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Introduction: Intrauterine adhesions (IUAs) caused by endometrial injury,
commonly occurring in developing countries, can lead to subfertility. This
study aimed to develop and evaluate a DeepSurv architecture-based artificial
intelligence (AI) system for predicting fertility outcomes after hysteroscopic
adhesiolysis.

Methods: This diagnostic study included 555 intrauterine adhesions (IUAs)
treated with hysteroscopic adhesiolysis with 4,922 second-look hysteroscopic
images from a prospective clinical database (IUADB, NCT05381376) with a
minimum of 2 years of follow-up. These patients were randomly divided into
training, validation, and test groups for model development, tuning, and external
validation. Four transfer learning models were built using the DeepSurv
architecture and a code-free AI application for pregnancy prediction was also
developed. The primary outcome was the model’s ability to predict pregnancy
within a year after adhesiolysis. Secondary outcomes were model performance
which evaluated using time-dependent area under the curves (AUCs) and
C-index, and ART benefits evaluated by hazard ratio (HR) among different
risk groups.

Results: External validation revealed that using the DeepSurv architecture,
InceptionV3+ DeepSurv, InceptionResNetV2+ DeepSurv, and ResNet50+
DeepSurv achieved AUCs of 0.94, 0.95, and 0.93, respectively, for one-year
pregnancy prediction, outperforming other models and clinical score systems. A
code-free AI application was developed to identify candidates for ART. Patients
with lower natural conception probability indicated by the application had a
higher ART benefit hazard ratio (HR) of 3.13 (95% CI: 1.22–8.02, p = 0.017).

Conclusion: InceptionV3+ DeepSurv, InceptionResNetV2+ DeepSurv, and
ResNet50+ DeepSurv show potential in predicting the fertility outcomes of
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IUAs after hysteroscopic adhesiolysis. The code-free AI application based on the
DeepSurv architecture facilitates personalized therapy following hysteroscopic
adhesiolysis.

KEYWORDS

intrauterine adhesions, Cox proportional hazard network, image deep learning, treatment
recommendation, subfertility

1 Introduction

Intrauterine adhesions (IUAs), commonly known as
Asherman’s syndrome, are caused by injury to the endometrial
basal layer and subsequent scar formation (Xu et al., 2018). IUAs are
more common in developing countries, often secondary to induced
abortions or intrauterine procedures, with incidence rates of up to
14% in patients with infertility or recurrent pregnancy loss (RPL)
(Bosteels et al., 2018; Zhao et al., 2021). Hysteroscopic adhesiolysis is
the current therapy for IUAs due to its minimally invasive nature
and direct visualization (Yu et al., 2008; Hooker et al., 2014;
Hanstede et al., 2021). However, managing moderate to severe
IUAs remains challenging, and severe cases are associated with
poor prognoses (Zhao et al., 2021).

The main methods for evaluating the prognosis of IUA patients
are hysteroscopy and ultrasound. Hysteroscopy can
comprehensively analyze postoperative uterine cavity morphology
and endometrial receptivity (Smit et al., 2016; Craciunas et al., 2019),
thus becoming the first-line assessment method in clinical practice.
Moreover, some studies have shown that postoperative
hysteroscopic assessment is more powerful in predicting the
fertility outcomes of patients (Xu et al., 2018; Zhao et al., 2022).
However, without objective indicators, it has difficulties effectively
integrating it with ART management for postoperative patients.
Artificial intelligence (AI) algorithms can provide objective
assessment metrics for endoscopic techniques (Zhang et al., 2021;
Sutton et al., 2022), which has gradually received attention in the
field of IUAs. In our previous study, we used machine learning
algorithms such as decision trees and XGboost to predict the
pregnancy outcomes of IUA patients based on clinical data (Zhu
et al., 2022; Li et al., 2023a). Recently, some studies have also used 3D
ultrasound parameters to predict the outcomes (Sun et al., 2024).
These studies have achieved good prediction results, but they have
some limitations. The data they used are based on the clinical scores
and manual measurements by doctors, which may have subjectivity
and heterogeneity issues. Moreover, the lack of external validation
makes these algorithms challenging to apply in clinical practice (Zhu
et al., 2022; Sun et al., 2024).

However, there is currently a lack of research on image deep
learning for hysteroscopy in IUA, which can automatically extract
and analyze features from hysteroscopic images and achieve
objectivity and accuracy to some extent. Compared with other
fields, hysteroscopic image deep learning for IUA faces some
challenges due to the lack of previous research, such as
determining the optimal angle of images, standardizing the
process, selecting a model that can balance the computational
resources and accuracy, and adjusting the training parameters. In
addition, predicting fertility outcomes is essentially a risk prognosis
task involving both the time and cumulative hazard of event

occurrence. Therefore, choosing a suitable model to extract
features from hysteroscopic images and to predict the prognosis
events is very important.

Transfer learning models based on Convolutional Neural
Networks (CNN) indicate potential in medical image analysis
(Esteva et al., 2019; Ling et al., 2022). In this study, we employ
three CNN architectures for hysteroscopic image classification:
InceptionV3, ResNet50, and InceptionResNetV2.
InceptionV3 utilizes multiple convolutional filters of varying sizes
to extract features at different scales, providing a wider receptive
field (Szegedy et al., 2016). ResNet50 incorporates residual
connections to alleviate the vanishing gradient problem and
improve training stability (He et al., 2016).
InceptionResNetV2 combines the strengths of both Inception and
ResNet, offering a deeper and more efficient architecture for image
recognition (Szegedy et al., 2017). These models have demonstrated
state-of-the-art performance in various image classification tasks,
including medical image analysis. The evaluation of various CNN
transfer learning models in hysteroscopy may reveal their strengths
and limitations for IUA fertility outcomes prediction.

On top of the transfer learning framework, we further attempt to
add DeepSurv, which is a feed-forward neural network based on the
Cox proportional hazards (CPH) model, to assess the risk of event
occurrence. CPH is a commonly used semi-parametric model in
medical statistics to measure the effect of covariates on the hazard of
event occurrence, which enables the prediction of time-to-event
outcomes. DeepSurv extends CPH to the application of non-linear
parameters, which can be used for image feature analysis, and thus
achieve medical prognosis stratification and management (Katzman
et al., 2018; Katzman et al., 2018; She et al., 2020).

As an overview, despite the prevalence of IUAs in developing
countries, there is a lack of objective and accurate methods to predict
fertility outcomes after surgery. This gap hinders personalized
treatment planning and optimization of patient care. Therefore,
we hypothesize that transfer learning models with DeepSurv
architecture can predict the reproductive prognosis in IUA
patients by hysteroscopic image and suggest stratified therapy
following hysteroscopic adhesiolysis. This approach aims to
contribute to personalized diagnosis and treatment for patients
by filling the research gap in the field of IUA with AI techniques.

2 Materials and methods

2.1 Study design and participants

Data were obtained from the Intrauterine Adhesion Prospective
Clinical Database (ClinicalTrials.gov NCT05381376), which
enrolled 732 patients prospectively between December 2018 and
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January 2020. Inclusion criteria are as follows: i) hysteroscopy-
confirmed IUA; ii) recent plans for conception; and iii) normal
hormone levels and ovulation. Exclusion criteria included i) male
infertility, ii) primary infertility, iii) tuberculosis-related IUA, iv)
tubal factor infertility, and v) other diseases such as endometrial
polyps, atypical hyperplasia, or endometrial cancers. The study
included 555 patients, who were randomly assigned in a 3:1 ratio
to the modeling cohort or the test cohort. The modeling cohort
consisted of 430 patients, who were further randomly divided into
training and validation sets in an 8:2 ratio using computer-based
randomization. The training and validation sets were used for model
training and hyperparameter tuning, respectively. The test cohort
consisted of 125 patients, who were used for external validation of
the model (Figure 1A). Following a thorough explanation of the
procedure, informed consent was obtained.

2.2 Hysteroscopic adhesiolysis and
postoperative management

Twelve hours before surgery, 1 mg of derivative of
prostaglandin F2α (PGF2α) was administered for cervical
softening. Surgical hysteroscopy was performed and normal
saline as the perfusion medium. The shape and extent of
adhesion in the uterine cavity were assessed directly. The
endometrium was preserved by performing meticulous
adhesion tissue separation and scar tissue removal. Successful
separation required the restoration of normal uterine anatomy
without adhesions. Physical barriers were used postoperatively to
prevent adhesion recurrence, followed by a three-month course
of estradiol valerate and dydrogesterone-based hormonal
therapy. Patients were encouraged to attempt natural
conception for a year after surgery, with ART treatment
indicated if pregnancy did not occur within that timeframe (Li
et al., 2024).

2.3 Data collection and pre-processing

Following Standard Operating Procedures (SOPs),
4,922 postoperative hysteroscopic follow-up images were
obtained 3–7 days after menstruation. Using 0.9% saline for
irrigation, specialized hysteroscopy physicians maintained uterine
distension at 80–100 mmHg pressure with a flow rate of
260–280 mL/min for optimal fallopian tube ostia visualization.
Intrauterine orthoimages and fallopian tubes ensured clear
images centered within the lens (Figure 1B). Supplementary
Table S1 describes the image collection process. Age, endometrial
thickness, endometrial blood supply, fallopian tube ostia, and the
clinical scoring systems AFS (American Fertility Society) and CSGE
(Chinese Society of Gynaecological Endoscopy) (Supplementary
Table S2) were collected as clinical data. Reproductive outcomes
were assessed using medical records and telephonic follow-ups at
least 2 years after the intervention. Study endpoints included
continued pregnancy, defined as detecting a fetal heartbeat
at >12 weeks of gestation (Smit et al., 2016).

The study followed the STARD 2015 guidelines (Bossuyt et al.,
2015) (Supplementary Data S1).

2.4 Convolutional neural network model
development

This study investigated the addition of DeepSurv architecture to
four deep learning frameworks (InceptionResNetV2, ResNet50,
InceptionV3, and VGG19). These object recognition models were
pretrained on ImageNet data. Using Keras pre-processing image, the
input images were standardized to at least 300 × 300 pixels before
being normalized to 336 × 336 pixels. Transfer learning includes
using convolutional kernels to extract features from various layers,
with a regularization dropout rate of 0.2. Training used a batch size
of 16 and 300 epochs each iteration, with callback functions
optimizing the dynamic learning rate.

2.5 DeepSurv model architecture and
hyperparameter tuning

The Cox Proportional Hazards (CPH) model estimates the true
hazard function h(x) via a linear function ĥβ(x) � βTx. To perform
Cox regression, weights are adjusted to optimize the Cox partial
likelihood, which is the product of the probabilities of each
individual’s event occurring at their respective time. The CPH
maximum partial likelihood function, parameterized by β, is
defined as:

Lc β( ) � ∏
i:Ei�1

exp ĥβ xi( )( )
∑jϵR Ti( ) exp ĥβ xi( )( ). (1)

Eq. 1: The Cox partial likelihood is optimized by the weights
β, which reflect the effect of the baseline covariates x on the
hazard function. The numerator of the partial likelihood is the
risk score of patient i at their conception time Ti, and the
denominator is the sum of the risk scores of all the patients
who are still have not conceived at Ti. Ei is the event indicator,
which is 1 if patient i conceived and 0 otherwise. xi is the vector of
baseline covariates for patient i.

DeepSurv refine the modified Cox partial likelihood, which
replace the linear combination of features ĥβ(x) with the output
of a network ĥθ(x). The output of the network is a single node that
estimates the risk function ĥθ(x) parameterized by the network’s
weight parameters θ. The loss function were set to be the negative
log-likelihood, given by (22):

lθ � − 1
NE�1

∑
i:Ei�1 ĥθ xi − log∑

j∈R Ti( ) e
ĥθ xj( )( ) + λ · θ| || |22( ). (2)

Eq. 2: The number of patients with observable events is denoted
byNE�1, and λ is a regularization parameter that controls the trade-
off between model complexity and data fit.

Through an exhaustive grid search (Supplementary Figure S1),
we fine-tuned the model’s hyperparameters, including the number
of layers (2 hidden layers), number of nodes (8 per layer), activation
function (scaled exponential linear unit; SeLU), learning rate
(0.154), weight decay (0.00567), momentum (0.887), dropout rate
(0.500), and optimizer (Nadam). Moreover, DeepSurv employed
batch normalization, stochastic gradient descent with Nesterov
momentum, gradient clipping, and learning rate schedules.
1,000 epochs were used to obtain well-trained weights. The
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model was saved as an executable file (.exe) and uploaded to the
GitHub repository (Proportional, 2022). The models block diagram
is shown in Figure 1C.

2.6 Model evaluation

The performance of the model was assessed using two metrics.
The time-ROC curve (TimeROC package in R, version 3.6.2) was
used to evaluate accuracy at various time points. The c-index
(Survcomp package in R, version 3.6.2) was used to compare the
predicted conception time to the actual conception time.
Parameters, floating-point operations (FLOPs), and average
inference time were used to evaluate the computational
complexity of the model, including memory consumption,
computational cost, and efficiency, respectively. The number of
parameters reflects the memory required to store the model
weights. The FLOPs measure the number of arithmetic
operations needed to perform a forward pass of the model. The

average inference time is the average duration of a single prediction
on a new image.

2.7 Statistical analysis

Patient demographics and clinical characteristics were summarized
using descriptive statistics. The Wilcoxon rank-sum test compared the
continuous variables between groups, whereas the Chi-squared test
assessed categorical variables. Cox proportional hazard regression was
used to calculate HR and evaluate the ART benefits among risk groups.
The statistical significance was set at p < 0.05.

2.8 Subfertility risk visualization

Patient demographics and clinical characteristics were
summarized using descriptive statistics. The Wilcoxon rank-sum
test compared the continuous variables between groups, whereas the

FIGURE 1
(A) Flow diagram of the cohort study. (B) Example of standardized image acquisition. Ensure the hysteroscope lens is level when capturing images of
the uterine cavity, positioning the center point at the visible uterine cavity’s midpoint. For images of both uterine corners, place the center point at the
fallopian tube orifice. If there are adhesions closing the fallopian tube orifice, center the adhesion site in the field of view. (C) Models block diagram of
transfer learning models + DeepSurv.
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Chi-squared test assessed categorical variables. Cox proportional
hazard regression was used to calculate HR and evaluate the ART
benefits among risk groups. The statistical significance was set at p <
0.05 (Selvaraju et al., 2020).

2.9 Ethical approval

The Research Ethics Committee of Beijing Obstetrics and
Gynecology Hospital approved and supervised the study. The

revised version was approved by the Chinese Ethics Committee
of Registering Clinical Trials (protocol number IEC-B-03-v01-
FJ1 and ChiECRCT20220180).

2.10 Sample size

The sample size was calculated to ensure test efficacy, achieving
a desired power of 90% at a significance level of 0.05
(Supplementary Figure S2).

TABLE 1 Overview of the demographics and other characteristics of the recruited patients.

Characteristics Modelling cohort Test cohort pa

Age [n (%)] <35 y 302 (70.2%) 85 (68%) 0.66

≥35 y 128 (29.8%) 40 (32%)

Symptom duration [Months, Median (quartile)] 23 (8, 36) 15 (10, 36) 0.94

Menstrual patternb [n (%)] Normal 39 (9.1%) 10 (8%) 0.97

<1/2 132 (30.7%) 37 (29.6%)

Hypomenorrhea 224 (52.1%) 67 (53.6%)

Amenorrhea 35 (8.1%) 11 (8.8%)

Age at menarche [Median (quartile)] 13 (12, 14) 13 (12, 14) 0.45

Menstrual volume before endometrial injury Heavy 19 5 0.8

Normal 411 100

Gravidity [Median (quartile)] 2 (1, 3) 2 (1, 3) 0.11

Parity [Median (quartile)] 0 (0, 0) 0 (0, 0) 0.28

Missed abortion [Median (quartile)] 0 (0, 1) 0 (0, 1) 0.46

Cesarean delivery [Median (quartile)] 0 (0, 0) 0 (0, 0) 0.28

Uterine aspiration [Median (quartile)] 1 (0, 2) 1 (0, 2) 0.32

Medication abortion [Median (quartile)] 0 (0, 0) 0 (0, 0) 0.53

Spontaneous abortion [Median (quartile)] 0 (0, 0) 0 (0, 0) 0.75

Dilation and evacuation [Median (quartile)] 0 (0, 1) 0 (0, 1) 0.56

Uterine volume [Median (quartile)] 31.38 (25.1, 41.84) 31.38 (25.1, 41.84) 0.95

BMI [kg/m2, Mean (SD)] 23.22 (0.67) 22.16 (0.27) 0.4

AFS [n (%)] Mild (1-4) 7 (1.6%) 4 (3.2%) 0.527

5-8 260 (60.5%) 73 (58.4%)

Severe (9-12) 163 (37.9%) 48 (38.4%)

CSGE [n (%)] Mild (0-8) 29 (6.7%) 16 (12.8%) 0.064

Moderate (9-18) 369 (85.8%) 103 (82.4%)

Severe (19-28) 32 (7.4%) 6 (4.8%)

Ongoing pregnancy [n (%)] 148 (39.5%) 39 (38.24%) 0.91

IVF [n (%)] 62 (16.4%) 12 (11.8%) 0.283

Unexpected exclusion [n (%)] 16 (3.72%) 9 (7.2%) 0.15

Missed visit [n (%)] 35 (8.45%) 14 (12.07%) 0.28

aComparison between groups was performed by chi-square, Wilcox, and t-test, respectively.
bIn comparison with the change in the menstrual pattern before the IUA.
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3 Results

3.1 Patients characteristics

Table 1 shows the baseline of patients. Among the study
participants, 13.3% were excluded for various reasons, such as
divorce, contraception, or the postponement of reproductive plans.
As a result, the training, validation, and testing sets contained 303, 76,

and 102 patients with conception outcomes, respectively. Upon follow-
up, the percentages of patients who achieved ongoing pregnancy in the
training, validation, and testing sets were 40.0% (112/303), 47.4% (36/
76), and 38.2% (39/102), respectively. There were no statistically
significant differences in clinical indicators such as age, the severity
of IUAs (as measured by AFS and CSGE scores), and the rates of
successful pregnancy within 1 year and during the follow-up period
between the three patient groups.

FIGURE 2
Time-dependent AUCs of InceptionV3+DeepSurv, InceptionResNetV2+DeepSurv, ResNet50+DeepSurv, and VGG19+DeepSurv models are shown
for the training (A) and validation (B) sets. The x-axis represents the duration of time, and the y-axis represents the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve. The plot demonstrates the performance of the models over time for each dataset.
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3.2 Model development and performance in
modelling cohart

We calculated the time-dependent AUCs for both the training and
validation sets after training on the training set to achieve the best

weights (see the loss gradient curve in the Supplementary Figure S3). In
the case of InceptionV3+DeepSurv, the AUC for the training set was
0.96 (95% CI: 0.94–0.98) and 0.89 (95% CI: 0.8–0.97) for the validation
set. InceptionResNetV2+DeepSurv achieved an AUC of 0.97 (95% CI:
0.96–0.99) for the training set and 0.97 (95% CI: 0.93–1.01) for the

FIGURE 3
External validation on the test set of InceptionV3+DeepSurv, InceptionResNetV2+DeepSurv, ResNet50+DeepSurv and VGG19+DeepSurv by (A)
time-dependent AUCs and (B)Calibration plots over 12, 24, and 48months. The calibration plots are presented for eachmodel separately, with the x-axis
showing predicted probabilities and the y-axis showing observed frequencies. The plot provides a measure of howwell the predicted probabilities match
the observed frequencies.
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validation set. ResNet50+DeepSurv had an AUC of 0.95 (95% CI:
0.92–0.97) for the training set and 0.83 (95% CI: 0.71–0.95) for the
validation set when predicting natural conception within 1 year. These
models with the DeepSurv architecture significantly outperformed
those without it (p < 0.05, Figure 2). Notably, models based on the
VGG19 framework continuously performed poorly, regardless of the
presence of the DeepSurv architecture.

3.3 Testing models on the test set

The models underwent external validation on the test set, and for
predicting natural conception within 1 year, InceptionV3+DeepSurv
(AUC = 0.94, 95% CI; 0.89–0.98), InceptionResNetV2+DeepSurv
(AUC = 0.95, 95% CI; 0.91–0.99), and ResNet50+DeepSurv (AUC =
0.93, 95% CI; 0.88–0.98) significantly outperformed InceptionV3
(AUC = 0.87, 95% CI; 0.8–0.94), InceptionResNetV2 (AUC = 0.86,
95%CI; 0.8–0.92), andResNet50 (AUC= 0.88, 95%CI; 0.82–0.94), with
p-values equal to 0.011, 9.4 × 10−4, and 6.6 × 10−3, respectively.
Furthermore, the models above still revealed significant
improvements when comparing clinical markers such as AFS,
CSGE, and endometrial thickness (Figure 3A).

The calibration plot illustrates the calibration deviance and the
model’s predictions compared to actual events (Figure 3B). Overall, the
actual conception outcomes of IUAs at 12, 24, and 48 months closely
matched the 45° line, demonstrating a high degree of consistency. There
was no significant difference among the three models. The predictions
obtained by these models were significantly superior to the clinical
indicators such as AFS, CSGE, and endometrial thickness (Table 2).

3.4 Model region of interest visualization

The use of Grad-CAM facilitates the visualization of the ROI of the
model for images duringmachine learning (Figure 4). The ROI analysis
indicates that InceptionResNetV2+DeepSurv, InceptionV3+DeepSurv,
and ResNet50+DeepSurv all exhibit highlighted regions presenting
image attributes on which the machine learning classification is
based. Conversely, VGG19+DeepSurv lacks a comparable feature
display, suggesting that this model may struggle with extracting
image features from hysteroscopic images that can be used for
classification. Furthermore, the first three models have slightly
different understandings of image attributes.
InceptionResNetV2+DeepSurv focuses more on intrauterine
morphology; InceptionV3+DeepSurv focuses on the state of the
endometrium and the fallopian tube ostias, while
ResNet50+DeepSurv gives attention to the intrauterine morphology
and the cornua. Nonetheless, the three machine learning models are
consistent with the clinical understanding of the condition. It may be
possible to use these models in clinically available applications by
integrating them with the ROI display.

3.5 Models’ computation complexity and
application deployment

Table 3 presents a comparison of the computational complexity
of the four models utilized in this research. The evaluation of theseT
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models includes parameters such as the number of parameters,
FLOPs, average inference time, and model performance metrics
(c-index, AUC at 1 year, and AUC at 2 years). In general, the
InceptionV3, InceptionResNetV2, and ResNet50 models integrated
with the DeepSurv framework exhibit similar performance
characteristics. Specifically, the InceptionV3+DeepSurv model
demonstrates a slightly lower count of parameters and FLOPs
compared to the ResNet50+DeepSurv model, yet it delivers
superior performance. Conversely, the
InceptionResNetV2+DeepSurv model boasts the highest number
of parameters and FLOPs among the models. On the other hand, the
VGG19+DeepSurv model features the lowest count of parameters
and FLOPs, correlating with the lowest performance metrics.
Overall, the InceptionV3+DeepSurv model emerges as the top-
performing model in terms of accuracy and computational

complexity. As a viable option, the ResNet50+DeepSurv model
offers a comparable performance level and computational
efficiency compared to the InceptionV3+DeepSurv model.

The application we developed using the InceptionV3+DeepSurv
model as an example is user-friendly and can operate efficiently
without requiring advanced coding skills (Video). The red
highlighted areas on the images visually reflect the high-risk
factors for subfertility. We also assessed the probability of
successful pregnancy for the patients within one and 2 years.
This model estimates the patient’s infertility risk, as
demonstrated in the two examples. This individualized risk
assessment is critical for postoperative patients undergoing
assisted reproductive technologies. By identifying the subfertility
risk factors through the model, healthcare professionals can focus on
infertility risk factors and build individualized treatment options.

FIGURE 4
Grad-CAM visualizations of the regions of interest (ROIs) for InceptionResNetV2+DeepSurv, (A) InceptionV3+DeepSurv, (B) ResNet50+DeepSurv,
(C) and VGG19+DeepSurv (D)models are presented. The figure shows the results for patients who were not pregnant during postoperative follow-up on
the left and for patients who had successful pregnancies after surgery on the right. The visualization highlights the regions of the image that were most
important for the model’s prediction.
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3.6 DeepSurv architecture models for
fertility prognosis stratification in ART

We categorized patients based on the fertility prognosis
predicted by the previously mentioned code-free AI application.
The ART benefit rate was significantly higher among individuals
with a low likelihood of natural conception within 1 year, with an
HR of 3.13 (95% CI: 1.22–8.02, p = 0.017), compared to those with a
high likelihood of natural conception within 1 year, where the HR
was 0.52 (95% CI: 0.24–1.14, p = 0.101). The model’s stratification
for ART benefit outperformed AFS, CSGE, and endometrial
thickness (Table 4).

4 Discussion

Selecting an appropriate deep learning technique for fertility
assessment is relevant in effectively diagnosing and treating IUAs, a
disease characterized by endometrial damage. To the best of our
knowledge, this is the first study that applied deep learning models
to the conception prediction and management task using
hysteroscopic images, and compared their performance and
complexity using the DeepSurv framework. Various deep
learning algorithms were explored to identify a CNN model
suited for analyzing hysteroscopic images, which was then
integrated with CPH neural networks to evaluate the subfertility
risks and predict the probabilities of conception at different times
and assist in formulating optimal treatment strategies after
hysteroscopic adhesiolysis for IUAs.

Traditional approaches for evaluating IUAs primarily rely on
clinical scoring systems, including AFS, ESGE, and CSGE. These
scoring systems aim to clinically assess the severity of IUAs and
predict pregnancy outcomes (Cao et al., 2021). Cao et al. (2021)
conducted a retrospective study to investigate the effectiveness of
different AS evaluation systems in determining reproductive
outcomes. AUCs for AFS and CSGE were 0.663 and 0.684,
respectively, consistent with our findings. Variables in the AFS
scoring system include the extent and nature of adhesions and
the patient’s menstrual status. However, these approaches are
subjective and may not accurately reflect the patient’s
endometrial function (AAGL, 2010).

A few studies have explored the application of artificial
intelligence algorithms in the field of IUAs. In our previous
study, we used machine learning algorithms such as decision
trees and XGboost to predict the pregnancy outcomes of patients
based on clinical data (Li et al., 2022; Zhu et al., 2022; Li et al., 2023a).
Zhao et al. (2022) also developed a logistic prediction model using
clinical parameters such as age, preoperative AFS score, preoperative
uterine cavity length, and visibility of bilateral fallopian tube ostia
during hysteroscopy review. These methods achieved excellent
predictive performance, with AUCs of 0.8–0.9. However, these
studies also acknowledged the limitations of their research, such
as the lack of consensus and consistency on the clinical indicators,
such as the IUA scoring system. Sun et al. (2024) proposed a logistic
prediction model based on various evaluation parameters of 3D
transvaginal ultrasound, which also showed promising results, but
suffered from the same drawbacks of subjectivity and variability. The
subjective differences in judgment and evaluation among different

TABLE 3 Computational complexity of models.

Models Paramsa FLOPsb avg_timec c-index AUC (1year) AUC (2years)

InceptionResNetV2+DeepSurv 54,336,736 14,094,325,732 0.2145 0.89 (0.86–0.93) 0.95 (0.91–0.99) 0.93 (0.88–0.99)

ResNet50+DeepSurv 23,587,712 9,210,755,721 0.0696 0.9 (0.86–0.94) 0.93 (0.88–0.98) 0.95 (0.9–1)

InceptionV3+DeepSurv 21,802,784 6,234,156,566 0.0555 0.9 (0.86–0.93) 0.94 (0.89–0.98) 0.95 (0.9–1)

VGG19+DeepSurv 20,024,384 43,759,363,472 0.0452 0.56 (0.31–0.81) 0.49 (0.43–0.54) 0.49 (0.42–0.55)

aParams: parameters.
bFLOPs: floating-point operations.
cAvg_time: average inference time.

TABLE 4 Hazard ratio of model’s stratification for natural conception within 1 year.

Models ART benefit HR (95%CI) p-Value

PH AI application Conception probability <0.5 3.13 (1.22–8.02) 0.017

>0.5 0.52 (0.24–1.14) 0.101

AFS ≥5 1.644 (0.943–2.864) 0.0794

<5 0.522 (0.065–4.193) 0.541

CSGE ≥18 1.11 (0.134–9.235) 0.922

<18 1.53 (0.774–3.026) 0.222

Endometrial thickness ≥7 mm 1.259 (0.696–2.28) 0.447

<7 mm 2.272 (0.265–19.45) 0.454
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doctors are important factors that hinder the wide application of
these models in clinical practice.

Our study’s innovation lies in applying image deep learning
technology for automated analysis. This approach improves the
objectivity of the results while reducing the assessment effort for
clinical physicians. In the validation and test sets, our model
achieved accuracies of AUC of 0.89 and 0.94, respectively,
outperforming traditional clinical assessment indicators.

Postoperative hysteroscopy second-look images were selected as
the training dataset for the model in this study. Both hysteroscopy
and ultrasound are routinely used diagnostic tools for assessing the
fertility of a patient and the condition of their uterus, and each has
advantages. Hysteroscopy is a direct intrauterine visualization
technique that assesses endometrial status and endometrial
vascular distribution to measure endometrial receptivity, with
positive results reported in limited studies. The sensitivities of
endometrial status and endometrial vascular distribution were
75% and 71.43%, whereas the specificities were 71.43% and
61.11%, respectively (Craciunas et al., 2019). Using image deep
learning analysis techniques, the present study further improved the
accuracy of its predictive outcomes. Although ultrasound
comprehensively evaluates the uterus and measures endometrial
thickness, it has difficulty visualizing intrauterine pathology.
Ultrasound possesses a high sensitivity but a low specificity of
around 3%. However, previous research has demonstrated that
the clinical information presented by second-look hysteroscopy is
more conducive to predicting pregnancy outcomes than
preoperative hysteroscopy examinations.

The present study investigates the hypothesis that introducing a
DeepSurv framework into image-based deep learning networks can
improve clinical practice. Clinical decision-making in managing
fertility in patients with postoperative IUA often focuses on two
major factors: a patient’s risk of infertility and the duration of
postoperative infertility. Patients with difficulty conceiving within
1 year after surgery or with severe adhesions are usually referred to
ART treatments.

This study augments the transfer learning model architecture
with the DeepSurv architecture, which extends the application of the
CPH model using a neural network architecture to incorporate
nonlinear parameters, such as image features. This has significant
implications for clinical decision-making and patient counseling.
The adoption of the CPH neural network architecture provides
several advantages over conventional transfer learning models for
medical image classification (Li et al., 2023b; Zhao et al., 2023).
Firstly, it enables the prediction of time-to-event outcomes, such as
the probability of conception over time. This capability allows for
more accurate medical prognosis stratification and the calculation of
cumulative risk for fertility outcomes.

The CPH deep neural network is proficient in characterizing the
influence of covariates on the hazard function, accommodating the
immediate risk of failure. This deviates from conventional deep
learning classifiers, as the CPH neural network facilitates the
computation of fertility outcomes, hazard functions, and hazard
ratios across diverse patient cohorts. In contrast to regular deep
learning classifiers that output probabilities, the DeepSurv captures
temporal dynamics and relative risks of outcomes.

Previous studies have demonstrated the effectiveness of
DeepSurv in facilitating risk stratification and treatment

recommendations for various disorders, such as non-small cell
lung cancer and head and neck cancer (Howard et al., 2020; She
et al., 2020; Liu et al., 2022). Building on these findings, the
integration of the two network frameworks allows us to
transform the convolutional neural network output into a
continuous hazard ratio, taking into account both fertility
outcomes and time to conception. This integration provides a
robust risk stratification function and the ability to calculate
cumulative time risk for risk scoring.

As evidenced by our results, the model augmented with the
DeepSurv architecture significantly outperforms the transfer
learning model performing classification alone in predicting the
probability of conception at different time points, particularly within
the first year. Conforming to clinical settings, the DeepSurv model of
our study accurately predicts subfertility risk and time to
conception, outperforming other methods and conventional
clinical indicators.

In this study, we applied four deep learning models, namely,
InceptionV3, InceptionResNetV2, ResNet50, and VGG19,
combined with the DeepSurv framework, to predict the
conception probability and management in IUA following
hysteroscopic adhesiolysis. Our results showed that the
InceptionV3+DeepSurv model achieved the best performance in
terms of accuracy and computational efficiency, followed by the
ResNet50+DeepSurv model. The InceptionResNetV2+DeepSurv
model had the highest complexity and the VGG19+DeepSurv
model had the lowest performance among the models.

InceptionV3 and InceptionResNetV2 are based on Inception
modules, and ResNet50 is based on the idea of residual connections,
which all allow the network to learn the identity function and avoid
the degradation problem when the network depth increases (Jain
et al., 2021). However, they differ in the way they implement the
inception modules, which are designed to capture multi-scale
features and reduce the number of parameters. The
InceptionV3 model uses a combination of 1 × 1, 3 × 3, and 5 ×
5 convolutions, as well as 3 × 3 max pooling, to form the inception
modules (Szegedy et al., 2016). The InceptionResNetV2 model adds
residual connections to the inception modules, and uses a more
efficient factorization of the convolutions (Szegedy et al., 2017). The
ResNet50 model uses a simpler structure of 1 × 1, 3 × 3, and 1 ×
1 convolutions, followed by batch normalization and ReLU
activation, to form the residual blocks (He et al., 2016).

Based on our results, the InceptionV3 and Resnet50 model
combined with DeepSurv has a better balance between
complexity and performance, and can capture more relevant
features from the hysteroscopic images for the conception
prediction task. However, the VGG19+DeepSurv model had the
lowest complexity and performance among the models, which may
be due to the fact that the VGG19 model does not use any residual
connections or inception modules, and relies on a large number of
fully connected layers, which are prone to overfitting and have a high
computational cost (Jain et al., 2021).

Hysteroscopic images necessitate evaluating intrauterine
morphology and microscopic characteristics, such as endothelial
vascularity and glandular conditions, which are reflected in the final
ROI presentation and provide valuable clinical insights. Previous
research identified associations between the reproductive prognosis
for IUAs and factors like intrauterine morphology, tubal ostia status,
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endometrial thickness, and endometrial blood supply (Zhu et al.,
2022). InceptionResNetV2, ResNet50, and InceptionV3 effectively
capture these traits, resulting in variations in final ROIs. These visual
findings are also integrated into the output interface of the
AI program.

Although image deep learning has many advantages, its clinical
applications are still rare due to its laboratory stage. The main focus
of the study should be on how to make these models applicable to
clinicians without any coding experience. The ROI visualization and
the DeepSurv model are combined in this study to assess the
probability of pregnancy for patients within one or 2 years. The
model helps visualize the patient’s fertility and detect potential
intrauterine factors that may affect pregnancy. Similar to clinical
scoring systems like AFS for evaluating IUAs, predicting a patient’s
prognosis has clinical relevance in determining the need for
postoperative intervention.

Further stratified analysis revealed that patients with a low
probability of natural pregnancy within 1 year significantly
benefit from ART interventions. This encourages early ART
intervention for such patients, reducing time and treatment costs.
The specific management strategy is presented in Figure 5.
Furthermore, experimental treatments, such as stem cells and
amnion grafts (Gan et al., 2017), can be targeted for treating
refractory IUAs based on prognostic stratification, optimizing the
allocation of medical resources.

This study explored the prediction model of fertility prognosis
based on hysteroscopic images of IUA, and conducted a
comprehensive analysis and evaluation of the accuracy and
computational complexity of various models. This study provided
promising results; however, some limitations must be
acknowledged. The issue of small sample size is a common
challenge for image-deep-learning models, which may affect the
reliability and generalizability of the results. Therefore, larger sample
sizes are required to ensure that the models trained are applicable in
real-world settings. We plan to further increase the sample size
beyond this pilot study to validate the robustness of the model.
Moreover, our future goal is to use the prospective database and
standardize the image acquisition process to increase the model’s
generalization performance. The results demonstrate that the final
model performs favorably across all three randomly assigned

datasets. In future research, we will explore more advanced deep
learning techniques and conduct prospective studies to further
validate the models, along with larger datasets to make predictive
models more accurate and applicable. Additionally, combining
other clinical and imaging data for multi-modal learning is also a
potential direction worth exploring.

5 Conclusion

This study investigates the prediction capabilities of four
commonly used image deep learning transfer models and their
integration with the DeepSurv framework for assessing fertility
risks. Among these models, InceptionResNetV2+DeepSurv,
ResNet50+DeepSurv, and InceptionV3+DeepSurv perform well
in extracting features from hysteroscopic images and providing a
multi-faceted perspective on such characteristics in IUAs. Based
on these findings, the models are used in a code-free application
program to highlight abnormal intrauterine areas, predict the
probability of pregnancy within one and 2 years after surgery,
stratify fertility levels, and assist clinical decision-making in
developing individualized postoperative fertility
management plans.
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