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Introduction: Walking speed can affect gait stability and increase the risk
of falling.

Methods: In this study, we design a device to measure the distribution of the
plantar pressure to investigate the impact of the walking speed on the stability of
the human gait and movements of the body. We fused the entropy acquired at
multiple scales with signals of the plantar pressure to evaluate the effects of the
walking speed on the stability of the human gait. We simultaneously collected
data on the motion-induced pressure from eight plantar regions to obtain the
fused regional pressure. To verify their accuracy, we obtained data on the plantar
pressure during walking by using the force table of the Qualisys system. We then
extracted the peak points and intervals of the human stride from pressure signals
fused over three regions, and analyzed the mechanics of their regional fusion by
using the regional amplitude–pressure ratio to obtain the distribution of the
plantar pressure at an asynchronous walking speed. Furthermore, we introduced
multi-scale entropy to quantify the complexity of the gait and evaluate its stability
at different walking speeds.

Results: The results of experiments showed that increasing the speed from 2 to
6 km/h decreased the stability of the gait, with a 26.7% increase in the amplitude
of pressure in the region of the forefoot. The hindfoot and forefoot regions were
subjected to theminimal pressure at a speed of 2 km/h, while themost consistent
stress was observed in regions of the forefoot, midfoot, and hindfoot. Moreover,
the curve of entropy at a speed of 2 km/h exhibited a slow decline at a small scale
and high stability at a large scale.

Discussion: The multi-scale entropy increased the variation in the stability of the
synchronous velocity of walking compared with the sample entropy and the
analysis of regional fusion mechanics. Multi-scale entropy can thus be used to
qualitatively assess the relationship between the speed and stability of the gait,
and to identify the most stable gait speed that can ensure gait stability and
posture control.
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1 Introduction

Walking exercise is beneficial to health, and appropriate exercise
intensity can reduce the risk of chronic complications (Piercy et al.,
2018; Liao et al., 2019). A rapid gait may affect a person’s stability
while they are walking (McAndrew Young and Dingwell, 2012), and
can lead to falls among elderly people (Nascimento et al., 2022). It
can also damage the plantar soft tissue to cause foot ulcers (Wu et al.,
2020). Therefore, it is important to investigate the impact of the
walking speed on the plantar pressure and people’s gait to avoid
injuries among elderly people.

Deep learning algorithms are being used in prevalent research to
investigate the link between the plantar pressure and the human gait.
A complete gait is generated as one walks with one heel on the
ground until the same heel comes into contact with the ground again
(Okawara et al., 2022; Caldas et al., 2017). Jeong et al. (2017) used the
multi-class support vector machine to identify the plantar pressure
of people walking on level ground as well as up and down a flight of
stairs, and were able to classify their gait with an accuracy of 95.2%.
Luo et al. (2019) measured electromyography signals of the thigh
muscle and signals of the plantar pressure, and used a combination
of the Long Short Term Memory (LSTM) network and the Multi-
Layer Perceptron (MLP) to identify the phases of their gait with an
accuracy of 94.10%. Jun et al. (2021) input sequential 3D data on the
human skeleton and data on the average plantar pressure into the
coding layers of the RNN and CNN, respectively, extracted the
relevant features from them, and fed them into the fully connected
layer of the network for classification. The two networks were able to
identify abnormal gait with accuracies of 68.82% and 93.40%,
respectively. Shalin et al. (2021) used data on the plantar
pressure of patients with Parkinson’s disease as they walked,
extracted the relevant features, and used the LSTM to detect the
Parkinsonian freezing of gait with an accuracy of 95%.

Previous studies in the area have identified distinct types of gait
based on clinical diagnoses, but little research has addressed the effects
of the speed of the gait on its stability. Studies have shown that the
complex stability of the human gait can be investigated by analyzing the
time series of the interval of strides (Prakash et al., 2018). Warlop et al.
(2016) found that the variation in the duration of strides affects the
stability of gait in patients with Parkinson’s disease. Chandrasekaran
et al. (2022) used the Lyapunov exponent to analyze the stride intervals,
found that it was correlated with variations in the duration of strides,
and used this to obtain the threshold of gait stability. Aziz and Arif
(2006) claimed that the stride interval of the gait reflects a law of the
human gait, and analyzed the complex stability of gait in patients with
neurodegenerative diseases based on the symbolic entropy of the stride
interval. Yu et al. (2017) proposed that the analysis of the symbolic
entropy of the time series of stride intervals can reflect the complex
stability of the gait. However, the above studies have used single-scale
sign entropy to analyze the complex stability of the gait, where this
cannot explain differences in the complex stability of the gait at the
multiple time scales that are inherent in the corresponding time series.

In this study, we design a device to acquire the distributed
plantar pressure to examine the effects of the speed of walking on the
stability of the human gait. We propose a method for the mechanical
analysis of the complex stability of the human gait based on regional
fusion to this end. This device can simultaneously measure the
distribution of the dynamic pressure at eight plantar locations,

partition the human gait cycle, and extract the characteristics of
the stride intervals by using fused values of the plantar pressure. It
represents the heel-to-heel movement, full foot on the floor, the
stance of the forefoot, and the toe-off in the support phase as the
peaks and valleys of the waves. Following this, we introduce the ratio
of the regional amplitude of the fused pressure to examine the
difference in the distributions of the plantar pressure under an
asynchronous speed of walking. Multi-scale entropy is used to
analyze the stride interval, explain the difference in entropy at
different speeds of walking at multiple time scales, quantify the
complex stability of the human gait, and distinguish between its
states of stability. This method can be used to evaluate the stability of
the gait and the distribution of the plantar pressure at different
walking speeds, and can provide a theoretical basis for determining
an appropriate walking speed for rehabilitation exercises.

1.1 Overall structure

The framework design to assess the stability of the human gait
based on the distribution of the plantar pressure is shown in Figure 1.
Data on the dynamic plantar pressure of healthy people at different
walking speeds were first collected by using a hardware acquisition
device. The pressure signals from eight plantar regions were then fused
to obtain the pressure distributions of regions of the hindfoot, midfoot,
and forefoot. The plantar pressure was analyzed by using regional
fusionmechanics and complex stability. The distributions of the plantar
pressure andmulti-scale entropy were estimated to assess the stability of
the gait at different walking speeds, and the appropriate walking speed
was then chosen to improve gait stability.

2 Methods

2.1 Hardware acquisition device for
plantar pressure

Acquiring data on the plantar pressure required choosing an
appropriate pressure sensor. Obtaining reliable data required that
the normal movement of the human body not be impeded during
the measurements. We designed a pressure insole with eight area
pressure sensors for the measurements. The flexible thin-film
resistive pressure sensor used here was based on the FSR-402
sensor. Its resistance decreased when a large force was applied to
the sensing surface. The sensor had an average service life of over
one million presses, a thickness of 0.46 mm, a working voltage of 5 V,
and a range of accurate weight measurements of 100 to 10 kg. It
converted the pressure signals on the applied surface into changes in the
electrical resistance to detect the plantar pressure as a person walked.
The circuit for voltage conversion transformed the resistance of the
sensor into a change in the analog voltage. Data conversion was carried
out by using the NI-6001 multi-channel data acquisition card. Its built-
in 14-bit ADC, with a rate of sampling of up to 20 kS/s, could provide
eight channels each for the analog input and the signal output. After
connecting the acquisition card to an upper PC, we set-up the serial
communication protocol and theDAQdriver, adjusted the frequency of
sampling to 100 Hz, and stored and displayed signals of the plantar
pressure as shown in Figure 2.
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2.2 Collection of experimental data

We recruited 32 healthy male subjects, with an average foot size
of 40 ± 0.74, average weight of 57.5 ± 2.55 kg, average height of 173 ±
2.45 cm, and average age of 23.5 ± 0.85 years for our experiments.
None of the subjects suffered from any walking dysfunction or foot
deformity. They were asked to strap the hardware device to acquire
plantar pressure signals to their right calves, and wore flat shoes with
sensor insoles.

The subjects were asked to walk on a treadmill at speeds of 2, 4,
and 6 km/h, respectively. Before each set of measurements, we asked
the subjects to walk for 1 min on the treadmill to allow them to
become accustomed to its speed, and this was followed by the
collection of pressure-related data at various speeds for 3 min.
This experimental process was repeated several times to obtain
multiple groups of experimental data. We obtained about
160,000 data points on the subjects in each group for
experimental analysis, for a total of about 6,040 complete gait cycles.

To validate the accuracy of the data thus obtained, we used the 3D
optical motion capture systemQualisys with eight infrared cameras and
two Kistler force gauges to collect data on the plantar pressure as the
subjects walked on the treadmill. A force table was embedded into the
ground in a longitudinal arrangement. A metronome was used during
the experiment to guide the subjects to walk at the specified speed. The
first step of the standing subject landed on the first force board, followed
by the second step landing on the second force board. Figure 3 shows
the collection of the experimental data.

2.3 Multi-scale entropy algorithm

The entropy is used in signal analysis to describe the complexity
of the signal and represent the degree of chaos in the system. Sample
entropy reflects the complexity of the system on a single scale, and
cannot be used to fully quantify its complexity. The multi-scale
entropy method was proposed by Costa et al. (2002), and offers the

FIGURE 1
Block diagram of the overall framework to assess gait stability.

FIGURE 2
Structural composition of device used to acquire the plantar pressure.
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advantages of the sample entropy while avoiding the loss of
information caused by the use of a single scale. We used
pressure-related data from the sensor for the hindfoot region
based on the data on plantar pressure, and then applied mean
processing to obtain pressure signals for it. The stride interval used
here was based on the interval between adjacent peak points of the
pressure signals in the region of the hindfoot. The stride interval was
used according to the original time series of the model of multi-scale
entropy. Multi-scale entropy (MSE) can be divided into the coarse-
graining of the signals and the calculation of a new sequence of
entropy values (Busa and van Emmerik, 2016).

Coarse graining process:

(1) The time series of the N original signals X � [χ1, χ2, χ3, ..., χN]
is coarse-grained to construct a new time series.

(2) When the scale is s � 1, the coarse-grained series is the
original time series. When s � 2, let the window of length
two move forward on the original sequence. Calculate the
average of χ1 and χ2 to obtain y1.

(3) Move the window forward by two units. y2 is obtained by
calculating the average of χ3 and χ4. Shift the window by two
units once again to obtain the average value and use it to form
a new sequence. The new sequence at scale s � 2 is Y �
[y1, y2, y3, ...yN/

2
].

(4) Similarly, when the scale s � 3, let the window of length three
move forward on the time series X of the original signals. Start
by averaging χ1, χ2 and χ3 to y1. Move the window by three
units, and calculate the mean value of the original sequence in
the window to obtain y1, y2, and y3. The new sequence at scale
s � 3 is then Y � [y1, y2, y3, ...yN/

3
]

Calculating the entropy of the new sequence:

(1) Suppose that the length of the time series X of the original
signals is N and the scale factor is s. Then, the coarse-grained
sequence is given by:

Z s( )
j � 1

s
∑js

i� j−1( )s+1x i( ), 1≤ j≤
N

S
(1)

(2) Under an m-dimensional vector, the data sequence
is given by:

Z i( ) � zi, zi+1, zi+2, ...zi+m−1[ ], 1≤ i≤N

s
−m + 1 (2)

(3) Find the number of distances dij shorter than r, dij < r. Then,
the ratio of the number of such distances to the total number
of distances is given by:

FIGURE 3
Collection of experimental data.
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dij Z i( ), Z j( )[ ] � max
0< k<m−1

z i + k( ) − z j + k( )[ ] (3)

Lm
i r( ) � num dij < r( )/ N/s −m( ), i ≠ j, i � 1, ...,

N

s
−m + 1 (4)

where dij is the maximum distance between vectors Z(i) and Z(j),
and r is the range of tolerance for a given time series.

(4) Set the number of dimensions to m + 1 and repeat the above
steps to obtain the following:

Lm+1
i r( ) � num dij < r( )/ N/s −m( ), i ≠ j, i � 1, ...

N

s
−m (5)

(5) Calculate the average of Lmi (r) and Lm+1
i (r):

Lm
i r( ) � 1

N/s −m + 1
∑N/s−m+1

i�1 Lm
i r( ) (6)

Lm+1
i r( ) � 1

N/s −m + 1
∑N/s−m

i�1 Lm+1
i r( ) (7)

(6) The entropy value of the new sequence is that of the
MSE, EMSE:

EMSE � − ln Lm+1 r( ) − Lm r( )( ) (8)

Some studies have shown that too large a number of dimensionsm
significantly increases the amount of required computation and leads to
a decline in computational efficiency. m is generally set to one or two,
while r is set to 0.10–0.25SD, where SD is the standard deviation of the

original time series. When m is two, the length of the sequence N is
minimally dependent on the accuracy of the calculated results (Zheng
et al., 2023). Therefore, we set m � 2 and r � 0.25SD in this study.

3 Results

3.1 Validation of experimental data

A gait cycle is divided into a stance phase and a swinging phase.
The stance phase is the process in which the foot makes contact with
the ground to generate plantar pressure. The swing phase is defined
as the forward movement of the limb without any contact with the
ground (Cicirelli et al., 2022).

A comparative analysis of signals of the plantar pressure measured
by the pressure plate and the insole is shown in Figure 4.We use a speed
of 2 km/h as an example. The pressure signals at eight points in the
plantar as the subject walked were obtained and fused. Figure 4A shows
that the force at each point exhibited a peak of the wave as the foot came
into contact with the ground. The pressure-related data from each
sensor in the three regions were averaged and fused. The fused pressure
signals showed the changes in pressure in the hindfoot, midfoot, and
forefoot throughout the stance phase. The total plantar pressure was
obtained by further fusing these three regional signals, and can be used
to illustrate the troughs and peaks of the four states in the stance phase.

To verify the accuracy of the pressure-related data obtained from
the insole, we eliminated the influence of the subject’s weight on the
distribution of the plantar pressure. The fused signals of the total
pressure obtained from the insole and the pressure plate of the same

FIGURE 4
Comparative analysis of signals of plantar pressuremeasured at the pressure plate and the insole. (A) The fusion of plantar pressures. (B) Total plantar
pressure signal. (C) Consistent analysis.
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subject were normalized based on their amplitude and the transverse
axis, respectively. Figure 4B shows that the trends of changes in the
pressure signals of both were consistent with each other. The
reaction force from the vertical ground obtained by the pressure
plate and the insole had a prominent “double peak” characteristic.

We used the Bland–Altman plot to evaluate the consistency of
the two methods of measurement. Figure 4C shows that the
difference between the measurements of the pressure plate and
the insole was within the 95% confidence interval. p < 0.05 and r =
0.9513 for these two methods of measurement. These results show
that there was a significant correlation between the data measured
from the insole and the pressure plate, which leads us to conclude
that they were reliable. The second peak point of measurements of
the insole was smaller than that of the force measurement table. This
is because when the sole was in the forefoot stance, it made full
contact with the ground and there were few pressure sensors in the
sole area of the insole. As a result, the pressure distribution in the
sole of the foot could not be entirely monitored, and a smaller
amount of pressure-related data were obtained from it.

3.2 Mechanical analysis of regional fusion

To eliminate the influence of the subject’s weight on the
experimental results, we normalized the amplitudes of pressure of
the three plantar regions, which were fused in the stance phase of
the gait cycle, by weight. We used the ratio of the amplitude of pressure
to the weight of the subjects to examine the differences in distributions
of the plantar pressure at walking speeds of 2, 4, and 6 km/h.

Figure 5 shows the pressures in the three plantar regions at the
three speeds of walking considered here. As the walking speed

increased, the ratios of the amplitude of pressure in the hindfoot
and forefoot regions of the body increased significantly. When the
subject’s walking speed was increased from 2 to 6 km/h, the ratio of
the amplitude of pressure in the forefoot region increased by 26.7%.
The foot bears the weight of the body during normal walking, while
balance and movement are controlled through contractions of the
plantar muscles. If the plantar pressure is not regularly distributed,
the body requires more control to maintain balance and stability
during normal walking.

Studies have shown that increased plantar pressure can enhance
the risks of soft tissue injury in the plantar and metatarsal stress
fracture (Zhang et al., 2018). The forefoot area is responsible for the
balance and control of the center of gravity of the body.
Nevertheless, the pressure on the forefoot is excessively high such
that the body requires greater control to maintain equilibrium
(Zheng et al., 2020). When the subjects walked at a speed of
2 km/h, the pressure in the forefoot and hindfoot regions was
relatively low, and its distribution in the three regions was the
most uniform. When they walked at 4 km/h, the magnitude of force

FIGURE 5
Changes in pressure in the three plantar regions at three walking speeds.

TABLE 1 Values of entropy of gaits at three speeds.

Index of complexity 2 km/h 4 km/h 6 km/h

SampEn 0.816 ± 0.04 0.907 ± 0.07 1.088 ± 0.09

MSES 0.901 ± 0.03 1.216 ± 0.02 1.480 ± 0.04

MSEL 0.732 ± 0.02 0.773 ± 0.03 0.89774 ± 0.02

Note: The values are expressed as mean ± SD. “SampEn” is the overall sample entropy of the

gait. “MSES” is the mean value of scales 1–3. “MSEL” is the mean value of scales 4–6.

FIGURE 6
Curves of distribution of the multi-scale entropy of the stride
interval of the gait.
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in the forefoot and hindfoot areas progressively grew, the load on the
hindfoot and forefoot gradually increased, and the disparity in the
pressure distributions at the three locations became larger.When the
subjects walked at 6 km/h, the magnitude of force in the forefoot and
hindfoot regions continued to increase, the pressure distributions in
the three regions were the largest, and might have led to an increase
in gait oscillation to lead to an unstable gait. Thus, the pressure
distribution in the three plantar zones was reasonably balanced at a
speed of 2 km/h, and the burden on the hindfoot and the forefoot
was the smallest. This helped the balance of the body and the health
of the feet.

3.3 Analysis of complex stability

The differences in the pressure distributions in the three plantar
regions caused by an asynchronous speed of walking cannot directly
reflect the corresponding differences in the stability of the gait.
Studies have shown that the irregularity of distribution of the plantar
pressure can be reflected by the varying degrees of changes in the
length and frequency of the stride, which in turn affect the stability
of the gait (Biswas et al., 2008). We used MSE to examine the time
series of stride intervals of the subjects to measure the complexity of
the rhythm of their gait at different time scales, and thus to evaluate
the differences in its stability at different speeds of walking.

A system with a larger entropy is more complex and less regular
(Kędziorek and Blażkiewicz, 2020). Table 1 shows that walking at
2 km/h yielded the lowest overall sample entropy of the gait,
indicating that the sequence of strides had the highest self-
similarity, the least complexity, and led to a highly regular gait in
this case. However, the differences among the three were not
prominent, and the overall difference in entropy was small.

Figure 6 shows curves of the distribution of MSE as the subjects
walked at the three speeds considered here, while Table 1 shows the
scale of the magnitude of entropy of the gait. MSE can be used to
amplify the temporal differences in gait complexity at the three
speeds. Compared with those at 4 km/h and 6 km/h, the MSE at a
speed of walking of 2 km/h was smaller by 0.315 and 0.579,
respectively, and this shows that the differences in entropy
among the three speeds was prominent at a small scale but
slight at a large scale. MSE was thus able to more clearly
identify the differences in stability at various walking speeds,
and to amplify the differences in entropy at a small scale in
comparison with sample entropy. This may be because the
stability and regularity of the gait are impaired over short time
scales, but the change in the stride interval is generally smooth and
stable over long time scales as the body gradually adapts to the
change in the frequency of steps.

Therefore, the curve of entropy at a small scale decreased more
slowly at 2 km/h than at 4 km/h and 6 km/h, and was the most stable
at a large scale.

4 Discussion

Some studies have shown that the more stable the gait is, the
lower are the multi-scale entropy of the sequence of stride intervals
and the rate of decline (Hsieh and Abbod, 2021). When one is

walking slowly, the frequency of strides is low, the stride interval is
relatively long, and the gait is more stable because the difference
between steps is relatively small and body control is thus easier (Wu
et al., 2019). England and Granata quantified the stability of the gait
by using the Lyapunov exponent λ, and found that λ was smaller at
lower walking speeds. This indicates that slower walking increases
the stability of the gait (England and Granata, 2007). The subjects in
our experiments exhibited a more dynamically stable gait at lower
speeds, and older adults at risk of falling are advised to reduce their
walking speed to improve their stability (Dingwell andMarin, 2006).
Walking quickly may result in a less regular gait and a more complex
time scale owing to the increased frequency of steps and the
shortening of the stride interval, where this reduces the stability
of the gait and increases the difficulty of body control. Therefore,
walking at a speed of 2 km/h is more conducive to the postural
balance and health of the body than walking at speeds of 4 and
6 km/h.

5 Conclusion

The results of this study showed that different walking speeds
have significant effects on the distribution of the plantar pressure
and the stability of the human gait. Through an analysis of the
human gait based on the plantar pressure, we combined the
mechanical analysis of regionally fused data with complex
stability analysis based on multi-scale entropy to differentiate
between the stabilities of the gait at different speeds of walking at
multiple time scales. The results of experiments involving
subjects walking at speeds of 2, 4, and 6 km/h showed that the
differences between gait stability were prominent at small scales
but weak at large scales. This shows that the stability of the gait
may be compromised at short time scales. A walking speed of
2 km/h yielded a lower complexity than the other two speeds
considered here, and the curve of entropy decreased more slowly
at a small scale. This curve was the most stable at a large scale, and
this reflected a stable gait. By distinguishing between the
stabilities of the gait at asynchronous speeds of walking, the
proposed method can help clinicians develop training programs
to help patients balance their gait and reduce the risk of falls
among the elderly.
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