medication worldwide (Naddaf, 2022). AI may be able to help with
these issues by assisting in the selection of optimal genetic sequences
and experimental protocols, reducing trial-and-error efforts, and
improving predictive accuracy. Furthermore, AI can aid in
streamlining clinical trials and optimizing supply chains,
ultimately leading to more cost-effective treatments. For instance,
in the planning of clinical trial experiments, AI models, leveraging
multi-omics data, can expedite the selection of suitable patients,
leading to considerable time and cost savings. Additionally, these
models can predict therapy outcomes, aiding in the decision-making
process for patients contemplating the treatment, thereby
optimizing resource utilization and enhancing overall therapy
safety. Moreover, generative AI models can play a crucial role in
synthesizing omics data, addressing challenges related to data
quality and further contributing to cost-effectiveness in the gene
editing landscape. Also, the development and maintenance of
sophisticated AI models demand substantial financial resources.
Additionally, the expenses related to laboratory equipment,
reagents, and skilled personnel for CRISPR experiments
contribute to the overall cost burden. Achieving a cost-effective
balance between cutting-edge AI technologies and the practicalities
of implementing CRISPR therapies remains a significant hurdle.

Another significant difficulty in CRISPR-Cas9 gene editing
therapies is the development of effective delivery methods tailored to
target specific tissues. Ensuring the precise and effective delivery of
CRISPR components poses a significant technical challenge. There are
three potential cargo forms: mRNA, DNA, and ribonucleoprotein
combinations. These cargoes can be delivered through various
methods such as viral carriers (e.g., lentivirus), liposomes, and
physical methods like electroporation. AI has the ability to play a
crucial role in optimizing cargo selection. It can aid in designing and
refining delivery vehicles customized for specific tissues or cell types
(Egorov et al., 2021). By analyzing patient data and genetic profiles, AI
can assist in tailoring delivery methods to ensure precise and accurate

targeting. However, challenges persist in achieving targeted delivery
without off-target effects, requiring continuous refinement in both AI
algorithms and experimental techniques.

The incorporation of AI models into healthcare practices
underscores the vital importance of ethical considerations and
compliance with regulations. It is imperative to prioritize patient
privacy, maintain transparency in AI decision-making procedures,
and adhere to ethical standards when deploying AI in gene editing
within healthcare. This becomes particularly crucial when dealing
with the accumulation of extensive patient data stored in the cloud, as
safeguarding data protection and privacy emerges as a major concern.
There is a need for robust regulations and ethical frameworks to
prevent the exploitation of AI technologies for unauthorized or
unethical gene editing practices. This includes addressing concerns
related to designer babies, enhancement interventions, and other
ethically sensitive applications. Considerations must be given to
vulnerable populations, including those with limited decision-
making capacity, such as minors or individuals with cognitive
impairments. The ethical implications of using AI to guide gene
editing in these cases involve ensuring informed consent, protecting
autonomy, and avoiding undue influence in decision-
making processes.

While there’s a growing body of AI research dedicated to BED
(Jeong et al., 2020; Azameti and Dauda, 2021), and PED (Bhat et al.,
2022; Capponi and Daniels, 2023), there’s a notable scarcity of AI
models designed specifically for epi-GED. Furthermore, the existing AI
models have not been trained to address CRISPR-based editing tools,
including Cas12a and others (Ibrahim et al., 2022; Lee, 2023). AI holds
great promise in unlocking the capabilities of these emerging gene-
editing tools, potentially revolutionizing the field. CRISPR technology is
a present-day reality with incredible potential. Establishing a
comprehensive, centralized CRISPR database is imperative. This
repository should encompass a wide range of data, covering
different CRISPR tools, their applications across various use cases,
and their relevance to different diseases. Such a database would serve as
a catalyst for fostering collaboration between different disciplines in the
field, accelerating progress and innovation. Another critical challenge is
the safe introduction of in-vivo gene editing into clinical practice. AI is
already proving valuable in predicting effective gRNAs and their
potential off-target effects. These advancements will play a crucial
part in ensuring the safe and responsible application of in-vivo gene
editing in clinical settings in the future. Finally, ensuring the safety and
reliability of AI models that can support real-time decision-making in
clinical settings is also a challenge. Addressing the issues of clinical
deployments, such as validation, security, and compliance with
healthcare standards is important.

7 Research gaps and future research
directions of AI’s application in
genome editing

7.1 Optimizing Deep Learning Network
Designs: Focus on Explainability and
Interpretability

Developing effective DL network architectures and fine-tuning
optimization hyperparameters is a critical but challenging task. AI
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models can be created that can help in automating the design and
hyperparameter optimization for GED tasks.

As the importance of understanding DL networks grows, future
research should continue to develop techniques for enhancing the
explainability and interpretability of these models in the context of
GED. This is crucial for therapeutic applications and understanding the
mechanisms of on- and off-target activity. To gain insights into how each
feature influencesmodel predictions, future research should promote the
use of interpretable model evaluation techniques like SHAP (Shapley
Additive explanations) (Lundberg and Lee, 2017) and Tree SHAP
(Lundberg et al., 2020). These algorithms can help in providing clear
explanations for model behavior and credit allocation.

7.2 Transfer learning for short data sets

Most existing methods for developing predictive models in the
CRISPR-Cas9 domain rely on a single dataset or a small number of
gRNAs, leading to potential bias and insufficient predictive power.
Future research should focus on strategies to address data sparsity issues
by combining multiple datasets effectively and mitigating dataset-
specific biases. One potential solution to the problem of insufficient
training data is to utilize transfer learning. Future research should
explore how to optimally select larger data sets for training DL models
that can predict off-target sequences in short data sets using transfer
learning. Additional research should demonstrate the criteria for
choosing the best larger datasets for training. Coarse-grained high/
low classifications are currently favored due to the small sample sizes
and limited feature sets in CRISPR-Cas9 datasets. However, future
research should aim to improve regression-based techniques to
characterize gRNA efficiency more precisely, making it possible to
predict the efficiency of gRNAs.

7.3 Utilizing informative features and
uncertainty quantification

Greater accuracy in GED predictions can be achieved by adding
informative factors such as RNA fold score, microhomology
properties, and epigenetic features to the models. AI models can
be developed to automate the identification of meaningful features
from sequences, reducing potential biases that can be there during
manual feature selection.

The role of uncertainty quantification in GED should be further
explored. Researchers can investigate methods to assess both aleatoric
and epistemic uncertainty, contributing to more accurate predictions
for both on- and off-target regions in GED applications. In several study
disciplines, this method has gained popularity for assessing uncertainty
(Abdar et al., 2021a; Abdar et al., 2021b; Abdar et al., 2023; Hoffmann
et al., 2021; Mazoure et al., 2022).

7.4 In-silico screens with improved models
and expanding beyond on-target and off-
target predictions

Ongoing work in ML approaches for protein structure
modeling, including the integration of structural descriptors, can

enhance the prediction of variations’ activities in CRISPR-Cas9
applications. Researchers should continue to improve in silico
screening methods for more accurate predictions.

The off-target effects of CRISPR-Cas-based editing technologies
must be minimized, and numerous AI models have been created to
address this concern, providing a partial solution to the problem.
Additionally, there is a requirement to predict the effects of different
CRISPR-Cas9 implementations, such as knock-ins and base
modifications, that go beyond the conventional on-target effects
of gene knockouts or off-target prediction. Furthermore, AI
structure prediction models have helped to create various
versions of base and prime editors. Considering the modular
nature of these editors, AI models can help in selecting the best
combination for different applications.

8 Conclusion

GED technologies, particularly CRISPR-Cas9, have opened
exciting possibilities for understanding genes and improving
medical treatments. The integration of AI plays a vital role in
enhancing the precision, efficiency, and affordability of GED,
especially in addressing genetic diseases like Sickle cell anemia,
characterized by severe vaso-occlusive crises or Thalassemia. AI
models have been employed in designing gRNAs for CRISPR-Cas
systems, widely used in GED technologies. Designing gRNAs is
crucial for editing efficiency, and specificity, and avoiding off-target
effects. AI models, including DeepCRISPR, CRISTA, and DeepHF,
predict optimal gRNAs, considering factors like genomic context,
Cas protein type, on-target/off-target scores, and the outcomes of
GED. These models employ various ML and DL techniques, such as
CNNs, Random forests, and SVMs, learning from extensive, high-
quality datasets of gRNA sequences and their effects on GED. They
provide valuable guidance for researchers conducting CRISPR-Cas
genome editing experiments. AI-driven models also assist in
designing and optimizing advanced GED techniques such as
BED, PED, and epiGED. These techniques introduce precise,
programmable changes to DNA sequences, eliminating the need
for homology-directed repair pathways or donor DNA templates. AI
models, like BE-Hive and PE-Design, select optimal editors for
target sequences, accounting for genomic context, desired
mutation types, off-target effects, and potential impacts on gene
function and phenotype.

Furthermore, AI, in conjunction with Genome Editing and
precision medicine, enables personalized treatments based on
genetic profiles. It analyzes patients’ genomic data, identifying
disease-associated mutations, variations, and biomarkers, such as
those in cancer, diabetes, Alzheimer’s, and more. It predicts
personalized treatment options, considering efficacy, toxicity,
and resistance to various drugs and therapies. AI also monitors
treatment response and adjusts it accordingly. AI models help
design and optimize these GED-techniques, providing tools for
predicting editing activity, specificity, efficiency, and outcomes.
For instance, AI models assist in selecting optimal BED, PED, or
epiGED for a given target sequence, considering genomic context,
desired mutations, off-target effects, and potential impacts on gene
function and phenotype. AI models also optimize the delivery and
expression of GED components, such as Cas proteins, guide RNAs,
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reverse transcriptases, and epigenetic modifiers. They can help in
designing efficient vectors, promoters, and enhancers, improving
delivery specificity to various cell types and tissues. AI empowers
PED by predicting pegRNA efficacy, insertion efficiency, and editing
outcomes, enabling versatile and precise genetic modifications. AI-
driven tools, like EpiCas-DL, predict sgRNA activity for epi-GED,
regulating gene expression without altering DNA sequences. The
convergence of AI, CRISPR, and precision medicine offers the
potential for personalized treatments, effectively targeting
individual genetic profiles. While AI has significantly advanced
GED, challenges such as cost reduction, optimized delivery
methods, safety in clinical deployment, and the need for
comprehensive CRISPR databases remain to be addressed.
Research in AI applications for GED should focus on areas such
as transfer learning, network design optimization, explainability,
informative feature selection, uncertainty quantification, and
expanding beyond on-target/off-target predictions. AI’s pivotal role
in GED presents innovative solutions to longstanding challenges,
promising a future where gene editing is safer, more precise, and
accessible for a broader range of medical applications. As technology
continues to evolve, the synergy between AI and GEDwill continue to
shape the field of genetics, biomedicine, and healthcare, with far-
reaching implications for the betterment of human health.
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