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Analyzing human body movement is a critical aspect of biomechanical studies in
road safety. While most studies have traditionally focused on assessing the head-
neck system due to the restraint provided by seat belts, it is essential to examine
the entire pelvis-thorax-head kinematic chain when these body regions are free
to move. The absence of restraint systems is prevalent in public transport and is
also being considered for future integration into autonomous vehicles operating
at low speeds. This article presents an experimental study examining the
movement of the pelvis, thorax and head of 18 passengers seated without
seat belts during emergency braking in an autonomous bus. The movement
was recorded using a video analysis system capturing 100 frames per second.
Reflective markers were placed on the knee, pelvis, lumbar region, thorax, neck
and head, enabling precise measurement of the movement of each body
segment and the joints of the lumbar and cervical spine. Various kinematic
variables, including angles, displacements, angular velocities and accelerations,
were measured. The results delineate distinct phases of body movement during
braking and elucidate the coordination and sequentiality of pelvis, thorax and
head rotation. Additionally, the study reveals correlations between pelvic rotation,
lumbar flexion, and vertical trunk movement, shedding light on their potential
impact on neck compression. Notably, it is observed that the elevation of the
C7 vertebra is more closely linked to pelvic tilt than lumbar flexion. Furthermore,
the study identifies that the maximum angular acceleration of the head and the
maximum tangential force occur during the trunk’s rebound against the seatback
once the vehicle comes to a complete stop. However, these forces are found to
be insufficient to cause neck injury. While this study serves as a preliminary
investigation, its findings underscore the need to incorporate complete trunk
kinematics, particularly of the pelvis, into braking and impact studies, rather than
solely focusing on the head-neck system, as is common in most
research endeavors.
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1 Introduction

In addition to the indisputable human toll of lives lost in road
accidents (approximately 1.3 million people), there are significant
economic repercussions for society. These costs can amount to as
much as 3% of a country’s Gross Domestic Product if we consider
the number of non-fatal victims (around 50 million people). Many
of these non-fatal injuries can result in long-term disabilities or
lasting effects, severely impacting quality of life for the victims.
Indeed, road crashes are recognized by the World Health
Organization (WHO) as a major global public health concern,
which is often described as a silent epidemic. According to the
WHO, nearly 1.3 million road deaths and 500 million injuries are
preventable (Bansode and Tanriover, 2018). Advanced Driver
Assistance Systems (ADAS) play a pivotal role in addressing this
issue. The European Union anticipates that 25,000 fatalities and
approximately 140,000 serious injuries could be averted by
2038 through the mandated implementation of certain ADAS by
vehicle manufacturers (Union PO of the E, 2018). Notably, the
Autonomous Emergency Braking (AEB) system, required in all new
vehicle type-approvals in the European Union since July 2022, is
highlighted among these systems. Consequently, the proliferation of
vehicles equipped with this capability is expected to rise. Given that
these systems can prevent collisions, through autonomous
emergency braking and thereby influence passenger kinematics
(such as altering posture before an event) (Jakobsson et al., 2006;
Bose et al., 2010; McMurry et al., 2018), incidents where collisions
are avoided altogether are likely to become more common.
However, to date, it is noteworthy that the majority of studies on
bodymovement during road traffic accidents have primarily focused
on the impact phase, where the injury mechanism may differ
significantly. Moreover, it is important to recognize that the AEB
system could have a substantial impact on all road traffic injuries,
particularly considering that whiplash-associated disorders
constitute 60% of permanently disabling injuries among vehicle
occupants (Malm et al., 2008), with the majority occurring in low-
speed incidents (Kullgren and Krafft, 2007). Therefore, given the
prospective scenario where impacts are averted, especially at low
speeds, there is a pressing need to closely examine what transpires
kinematically during the pre-impact phase, which coincides with the
braking stage.

To develop safety systems, Anthropomorphic Test Devices
(ATDs) and Post Mortem Human Surrogates (PMHSs) are
typically utilized (Beeman et al., 2012; Yoganandan et al., 2017;
Albert et al., 2018; Meyer et al., 2019). This approach is logical when
examining moderate to severe impact scenarios, where it is assumed
that muscle response has minimal influence on passenger
kinematics. Conversely, when assessing the effectiveness of
integral safety systems like emergency braking, muscle function
plays a crucial role in passenger movement during low acceleration
situations (Ejima et al., 2007; Ejima et al., 2008; Ejima et al., 2012).
However, ATDs and PMHSs have limited biofidelity, particularly
regarding muscle response. Thus, it is imperative that models
simulating passenger kinematics in pre-crash scenarios undergo
validation based on studies involving volunteers subjected to
mild loading conditions, which necessitate high muscle biofidelity
(Beeman et al., 2012; Kirschbichler et al., 2014). Given the significant
influence of muscles on overall kinematic response at low speeds

(Santos cuadros et al., 2021), this study will involve 18 volunteers to
achieve the highest possible muscle biofidelity. Consequently, the
results of this research could be instrumental in evaluating and
validating human kinematics simulation models. Moreover, the type
of restraint system significantly impacts passenger response during
braking, as its primary function is to prevent excessive occupant
motion. The majority of studies (McConnell et al., 1995; Szabo and
Welcher, 1996; Watanabe et al., 2000; Kumar et al., 2003a; Kumar
et al., 2005a; Kumar et al., 2006; Beeman et al., 2011; Carlsson and
Davidsson, 2011; Beeman et al., 2012; Ito et al., 2013; Ólafsdóttir
et al., 2013; Östh et al., 2013; Kirschbichler et al., 2014; Reed et al.,
2018; Graci et al., 2019; Holt et al., 2020) in this field involve
volunteers restrained by a three-point seat belt or similar systems,
which limit torso and pelvis movement during deceleration. To date,
there is a lack of research evaluating kinematics during emergency
braking with unrestrained seated volunteers. While studies with
unrestrained passengers have been conducted using ATDs, PMHSs
or computational models, the emergence of autonomous vehicles
considering seats without the need for seat belts at low speeds raises
pertinent questions. This absence of restraint systems is also typical
in public transport scenarios (buses, metro, etc.), where the risk of
death or serious injury is seven to nine times lower for bus and coach
passengers compared to other vehicle users (Albertsson and
Falkmer, 2005). Bus and coach fatalities account for 0.3%–0.5%
of all traffic deaths in Europe. Nevertheless, it should be noted that
among the leading causes of injury on public transport is emergency
braking, along with boarding (Albertsson and Falkmer, 2005;
Björnstig et al., 2005; Palacio et al., 2009; Henezi and Winkler,
2023). Additionally, while design and improvements of public
transport are more focused on service or comfort (Eboli et al.,
2016; Barabino et al., 2019) in such a way that more research is being
done on how sharp decelerations are perceived in terms of the
passenger’s sense of comfort, the biomechanical analysis of injury
mechanisms involved in these abrupt speed changes that are so
typical in urban buses is lacking. Moreover, while most studies about
public transport tend to focus on collisions and rollovers (Olivares
and Yadav, 2009; Olivares, 2015), the biomechanical analysis of
injury mechanisms in non-collision scenarios is not well understood
(Palacio et al., 2009; Lutin et al., 2016). Therefore, there is a need to
analyze the kinematics when passengers lack restraint systems
during emergency braking, particularly regarding the influence of
the pelvis on overall injury risk at low speeds, where no lap belt
supports the pelvic area. Hence, in this study, the subjects do not use
any seat belts.

Although all parts of the body interact to produce a global body
response during emergency braking, the existing studies on body
movement during a road traffic accident (Panjabi et al., 2004; Ejima
et al., 2007; Behr et al., 2010; Carlsson and Davidsson, 2011; Ejima
et al., 2012; Rooij et al., 2013; Ólafsdóttir et al., 2013; Östh et al.,
2013; Kuo et al., 2018; Holt et al., 2020; Ghaffari and Davidsson,
2021; Larsson et al., 2022) have predominantly focused on
evaluating the head-neck system or the kinematics of the head
and torso separately, neglecting the role of the pelvis, which is
typically supported by the seat belt. In addition, they often present
results independently without analyzing possible coordination
between the movement of the different anatomical regions. The
head and neck are usually analyzed separately, without considering
the action that may be caused by the torso (generally restrained by
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the belt) and the pelvis, whose movement is almost completely
ignored. To enhance current road safety systems it is crucial to
analyze the complete kinematic chain, study coordination between
movements and understand the relationship between forces acting
on the neck and the movement of each body segment. Therefore,
this study aims to evaluate the entire body’s response, analyzing the
movement of the pelvis-thorax-head chain comprehensively. The
study of the thorax and pelvis movement is especially relevant to
understanding the acceleration that occurs in the head due to the
collision of the trunk against the seatback when it travels backward
again after the maximum excursion of the body forward due to
braking. The existing studies typically focus on the entirety of the
forward excursion, constrained by the seat belt; however, in its
absence, the peak head acceleration occurs post-braking, with the
vehicle fully stopped, when the trunk rotates backward and impacts
the seat back. Another objective of this research is to scrutinize the
magnitude of this acceleration and its potential implications for neck
injury. Analyzing trunk and head kinematics in braking scenarios
without seat belts could inform the development and validation of
human models for vehicle occupants, particularly those aiming to
account for pre-crash responses. These data will enhance our
understanding of passenger reactions, injury risks and the
efficacy of restraint and road safety systems (such as AEB) in
future autonomous mobility scenarios, particularly during pre-
impact scenarios, evasive maneuvers like emergency braking and
low-speed impacts.

This study presents an experimental investigation wherein the
movement of the head, neck, torso and pelvis in seated, unrestrained
passengers is collectively analyzed during emergency braking in an
autonomous vehicle. To achieve this, a sample of 18 volunteers was
examined. The movement was captured using a video analysis
system operating at 100 frames per second, using reflective
markers positioned on the aforementioned anatomical regions.
This setup enabled precise measurement of each body segment’s
movement and facilitated joint kinematics analysis.

This study proposes two hypotheses. Firstly, it assumes that head
movement during emergency braking (without a restraint system) is
coordinated with thorax and pelvis movements, which contribute to
trunk elevation during forward movement and may impact injury
risk. Secondly, it suggests that the rebound phase after maximum
body excursion due to braking entails greater head accelerations,
potentially indicating a higher risk of cervical injury. Therefore, it is
essential to analyze the rebound phase alongside maximum body
flexion in emergency braking or low-speed impacts, when
passengers are unrestrained.

2 Materials and methods

This section describes the study sample, the experimental setup,
the equipment used, and how the data were analyzed.

2.1 Description of the study sample

Eighteen healthy volunteers (8 women and 10 men) participated
in this study. The inclusion criterion for participation in the trials
was the absence of any pre-existing injuries that could be

exacerbated or cause additional injuries during the experiment,
particularly cervical injuries. The age of the volunteers ranged
from 22 to 54 years, with an average of 31.9 ± 8.8 years. Their
weights ranged from 47 to 90 kg, with an average of 66.3 ± 13.1 kg;
and heights ranged from 154 to 189 cm, with an average of
170.8 ± 9.9 cm.

2.2 Experimental setup

To create a realistic and bio-faithful environment, an
autonomous bus without a driver’s seat (EasySmile EZ10 model)
was utilized. Volunteers were seated facing the direction of travel
within the bus, without any restraint system. Autonomous
emergency braking was triggered at a predetermined moment
(unknown to the passenger).

The trial was meticulously designed to ensure the safety and
wellbeing of all participants, and steps were taken to monitor their
health status throughout. It should be noted that the experiment was
conducted at low speeds to maintain safety levels below the injury
threshold. However, in the event that a participant experienced any
pain or discomfort during the tests, they were instructed to promptly
inform the team to halt the experiment.

The detailed steps followed in the development of this study are
outlined below:

• Step 1: Trial explanation and Informed consent). The research
team explained to the volunteer (both in writing and orally)
what the test consisted of and the associated risks. Upon
agreeing to participate, volunteers were required to sign an
informed consent form. Notwithstanding this, participants
retained the freedom to withdraw from the study at any point
during the experiment. The protocol followed in this research
meets the requirements for research involving human subjects
according to the Declaration of Helsinki. Approval was
obtained from the Ethics Committee of the Carlos III
University of Madrid where the trials were conducted.

• Step 2: Pre-test questionnaire. Before the trial commenced, the
volunteers completed a questionnaire designed to assess their
health status and ascertain the absence of any injuries that
might elevate the risk of injury during the experiment.
Additionally, anthropometric data such as height, weight,
gender, and age were recorded at this stage.

• Step 3: Volunteer instrumentation. The volunteers were
equipped with reflective position markers and surface
electromyography (sEMG) sensors. These markers were
placed on various body parts including the head, neck (C7),
shoulder, thorax, lumbar region, pelvis and knee, enabling
monitoring of the subject’s movement in their sagittal plane
during emergency braking. The movement of these markers
was recorded by a high-speed camera (SONY DSC-RX0) at
100 frames per second. A video analysis system made it
possible to measure the movement of each body segment
and to analyze the joint kinematics. Furthermore, sEMG
sensors were positioned to capture muscle responses from
superficial neck muscles: the trapezius and
sternocleidomastoid muscles. This was achieved through a
palpation test to locate the middle and the upper parts of the
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muscle belly. The data collected from these sensors were
utilized to ensure that volunteerskept their cervical muscles
relaxed during vehicle operation prior to braking. The subjects
were supposed to be relaxed before braking since they were
unaware of the instant of braking. Signal normalization of the
sEMG signals was conducted based on mean activation levels
obtained during the task, as explained in (Pons et al., 2013; Del
Toro et al., 2020).

• Step 4: Initial posture standardization. To ensure uniformity in
their starting positions, the volunteers were instructed to align
their gaze forward, ensuring alignment of the head and torso.
They were also directed to maintain contact between their
backs and the seatback, with arms resting on their legs forming
approximately a 90-degree angle between the arm and
forearm. The research personnel supervised adherence to
this starting position prior to initiation of the test. Once
the subject was seated, the volunteers were asked to
indicate the position of their iliac crest and ischial
tuberosity to accurately position and align two pelvic
support markers.

• Step 5: Autonomous emergency braking test and Data
acquisition. The emergency braking tests were designed
following several references (Siegmund et al., 2003; Kumar
et al., 2005b; Olive et al., 2019; Holt et al., 2020). In no case did
the subject use any seat restraint system. Initially, the
volunteers assumed a neutral seated position, facing
forward with no initial relative head-neck angle, while
engaging in conversation with a person in front of them.
Emergency braking was initiated by the autonomous bus while
the volunteer remained seated in the forward-facing direction,
without a seatbelt. The volunteers were instructed to keep their
muscles relaxed, a condition reiterated before the start of the
test. The precise moment of braking was unknown to the
volunteer. The test concluded once the subject (after
maximum forward body excursion and subsequent rebound
to the rear) remained stationary in the seat. The vehicle was
programmed to achieve a deceleration of 4 m/s2. This value

was chosen after consulting prior studies on braking tests with
subjects (McConnell et al., 1993; McConnell et al., 1995; Ono
and Kanno, 1996; Kumar et al., 2002; Kumar et al., 2003b;
Kumar et al., 2005a; Hernández et al., 2005; Kumar et al., 2006;
Carlsson and Davidsson, 2011; Kirschbichler et al., 2014),
where the magnitudes vary between 4 and 12 m/s2. However,
in all these previous research studies the subjects used restraint
systems. Since our volunteers were unrestrained, the authors
decided to include the minimum value used in the
aforementioned works (4 m/s2) to prevent possible injuries
during testing. The selected deceleration value aligns with
emergency braking scenarios simulated in bus studies (De
Graaf and Van Weperen, 1997; Palacio et al., 2009; Kirchner
et al., 2014; Schubert et al., 2017; Soule et al., 2020; Vychytil
and Špirk, 2020; Krašna et al., 2021; Keller and Krašna, 2023),
where decelerations typically range from 1 to 4 m/s2. The
deceleration profile of the autonomous vehicle during
emergency braking was confirmed using an accelerometer
(MAHA VZM 300) installed on the bus, as illustrated
in Figure 1.

• Step 6: Post-test questionnaire. Following completion of the
test, the volunteers were required to respond to a second
questionnaire designed to assess whether they experienced any
injuries or discomfort during the tests. This questionnaire was
administered immediately after the test and repeated 24 h later
to confirm the absence of any lingering discomfort.

• Step 7: Signal processing and Data analysis. All data collected
during the tests underwent comprehensive analysis, which is
detailed in the following section.

2.3 Data processing

Three rigid segments (pelvis, thorax and head) and two joints
(lumbar and neck) were considered for the kinematic analysis. The
movement of the segments was recorded by a set of technical
markers fixed on each segment, whose coordinates were

FIGURE 1
Deceleration curve programmed in the autonomous vehicle during emergency braking.
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measured by the video analysis system. The coordinates of these
markers are smoothed and derived numerically using the local
regression algorithm described in (Page et al., 2006). From the
smoothed coordinates, the linear and angular displacements of each
segment and the corresponding velocities were calculated using the
algorithms described in (Page et al., 2009a). These displacements
and velocities refer to the absolute movement of the segments, taking
as a reference the initial position at the beginning of braking.

The neck and lumbar spine movements were calculated from the
relative movement between the distal and proximal segments. Since
the movement is planar, the neck’s rotation angle was calculated by
subtracting the rotation of the thorax from that of the head (Venegas
et al., 2020). Similarly, the lumbar angle was estimated as the
subtraction of the absolute rotation of the thorax minus that of
the pelvis (Page et al., 2009b) (see Figure 2).

Table 1 lists the calculated variables, divided into functional
(functions of time) and numerical (ranges minimum and maximum
values of the functional variables) variables. In addition to the
variables associated with the movement of the segments and
joints, the length of the neck, the displacement of the marker
located on C7 and the displacement of the auricular marker with
respect to C7 were also calculated. The maximums, minimums and
range of each numerical variable were calculated for each subject
from the individual movement curves. Angular displacements and
velocities are positive for extension movement and negative for
flexion movement.

Since the durations of the movement phases were different in
each subject, it was necessary to normalize the time scale to analyze

the functional variables (Ramsay, 1997). A linear normalization
(Duhamel et al., 2004) was used, changing the time in seconds for
the normalized time (tn), which represents the percentage of time
elapsed from the start of the movement to the reference point taken
as tn = 100. The instant at which the braking of the vehicle began was
taken as the start of the movement and, the reference point (tn = 100)
was taken as the instant at which the maximum extension of the
head occurred with respect to the initial position. This last instant
was chosen because it appears in all the subjects, occurs at the end of
the movement and is easily identifiable. This reference point is
usually located after the thorax impacts against the seat back once
the vehicle has stopped. In some subjects, there was more than one
rebound, so there were several peak extension movements. In those
cases, the first shock was used, which was usually the strongest.
Logically, the movement of the head and trunk continues after this
point, with a head flexion. This implies that there are records with
values greater than 100. However, the analysis was limited to the
values of tn ∈ [0, 110], since 110 is the minimum value that tn takes in
all the records at the end of the movement. In any case, the
0–110 interval allows us to register the maximum neck extension
and subsequent flexion, which in some cases ends with the head at
rest and then continues with another extension-flexion-rest cycle.

The following milestones were identified on the standardized
records and used to describe the movement and, consequently,
kinematic curves:

• T0 = 0: Start of the measurement. This corresponds to the
instant at which vehicle braking begins.

FIGURE 2
Measured angles. The rotation angles of each segment (pelvis, thorax and head) are measured from the angular displacement of the technical
markers from the reference position at time t0 to the position at time ti. Clockwise turns (flexion) are negative; counterclockwise turns (extension) are
positive. The flexion-extension angle of the neck is obtained by subtracting the rotation of the thorax from that of the head. The lumbar flexion-extension
angle is obtained by subtracting the rotation of the pelvis from that of the thorax. Angles relative to anatomical landmarks are not taken; the neck or
lumbar joint angles are measured from the initial reference position.
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• T1: Instant of maximum angular velocity of thorax flexion, after
braking has started and before reaching maximum flexion.

• T2: Instant of maximum thorax flexion.
• T3: Instant of maximum angular velocity of the thorax
extension, before T4.

• T4 = 100: Instant of maximum head extension, after the thorax
collides with the seat back.

In addition to the kinematic variables outlined in Table 1, we also
estimated the forces exerted on the head. Utilizing the inverse dynamic
model described in (Toro, 2022), we computed the head’s mass. This
model takes into account the acceleration of the auricular marker
positioned on the subjects’ heads, which approximates the head’s center
of mass. The governing equation for this model is as follows:

Headmass kg( ) � 0.0137*Height cm( ) + 0.0504*Weight kg( )
− 0.2896

Lastly, the risk of cervical injury was assessed utilizing the Neck
Injury Criterion (NIC) formulated by Boström et al. (Svensson et al.,
1996). This criterion is founded upon the relative acceleration and
velocity between the T1 and C1 vertebrae, as depicted in the
following expression:

NIC � acceleration*0.2 + velocity2

The threshold for assuming cervical injury is set at 15 m2/s2. To
evaluate this, data from both the C7 and auricular markers
were employed.

2.4 Statistical analysis

The statistical analysis consisted of three stages. Firstly, a
descriptive analysis of the numerical and functional variables was
carried out. The numerical variables were described by their means
and standard deviations. For each functional variable, a mean
function was computed as the mean of the corresponding curves,
point by point, across all volunteers (Ramsay, 1997; Duhamel
et al., 2004).

�x tni( ) � 1
N

∑
N

j
xj tni( ) i � 1, 2, . . . 110( )

This mean represents the approximate shape of the curves,
although it presents a certain cancellation effect due to the lags
between curves. For this reason, the maxima of the mean function
are somewhat lower than the mean of the maxima of the individual
curves (Ramsay, 1997).

Secondly, the coordination between the movements of each
segment was analyzed. To this end, Spearman’s correlation
coefficients were calculated between the ranges of motion of
three motions: the pelvis relative to the seat, the lumbar joint
(thorax movement relative to the pelvis) and the neck joint (head
movement relative to the torso). The coefficients were calculated for
both rotation ranges and velocity ranges.

Finally, the contribution of the thorax and pelvic motion to the
elevation of the trunk was contrasted. A regression model was
adjusted for each subject using the instantaneous measurements
between T0 and T2. The dependent variable was the height of C7,

TABLE 1 Kinematic, functional and numerical variables that appear in the analysis.

Magnitude Functional variables Numerical variables

Angles (°) Head rotation Maximum head flexion and extension

Thorax rotation Head flexo-extension range

Pelvis rotation Maximum thorax flexion and extension

Neck flexo-extension angle Thorax flexo-extension range

Lumbar flexo-extension angle Maximum pelvis flexion and extension

Pelvis rotation range

Displacements Displacement of C7 Range

Vertical displacement of the auricular marker with respect to C7

Neck length Vertical distance between C7 and the auricular (ear) canal

Angular velocities (°/s) Head angular velocity Maximum head flexion velocity

Thorax angular velocity Maximum head extension velocity

Pelvis angular velocity Head flexo-extension velocity range

Neck flexo-extension angular velocity Maximum thorax flexion velocity

Lumbar flexo-extension angular velocity Maximum thorax extension velocity

Thorax flexo-extension velocity range

Maximum pelvis flexion velocity

Maximum pelvis extension velocity

Head flexo-extension velocity range
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while the independent variables were the pelvis and thorax flexion-
extension angles. In this way, it is possible to analyze whether each
segment’s rotations contribute to the elevation of C7. For each
adjustment, coefficients were obtained for each independent variable
and the correlation coefficient, R, of the fitted model. The median
and the interquartile range represent these coefficients. A Friedman
test was performed to check whether the contributions of pelvic and
thorax rotation were different.

3 Results

Figure 3 shows an example of the movement of an unrestrained
passenger during the emergency braking test.

Table 2 presents the characteristics of the participants involved
in the study. Initially, 18 subjects underwent testing; however, one
participant had to be excluded due to errors in the measurement
system during the test. Consequently, the analysis was conducted on
a final sample comprising ten men and seven women.

Table 3 shows the time milestones described in absolute values
and the normalized time scale. When braking begins, the thorax
rotates forward until it reaches its maximum flexion velocity after
0.46 s, on average (20% of the normalized time). It then continues to
flex until it reaches full flexion at T2 = 1.66 s (on average, tn = 62.9%
of the normalized time). Then, the trunk travels backward again
rapidly, reaching the maximum angular velocity at T3 = 2.27 s
(average, tn = 86.5%). This is when the back collides with the seat
back, and the extension movement slows down. However, the
movement of the head accelerates, reaching its maximum
extension at the instant T4 = 2.65 s (average, corresponding to
tn = 100%, as this is the reference point).

The coordination between the movements of the three body
segments (pelvis, thorax and head) and the joint angles are shown
in Figures 4, 5, presenting the mean functions of the angles and
angular velocities, respectively. Figure 4 shows the mean functions
across subjects of the angles for each body segment. At the top are
the absolute angles relative to the initial position at the beginning
of braking. The lower part shows the angle of the joint, taking the

FIGURE 3
Movement of a subject during the emergency braking test (from left to right: starting position (T0), the instant of maximum thorax flexion (T2), the
instant of maximum head extension (T4)).

TABLE 2 Characteristics of the participants in the study.

Feature Male (n = 10) Female (n = 7) Total (n = 17)

Age (years) 29.2 (10.19) 35.4 (6.9) 31.7 (9.3)

Height (cm) 177.5 (6.3) 161.9 (7.9) 171.1 (10.4)

Weight (kg) 70.1 (12.2) 61.2 (15.4) 66.4 (13.8)

Length neck C7-Tragus (cm) 10.8 (1.5) 11.1 (1.8) 10.9 (1.6)

Length pelvis-C7 (mm) 52.5 (1.5) 46.6 (5.8) 50.1 (4.8)
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initial position as a reference. Following the ISB (International
Society of Biomechanics) sign convention, positive angles
correspond to extension movement, while negative angles
correspond to flexion movement (Wu et al., 2002). We will
reference the thorax movement curve in the graph below (black
curve) to describe the movement. As can be seen, at the beginning
of braking (normalized instant tn = 0%), a forward rotation occurs
(flexion, negative thoracic angle), which reaches its maximum at
around T2 (tn = 62.9%). This instant coincides with the moment in
which the vehicle stops. From this instant, the trunk rotates
backward, recovering the initial angle, until it hits the back of

the seat, slowing the movement of the thorax and inverting it at T3
(tn = 86.5%).

As for the movement of the pelvis, its range is much smaller, and
it is delayed compared to that of the thorax during braking. That is,
the thorax drags the rotation of the pelvis. Since the pelvis rotates
less than the thorax, some lumbar flexion appears, the range of
which is around 10° on average.

Regarding the movement of the head, at the beginning of
braking, there is a lag between its rotation and that of the thorax,
which is slightly greater. This causes the neck not to flex but to
extend slightly during the thoracic flexion movement. Neck flexion
begins once the thorax has already started to move backward, after

TABLE 3 Time instants of the events taken as reference points.

Event Time (s) from T0. Mean (std) Normalized time tn (%) from T0. mean (std)

T1 (Maximum angular velocity of thorax flexion) 0.46 (0.23) 20.4 (6.8)

T2 (Maximum thorax flexion) 1.66 (0.33) 62.9 (11.8)

T3 (Maximum angular velocity of the thorax before tn = 100) 2.27 (0.21) 86.5 (6.0)

T4 (Maximum neck extension after impact against the seat back) 2.65 (0.30) 100 (0)

FIGURE 4
Description of the mean curves of the angles as a function of
normalized time (the 100% instant corresponds to the maximum
extension of the head). Top: rotation angles of each segment with
respect to the reference position. Bottom: joint angles with
respect to the reference position. Positive angles are backward
rotation (counterclockwise, extension movement); negative angles
are forward rotation (flexion movement). The deceleration curve of
the vehicle during braking is shown in gray.

FIGURE 5
Mean functions of angular velocities across subjects as a function
of normalized time (the instant tn = 100 corresponds to the maximum
extension of the head). Top: angular velocity of each segment.
Bottom: angular velocity of the joint. Positive values represent
counterclockwise angular velocity (extension movement); negative
values represent forward rotation (flexion movement). The
deceleration curve of the vehicle during braking is shown in gray.
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the instant tn = 70%, due to the advancement of the thorax
movement relative to that of the head. In the end, a very abrupt
extension-flexion movement of the neck occurs due to the impact
and posterior rebound of the trunk, from T3 (tn = 86.5%), against the
back of the seat and also due to the change in the center of
head rotation.

Figure 5 shows the mean functions of angular velocities. The
upper part of the figure shows the mean functions of the angular
velocities of the pelvis, thorax and neck, while the lower part shows
the mean velocities of the lumbar and neck joints. The gray line
represents the braking deceleration curve.

The three segments move with negative angular velocity from
the initial instant until approximately tn = 20% (T1). Since the
angular velocity of the thorax is greater than that of the pelvis, the
lumbar angular velocity is not zero but flexion (a negative value).
Between tn = 20% (T1) and tn = 40%, the angular velocities of the
trunk and pelvis become almost zero until tn = 60% (approx. T2),
where the movements become an extension. The angular velocity of
extension is more significant in the case of the thorax than in the
pelvis from tn = 70, so the lumbar angular velocity is positive from
that instant until T3 (approx. tn = 90%). Then, the impact of the
thorax against the seat back occurs, which reverses the angular
velocity of the two segments.

In the case of the head, between tn = 0% (T0) and tn = 20% (T1)
its angular velocity is similar to that of the trunk, but it is slightly out
of phase, so the motion of the neck results in extension. From that
instant until tn = 60% (approx. T2), both thorax and head move with
small angular velocities, so the relative movement of the neck is
practically null.

The return movement of the thorax corresponds to the
normalized times between T2 and T3 (between tn = 60% and
tn = 90%), approximately. In this interval, the angular velocity of
the thorax is greater than that of the head, whichmeans that the neck
experiences flexion (negative velocity in the graph above).

When the thorax impacts against the seat back, it slows down,
but the head undergoes an abrupt change in angular velocity, first
with a peak of extension velocity and then with a peak of flexion.
This abrupt change is linked to the change in the center of rotation of
the neck, associated with the blocking of the movement of the thorax
and pelvis while the neck continues to move.

Table 4 shows the parameters that numerically describe the
curves in the above graphs. Note that the maximum and minimum
values of the mean functions are lower than the averages of the
maximum and minimum values of the individual curves due to a

smoothing effect from the offset between curves. As can be seen, the
movement with the most extensive range is that of the head.
However, there is a notable angular displacement of the thorax
and pelvis. The fastest movement is also that of the head, due to the
abrupt movement after T3, the instant of impact of the back against
the seat back.

To analyze the coordination between movements, the
correlation coefficient between the ranges of movement of the
pelvis on the seat, the lumbar joint (movement of the thorax
relative to the pelvis) and the neck joint (movement of the head
relative to the thorax) was calculated. The results are shown
in Table 5.

It should be noted that neck range of motion is more closely
related to pelvic rotation range than to lumbar flexion and extension
range (rho of 0.712 versus 0.495). The correlation in the case of the
angular velocity ranges (pelvis versus neck) is even greater, although
only slightly higher than the lumbar-neck correlation (rho of
0.860 versus 0.807). These results show the potential effect of free
movement of the pelvis on the range of motion of the neck and its
angular velocity.

Figure 6 depicts the mean function of C7 marker height versus
normalized time. As can be seen, the trunk rises during the flexion
movement during braking (tn from 0 to approximately 60%) and
descends during the return movement. The mean elevation for the
17 subjects is 4.9 cm (std = 2.6 cm).

The rising of C7 is associated with both pelvic rotation and
lumbar flexion, although these rotations do not contribute
similarly. Indeed, Table 6 summarizes the results of the
regression model of C7 height as a function of pelvic and
lumbar flexion angles. The goodness of fit is good (median
multiple correlation coefficient = 0.971), and the coefficient of
the pelvic angle is four times greater than that of lumbar flexion

TABLE 4 Numerical kinematic variables for the three segments. Mean (std). N = 17. Angular displacements and velocities are positive for extension
movement and negative for flexion movement.

Variable Pelvis Thorax Head

Maximum flexion (°) −9.5 (6.7) −19.1 (11.5) −20.7 (12.6)

Maximum extension (°) 2.8 (2.2) 4.1 (2.8) 8.1 (5.2)

Range of Flexion-Extension (°) 12.3 (6.7) 23.2 (12.3) 28.8 (14.2)

Maximum velocity flexion (°/s) −29.8 (24.1) −44.3 (22.7) −85.7 (45.3)

Maximum velocity extension (°/s) 33.7 (17.7) 61.1 (37.3) 111.8 (74.5)

Range of velocity Flexion-Extension (°/s) 63.5 (36.8) 105.4 (53.1) 197.5 (99.4)

TABLE 5 Spearman’s correlation coefficients between the mobility of each
segment. Upper box, between angular ranges. Lower box (gray), between
angular velocity ranges. Rho (p-value).

Body segment Lumbar area Neck

Pelvis 0.513 (0.035) 0.712 (0.001)

0.659 (0.004) 0.860 (0.000)

Lumbar area 0.495 (0.043)

0.807 (0.015)
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(3.56 versus 0.88), with the difference being significant (p <
0.008 in Friedman’s test). These results demonstrate that the
contribution of pelvic rotation to trunk elevation is more
significant than that of lumbar flexion. This may be due to the
elevation of the sacrum, S1, by rotation of the pelvis around an
axis located at the ischial tuberosities (Page et al., 2009b). In the
sitting position, the pelvis is tilted backward, and when turning
forward, there is an elevation of the sacrum and, consequently,
the entire trunk. However, this interpretation should be
contrasted with more detailed kinematic studies.

Figure 7 shows the mean functions of the vertical and horizontal
components of the net force that the neck exerts on the head. The
vertical component takes an approximately constant value and is
associated with the head’s weight, with small oscillations due to the
vertical accelerations. In contrast, the horizontal forces peak at the
end of the movement when the thorax impacts against the seat back,
which stops the movement of the thorax and brakes the head. It
should be noted that this peak occurs when the vehicle is entirely
stationary so that the measured acceleration relative to the bus
corresponds to the absolute acceleration. There is also a peak at the
beginning of braking, which is much smaller. However, this occurs
with the vehicle at negative acceleration so the absolute acceleration
and force would be lower.

The average of the maximum forces in the horizontal direction is
30 N (std = 15.9 N), and in the vertical direction it is 61.5 N (std
10.6 N). The maximum value of the horizontal force in the mean
function is lower than the average of the maxima due to the
cancellation effect that appears due to the lag between curves
(the curves have been aligned with the angles, not with the
accelerations). The maximum horizontal forces range from
11.0 N to 57.6 N.

Finally, the risk of cervical injury was analyzed using the Neck
Injury Criterion (NIC). The maximum value of the NIC does not
appear during braking but in the impact of the thorax against the
seat back during the return movement. The average of these
maximum values was 0.69 m2/s2 (std = 0.40 m2/s2), with a range
between 0.25 and 1.63 m2/s2. The tolerance level for assuming a neck
injury is 15 m2/s2. The maximumNIC value obtained (1.63 m2/s2) is
approximately nine times lower than the injury threshold, proving
that the tests were designed at a safe level. These values may be
higher with heavier braking.

4 Discussion

The study of unrestrained passengers’ body kinematics during
braking has received limited attention in the literature, despite being
a common scenario in public transportation and a potential scenario
in autonomous vehicles, particularly at low speeds. While prior
studies have predominantly focused on head-neck system dynamics,
the comprehensive analysis of the entire kinematic chain, including
pelvis-thorax-headmovements, has been lacking. This gapmay stem
from the emphasis on restrained subjects in previous research,
contrasting with the larger movements observed in unrestrained
passengers during braking. When occupants are unrestrained and
are subjected to braking (caused by a driver or an autonomous
driving system), they experienced significant movements of both the
neck and head, but also of the trunk if it is unrestrained, which
translates into a movement of the pelvis that must also be
considered.

While studies on trunk kinematics in seated positions exist, they
primarily pertain to working postures characterized by voluntary
and very slow movements, so angular velocities are low and
accelerations are negligible (Vd et al., 2001; Page et al., 2009b).
Although these studies highlight the role of the pelvis in the
movement of the whole trunk, their results cannot be
extrapolated to braking scenarios, where movements are much
larger and faster and where coordination patterns are completely
different. To our knowledge, this study represents the first
experimental study to record and describe the movement of all
three segments in unrestrained passengers (volunteers) during
braking, thus precluding direct comparisons with previous
findings. Previous research on body motion during traffic
accidents (Panjabi, 1998; Ejima et al., 2007; Ejima et al., 2008;
Behr et al., 2010; Carlsson and Davidsson, 2011; Ejima et al.,
2012; Rooij et al., 2013; Ólafsdóttir et al., 2013; Östh et al., 2013;
Kirschbichler et al., 2014; Kuo et al., 2018; Reed et al., 2018; Holt
et al., 2020; Ghaffari and Davidsson, 2021; Larsson et al., 2022) has
primarily focused on analyzing maximum head and torso excursions
through linear positions and accelerations. In contrast, our study
offers insights utilizing angular variables. Additionally, these prior

FIGURE 6
Mean function of the height of C7 during movement. The
C7marker increases during thoracic (and pelvic) flexion and decreases
during the extension movement.

TABLE 6 Coefficients of the regression models for height of C7 (ti) = a +
b*pelvic rotation (ti) + c*lumbar rotation (ti), ti∈ [T0, T2]. N = 17. R =
correlation coefficient; IQR = Interquartile range.

Coefficient Median (IQR)

b (mm/°) 3.56 (4.03)

c (mm/°) 0.88 (3.25)

R 0.971 (0.13)
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studies have overlooked pelvic motion, rendering direct numerical
comparisons unfeasible. Additionally, the authors posit that
comparing maximum or average excursions could be misleading
due to variations in experimental conditions and deceleration values
across studies. It’s worth noting that some of these studies have
compared passengers restrained solely by a lap belt webbing against
those secured by the standard three-point belt. Consistently, they
(Bostrom and Haland, 2005; Siegmund et al., 2005; Parenteau, 2006;
Carlsson and Davidsson, 2011; Khim et al., 2013; Ólafsdóttir et al.,
2013; Östh et al., 2013; Kirschbichler et al., 2014; Larsson et al., 2022)
have found that the chosen restraint system significantly influences
the occupant’s kinematic response. The marked impact of the seat-
and-belt combination on braking maneuvers can be attributed to the
occupant’s substantial interaction with the upper portion of the
three-point belt during braking maneuvers. When only a lap belt is
utilized, a greater forward excursion of the trunk and head is
observed, as neither of these areas is restricted. Moreover, in
scenarios where passengers remain unrestrained, the pelvis plays
a crucial role, given its lack of restraint. Past investigations on
braking maneuvers have typically delineated two primary phases: a
forward movement phase and a rebound phase. However, when
subjects are restrained by a seat belt, the rebound phase tends to be
less abrupt compared to observations in our study. This attenuation
can be attributed to the support provided to the trunk and pelvis in
restrained passengers, which limits significant forward movement,
consequently reducing the potential for extensive backward motion
during the rebound phase.

Our study reveals a consistent pattern amid individual variability,
which can be interpreted as follows. During braking, the thorax, being
the segment with the greatest mass, is propelled forward by the force
of inertia, consequently dragging the pelvis and head with a slight
delay relative to the thorax. This causes a slight neck extension and
notable lumbar flexion. Subsequently, as the vehicle halts, the trunk
undergoes a rearward movement, attributed to muscle compensation
for the previous flexion. It is possible that the pitching effect of the
vehicle also plays some role in this movement. However, both
hypotheses will have to be tested in further studies.

One of the effects of pelvic rotation is that the upper part of the
sacrum (S1) elevates, pushing and lifting the rest of the spine. This
may be due to the pelvis being tilted backward in the starting
position, as is usually the case in a relaxed sitting posture. Because
the axis of rotation of the pelvis is approximately at the support of
the ischial tuberosities (Page et al., 2009b), i.e., slightly above the seat
and forward of the sacrum, the rotation of the pelvis is inevitably
associated with an elevation of S1 and, with it, the rest of the trunk.
This effect has been observed experimentally, with an elevation of
C7 of several centimeters. This elevation is directly associated with
pelvic rotation and not with trunk flexion, as demonstrated by the
correlation analysis performed. This elevation, together with the
slight extension of the neck in this phase, may cause compression of
the neck, which should be analyzed in further studies.

Another pattern observed is the effect of the impact of the trunk
against the seatback during the return movement post-braking after
the vehicle has stopped. This impact abruptly halts thoracic and
pelvic movements, causing a whiplash effect in the neck, evidenced
by sudden angular velocity changes, with a consequent dynamic
effect. This phenomenon has also been verified experimentally in
angular velocity curves. It originates in impulsive actions associated
with a sudden change in the position of the instantaneous center of
rotation of the head. In fact, the head moves with a small angular
velocity during return movement. This angular velocity is the sum of
the angular velocity of the pelvis (positive), lumbar area (positive)
and neck (negative) (Figure 5). Therefore, the position of the
instantaneous center of head rotation must be below the lumbar
area. Upon collision with the seat back, the lumbar and pelvic
movements are blocked so that the displacement of the head is now
fundamentally due to the movement of the neck, with a much
smaller radius of gyration, which abruptly increases the angular
velocity, producing a peak in the horizontal force (Figure 7).

The study conducted is a preliminary study with some
important limitations. The first relates to the limited sample,
although it was sufficient to be able to test the main hypotheses
of the study. In addition, we have encountered problems with
precision, due to camera vibrations, which have introduced some

FIGURE 7
Mean force curves during movement as a function of normalized time.
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noise. This noise may affect the precision in the calculation of
accelerations and position of instantaneous center of rotation of the
pelvis and thorax. Consequently, dynamic analyses were not feasible
in this study but should be addressed in future research endeavors.

In conclusion, our findings underscore the need to consider the
kinematics and dynamics of the entire trunk when designing safety
systems for vehicles and not only the head and neck, particularly in
scenarios involving braking, where coordinated movement of all
segments is evident. Furthermore, the non-negligible influence of
pelvic movement on the overall kinematic chain emphasizes the
importance of comprehensive analyses in enhancing
passenger safety.

5 Conclusion

The analysis of unbelted passengers’ kinematics during low-
speed braking in an autonomous bus reveals coordinated movement
patterns involving thoracic flexion and extension, which drags the
pelvis and head in its back-and-forth movements. Pelvic forward
rotation results in the elevation of S1 and the entire spine. The
contribution to C7 rise associated with pelvic rotation is much
greater than the effect of lumbar flexion-extension.

The collision of the back against the seat back during the return
movement induces a whiplash effect in the neck due to the abrupt
change in the head’s center of rotation. This leads to sudden changes
in its angular velocity, with dynamic effects that need to be studied in
more detail. This study demonstrates that the rebounding motion
and subsequent impacts against the seat could imply a higher risk
situation that requires further study.

In conclusion, the study emphasizes that the design of safety
systems in vehicles accommodating unbelted passengers should not
solely focus on neck forces but also consider the coordinated
movement of the entire kinematic chain, encompassing the torso
and pelvis.
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