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Piezo1 (2010) was identified as a mechanically activated cation channel capable
of sensing various physical forces, such as tension, osmotic pressure, and shear
force. Piezo1 mediates mechanosensory transduction in different organs and
tissues, including its role in maintaining bone homeostasis. This review aimed to
summarize the function and possible mechanism of Piezo1 in the mechanical
receptor cells in bone tissue. We found that it is a potential therapeutic target for
the treatment of bone diseases.
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1 Introduction

Mechanotransduction, a fundamental process conserved throughout evolution, refers to the
ability to sense mechanical force and convert it into biochemical signals, ultimately achieving
complex physiological functions, such as blood pressure regulation and lung relaxation. The
discovery of Piezo channels in 2010 improved the understanding of the molecular and cellular
mechanisms of mechanotransduction (Coste et al., 2010). The Piezo family, comprising
Piezo1 and Piezo2, has the unique ability to rapidly convert diverse mechanical inputs,
including tension, osmotic pressure, and shear stress, into electrical impulses.

Piezo1 is a mechanosensitive ion channel that plays a crucial role in bone remodeling, a
process that involves the removal of old or damaged bone by osteoclasts and subsequent
replacement with new bone formed by osteoblasts. Piezo1 is found in tissues throughout the
body, including bone, and is involved in sensing changes in mechanical stress (Sun et al.,
2019). Notably, Piezo1 is closely related to the development of osteoporosis (OP) (Xu et al.,
2021). Furthermore, Piezo1 is expressed in both condylar cartilage and subchondral bone
(Wu et al., 2022). The inhibitor GsMTx4 has recently attracted much attention as a
promising treatment for cartilage injury (Li et al., 2016). GsMTx4 can weaken Piezo-
mediated mechanically activated (MA) currents and reduce chondrocyte death induced by
mechanical force (Lee et al., 2014).

Piezo1 is expressed and functions in various mechanical sensor cells, including
osteoblasts (Sun et al., 2019; Song et al., 2020), osteoclasts (Wang et al., 2020),
osteocytes (Liu Z. et al., 2022), bone marrow mesenchymal stem/stromal cells (BMSCs)
(Zhou et al., 2020), chondrocytes (Hendrickx et al., 2021), periodontal ligament fibroblasts
(PDLFs) (Kang et al., 2014), and periodontal ligament stem cells (PDLSCs) (Lin Y. Y. et al.,
2022). These cells participate in bone formation and resorption, ultimately maintaining
bone homeostasis. This study presents an overview of the structure and properties of Piezo
channels, mainly focusing on recent advancements in understanding the role of Piezo1 in
bone remodeling. Additionally, we explored potential signaling pathways associated
with Piezo1.
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2 Piezo1

2.1 Discovery of the Piezo family

Previous studies have demonstrated that MA cation channels,
considered a specialized subset of mechanotransducers, are
ubiquitously expressed in various cell types and can be triggered by
various mechanical forces. These channels can promptly initiate cellular
responses after activation. Although TRP ion channels and DEG/ENaC
channels significantly promote invertebrate mechanotransduction, the
mechanisms underlying mechanotransduction in mammals are unclear
(Ranade et al., 2015). Therefore, identifying MA cation channels in
mammals is crucial for enhancing the understanding of the
mechanotransduction mechanism.

In 2010, Patapoutian and colleagues made a groundbreaking
discovery: the Piezo ion channel family, comprising Piezo1 and

Piezo2 (Coste et al., 2010). In that study, a significant increase in
mechanosensitive currents was detected in a specific mouse
neuroblastoma cell line known as Neuro2A cells. They found
that the Piezo1 gene, also known as Fam38A, is essential for
generating these MA currents based on RNA interference
techniques. Furthermore, they found that Fam38B can encode
the Piezo2 protein through homologous sequence analysis.

2.2 Structure of Piezo1

Ge et al. (2015) unveiled the high-resolution three-dimensional
configuration of mouse Piezo1 using cryo-electron microscopy
(cryo-EM), which resembles a three-bladed propeller (Figure 1).
Piezo proteins consist of a central cap and three distal blades on the
extracellular side and three elongated beams (length; about 90 nm)

FIGURE 1
The cryo-EM structure (A–F) and property (G) of Piezo1. The extracellular, side, intracellular view of the Piezo1 channel indicated by dots (A–C) and
cartoon model (D–F). PDB ID: 3jac; cited from Ge et al. (2015).
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on the intracellular side. The transmembrane (TM) region is
situated between the domains exposed on the extracellular and
intracellular surfaces. The beams connect peripheral TMs and
blades, linking them to the lower central axis of the channel
complex. The TM region exhibits significant curvature and
clockwise twist, akin to the wing-shaped blade found in
propellers, comprising 9 TM helical units (THUs) (Ge et al.,
2015; Zhao et al., 2016; Zhao et al., 2018).

Piezo channels are dissected into two distinct functional
modules (a central ion-conducting pore and a
mechanotransduction module) to elucidate the correlation
between the structure and function of the Piezo1 channel. The
ion-conducting pore module has three primary components: the
C-terminal extracellular domains (CEDs), the TM inner helices
(IHs) and outer helices (OHs), and the intracellular C-terminal
domains (CTDs). This module regulates ion selectivity, unitary
conductance, and pore obstruction. The mechanotransduction
module comprises the extracellular distal blades, the peripheral
helices (PHs), the TM anchors, and the intracellular beams
(Wang and Xiao, 2018). This module plays a role in the
detection have a record-breaking 114 TMs based on a novel 38-
TM topology (Xiao, 2020). The three large TM blades act as
mechanosensors, detecting alterations in membrane tension and
influencing the conformational arrangement of the channel.

Zhao et al. (2018) introduced a mechanogating mechanism that
resembles a lever, categorizing the intricate and efficient process of
long-distance mechanotransduction. Residues L1342 and
L1345 function as pivotal points of the lever, positioned at a
greater distance from the TM blade at the distal end while being
closer to the central pore module of Piezo1 at the opposite end.
Based on the lever principle, applying a lighter force to the TM blade
with a longer force arm amplifies output force, facilitating gating of
the central ion-conducting pore and selective cation penetration
(Wang Y. et al., 2018; Zhao et al., 2019; Xiao, 2020). The assembled
propeller-shaped machine effectively converts significant
conformational alterations of the distal blades into a subtle
movement of the core pore structure, transforming mechanical
stimulation into ionic influx.

However, further studies should assess the mechanisms by which
mechanical force modulates the activity of Piezo channels. The
structure-based membrane dome mechanism suggested that Piezo
protein deforms the membrane locally into a dome shape when it is
in a closed state. However, this dome undergoes a relative flattening
upon the application of a force. The transition of Piezo channels
from a closed to an open state enhances its ability to respond to
mechanical stimuli (Guo and MacKinnon, 2017). Geng et al. (2020)
introduced a “plug-and-latch”mechanism in which Piezo1 outfitted
three lateral ion-conducting portals with three independently
positioned lateral plug gates which were strategically secured to
the central axis to achieve synchronized gating of the three portals.
The coordinated action of plugs and latches in the Piezo1 channel is
impacted by mechanical forces acting asymmetrically on the
force-sensing blades in this mechanism. Wang J. et al. (2022)
found that the Piezo channels have a biochemical and functional
connection to the actin cytoskeleton through the cadherin-β-catenin
mechanotransduction complex. As a result, Piezo channels can
effectively detect and respond to long-range mechanical
disturbances within a cell.

Yang et al. (2022) elucidated the structural characteristics of
Piezo1 in both curved and flattened conformations within liposome
vesicles using cryo-EM. They found that Piezo1 protein has a curved
conformation that can flatten. Furthermore, the protein beam can
bend under mechanical stimulation while the protein cap can detach
and rotate in response to mechanical stimulation. These alterations
can facilitate the opening of the ion-conducting pathway, thus
regulating the channel. The remarkable mechanosensitivity and
specific curvature-based gating observed in lipid membranes
could be due to the deformability and structural rearrangement
of Piezo1. Mulhall et al. (2023) directly visualized and quantified the
conformational dynamics of individual Piezo1 molecules within a
cellular context using nanoscopic fluorescence imaging techniques.
They found that Piezo1 blades can significantly expand while in a
resting state due to the bending tension applied by the plasma
membrane. Besides, the blades exhibited varying degrees of rigidity
along the length. Stiffness increased at the base while the flexibility
increased towards the ends. The researchers also investigated the
correlation between blade growth and the activation and inhibition
of channels. They found that the inhibitor of Piezo1, or the removal
of the plasma membrane, can increase compaction levels in the
blades. Moreover, Piezo1 activation, either through osmotic or
chemical stimulation slightly expanded the blades (1–2 nm
increase). These findings reveal that the conformation of the
Piezo1 is more intricate than initially anticipated based solely
on modeling.

2.3 Piezo1 regulation

Piezo1 protein can sense various forces, such as tension, poke
force, osmotic pressure, and fluid shear force and convert
mechanical stimuli into electrical signals in milliseconds
(Retailleau et al., 2015). Piezo1 is a non-selective cation channel
permeable to K+, Na+, Ca2+, and Mg2+, with a slight preference for
Ca2+ (Coste et al., 2010) (Figure 1).

Piezo1 channels can perceive various mechanical stimuli in
distinct manners. Atomic force microscopy (AFM) experiments
have revealed that Piezo1 channels have distinct responses to
pushing and pulling forces (Gaub and Müller, 2017). Specifically,
pulling forces can more efficiently activate Piezo1 channels in the
presence of extracellular matrix (ECM) proteins. Ozkan et al. (2023)
monitored the local rearrangements occurring along the blades of
Piezo1 under varying forces by inserting two cyclic permuted green
fluorescent proteins as a probe. Significant fluorescence signals were
observed from the probes upon Piezo1 activation by low-intensity
fluid shear stress (FSS). However, no visible fluorescence signals
were produced by the Piezo1 channel activation in response to
cellular indentations, osmotic swelling, and high-intensity
flow stimuli.

Piezo1 channels can be strongly regulated by voltage in addition
to mechanical stimuli, and can even transition to a solely voltage-
gated mode (Moroni et al., 2018). Moreover, stomatin-like protein 3
(STOML3) can significantly regulate Piezo channels by reducing the
activation threshold of Piezo1 and Piezo2 currents (Poole
et al., 2014).

Yoda1, Jedi1/2 and Yoda2 can activate Piezo1 channel. Jedi1/2,
as a synthetic agonist, can activate Piezo1 by binding to the upstream
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blade (Wang Y. et al., 2018). Yoda1, as a synthetic small molecule,
activates Piezo1 by acting as a molecular wedge, inserting itself
between 2 TM regions (Syeda et al., 2015; Botello-Smith et al., 2019;
Jiang et al., 2023). Yoda2, 4-Benzoic acid modification of Yoda1, can
more effectively activate Piezo1 channel with better solubility and
stability (Parsonage et al., 2023).

Ruthenium red, gadolinium, streptomycin, and GsMTx4
(grammostola spatulata mechanotoxin 4) can inhibit Piezo
channels. Ruthenium red, gadolinium, and streptomycin are
nonspecific inhibitors of Piezo1, blocking multiple cationic
channels. GsMTx4, a peptide derived from spider venom, can
selectively block Piezo and TRP channel families by modulating
lipid bilayer fluidity within themembrane (Bae et al., 2011). Dooku1,
a Yoda1 analogue, acts at the same location as Yoda1 to efficiently
inhibit Yoda1-induced Piezo1 channel activation. However,
Dooku1 cannot inhibit constitutive Piezo1 channel activity
(Evans et al., 2018). Similarly, Tubeimoside I (TBMS1), a
compound obtained from Traditional Chinese Medicine, can
inhibit Yoda1-induced activation of Piezo1 channels (Liu
et al., 2020).

2.4 The function of Piezo1

Piezo proteins, comprising approximately 2,500–2,800 amino
acids, exhibit remarkable evolutionary conservation and lack
substantial sequence homology with known ion channels
(Coste et al., 2010). Notably, Piezos can detect various mechanical
stimuli and produce rapid cationic currents in differentmammalian cell
lines (Table 1). Piezo1 is abundantly present in various organs, such as
lung, bladder, intestines, and skeleton tissue. Besides, Piezo1 participates

in cardiovascular mechanical transduction, immune regulation,
epithelial cell homeostasis, red blood cell volume regulation, and
bone formation (Coste et al., 2010) (Figure 2). Piezo2 is significantly
expressed in sensory tissues, including dorsal root, trigeminal ganglia
sensory neurons, and Merkel cells, where they primarily respond to
touch and proprioception (Geng et al., 2016; Gottlieb, 2017).

Piezo1 mutations are linked to certain hereditary human diseases,
including dehydrated hereditary stomatocytosis (DHS) (Andolfo et al.,
2013) and generalised lymphatic dysplasia (GLD) (Lukacs et al., 2015).
GLD is caused by loss-of-functionmutations in the Piezo1 gene (Martin-
Almedina et al., 2018), characterized by various symptoms, including
non-immune hydrops fetalis (NIHF), lymphedema, and recurrent
cellulitis (Chen Y. et al., 2021). Loss-of-function mutations in the
Piezo1 gene, especially S217L and G2029R, have been shown to alter
protein stability due to increased ubiquitination and subsequent
proteasomal degradation (Zhou et al., 2021). Furthermore,
Piezo1 loss-of-function compound heterozygous mutations have been
reported in patients with Prune Belly Syndrome, which is characterized
by a “Prune-like” wrinkled, flaccid ventral abdominal wall with
regionally missing or hypoplastic skeletal muscle (Amado et al., 2024).

Meanwhile, DHS is associated with gain-of-function mutations in
the Piezo1 gene (Fotiou et al., 2015). A recent case report showed that
the c.7505A>G variant can cause a DHS phenotype. This variant is
cataloged in the single nucleotide polymorphism database (dbSNP)
with the reference ID rs34830861 (Martin-Almedina et al., 2018).
Another gain-of-function mutation in Piezo1 gene, known as
E756del has been linked to enhanced athletic performance and the
ability of protection against severe malaria. When performing leaping
actions requiring high tendon loading, energy storage, and return,
carriers of the E756del mutation outperform non-carriers by a large
margin (Passini et al., 2021).

TABLE 1 Piezo1 distribution and function.

Tissue Cell Mechanical
stimulation

Function Reference

Vascular
system

Endothelium and smooth
muscle cells, blood cell

FSS Vascular development; blood pressure
regulation; red blood cell volume

regulation

Ranade et al. (2014), Retailleau et al. (2015),
Wang et al. (2016), Gudipaty et al. (2017),
Murthy et al. (2017), Wong et al. (2018), Beech
and Kalli (2019)

Lymphatic
system

Lymphatic endothelial cells FSS The development and maintenance of
lymphatic valves

Nonomura et al. (2018), Choi et al. (2019)

Lung Alveolar capillary endothelial
cells

Alveolar pressure and
hydrostatic pressure (HP)

Maintain lung function Mammoto et al. (2022), Grannemann et al.
(2023)

Nerve system Retinal ganglion cells, neural
stem cells

Stretch Axon growth and regeneration, directs
the differentiation of neural stem cells

Koser et al. (2016), Wu et al. (2017)

Gastric
mucosa

G cells Antrum distension Regulate gastrin secretion Lang et al. (2018)

Intestines Intestinal epithelial HP and shear force Regulate epithelial function and
permeability

Jiang Y. D. et al. (2021), He et al. (2023)

Bladder, and
kidney

Bladder and kidney epithelial
cells

Shear stress and wall tension Sense bladder distension and urinary
osmolarity, concentrate urine

Michishita et al. (2016), Dalghi et al. (2019)

Tooth Odontoblasts, dental pulp stem
cells (DPSC), Oral squamous

cell (OSC)

Intrapulpal pressure changes,
extracellular matrix stiffness

Regulate DPSC and OSC proliferation,
pulpitis attack and dentin

mineralization

Gao et al. 2017, Sato et al. (2018), Hasegawa
et al. (2021), Matsunaga et al. (2021)

Cartilage Chondrocytes Osmotic stress Cartilage mechanotransduction Lee et al. (2014)
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Recent case reports have highlighted skeletal manifestations
associated with Piezo1 mutations, demonstrating the diverse
impact of this gene on human health. Lee et al. (2021) reported a
case of a 21-year-old male diagnosed with primary lymphatic
dysplasia who exhibited additional clinical features, such as a
history of multiple fractures in infancy, thoracolumbar scoliosis,
low height, and hypoplasia of the left-sided facial bones. Exome
analysis revealed that the patient had two previously unreported
pathogenic variants of Piezo1 in a trans configuration, including
a heterozygous deletion spanning 93.7 kb (chr16:88,782,477-
88,876,207; exon 1-50) and a single nucleotide substitution
c.2858G>A (p.Arg953His). This case of compound heterozygosity,
where the variants were inherited from different parents, underscores
the potential impact of Piezo1 mutations on bone health. Another
Piezo1 gene mutation was identified in the 61-year-old male patient
with non-transfusion secondary hemochromatosis, specifically
the missense mutation c.C4748T (p.A1583V). Osteoarticular
involvement was indicated by thinning bone cortices and an
enlarged tibial medullary cavity by computed tomography.
However, it’s important to note that the search results do not
provide direct evidence that the patient’s osteoarticular phenotype
is caused by this mutation, or iron deposition due to the iron overload

condition. To fully comprehend the possible involvement of the
Piezo1 gene in bone health and illness, more investigation is
required (Ruan et al., 2020).

3 Piezo1 in bone cells

Piezo1 regulates skeleton homeostasis in osteoblast lineage cells
(Figure 3). The elimination of Piezo1 in mice results in fatal
outcomes, due to disruption of vascular development (Ranade
et al., 2015). Conditional Piezo1 deletion by various Cre strains
in Osteoblast lineage cells showed reduced trabecular and cortical
bone mass (Nie and Chung, 2022; Dienes et al., 2023) (Table 2).

3.1 Piezo1 in BMSCs

The BMSCs can differentiate into osteogenic, adipogenic, and
chondrogenic lineages under different loading conditions (Pierce
et al., 2019). Osteoblast differentiation from BMSCs occurs through
various intersecting signaling pathways, including Wnt pathways,
bone morphogenetic protein (BMP) pathway (James, 2013), and

FIGURE 2
The distribution of Piezo1 in human.
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specific transcription factors, including runt-related transcription
factor 2 (Runx2) (Zhang et al., 2010; Sun et al., 2021a).

Piezo1, in particular, has been identified as a critical
mechanotransducer in various biological processes, including
bone formation. It is expressed in differentiating osteoblasts and
hypertrophic chondrocytes in developing skeletal structures, and its
expression increases during postnatal development following
elevated mechanical stress (Zhou et al., 2020). The Piezo1 agonist
Yoda1 promoted bone formation and osteoblast differentiation in
developing mouse limb buds even under static conditions. In
contrast, Piezo2 appears to have a more redundant and
dispensable function during bone formation. The deletion of
Piezo2 in osteoblasts had little adverse effect on skeletal
development (Zhou et al., 2020).

The absence of Piezo1 in the mesenchyme of developing limbs
achieved by the utilization of Prx1-Cre result in many skeletal
abnormalities in mice, including shortened long bones,
diminished quantities of trabecular and cortical bone, and
increased risk of spontaneous bone fractures in both newborn
and early adult mice (Wang et al., 2020; Zhou et al., 2020). The
observed effects are associated with heightened osteoclast function
and diminished osteoblast function, as evidenced by a decrease in
procollagen type I N-terminal propeptide (P1NP) and Osterix levels.
Interestingly, the low bone mass phenotype in Piezo1 Prx1-Cre mice
appears to be limited to long, load-bearing bones. The calvariae are
not affected by Piezo1 deletion, likely due to their lower load-bearing
capacity compared to long bones. To elucidate the role of
mechanical stimulus in bone formation, a mechanical unloading
model through tail suspension was established, revealing a reduction
in bone mass in the control group, but no such effect was observed in
Piezo1 Prx1-Cre mice (Wang et al., 2020).

Piezo1 plays a crucial role in BMSCs differentiation under
mechanical stimulation. Sugimoto et al. (2017) discovered that
hydrostatic pressure (HP) enhances the expression of Piezo1 and
BMP2 in human BMSCs, thus promoting osteoblast differentiation
and inhibiting adipocyte differentiation. Yoda1 treatment can
significantly alleviate bone loss caused by microgravity and aging
and also promote the proliferation and osteogenic differentiation of
BMSCs (Hu et al., 2023). The researchers designed a wearable pulsed
triboelectric nanogenerator powered by human body motion, to
activate Piezo1 channel and upregulate osteogenic differentiation
potential of aging BMSCs. This finding provides a possible target for
bone regeneration, especially for aged people (Wang B. et al., 2022).
Moreover, static magnetic field (SMF) can enhance BMSCmigratory
capacity through Piezo1 (Sun et al., 2023). Piezo1 also regulates the
differentiation ability of BMSCs into chondrocytes. Notably,
exosomes produced by siRNA-Piezo1-treated BMSCs promote
BMSC development into cartilage, thus enhancing the restoration
of injured cartilage in osteoarthritis (OA) (Li et al., 2021).

3.2 Piezo1 in osteoblasts

Osteoblasts are primarily found in mesenchymal stem cells
(MSCs) located within and outside the periosteum and within
the bone marrow matrix (Abdallah et al., 2015).

Runx2 regulates the commitment of MSCs to the osteoblastic
lineage during bone development. Mice lacking Piezo1 in Runx2-
expressing cells (Piezo1 Runx2-Cre) exhibited several bone
abnormalities including multiple spontaneous fractures, shorter
femurs, pelvic dysplasia and a considerable decrease in trabecular
bone mass below the growth plates. Similarly, Piezo1 Runx2-Cre

FIGURE 3
Piezo1 in bone cells.
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TABLE 2 Piezo1 function in bone cells.

Animal Phenotype Animal
condition

Cell Cell
condition

Function Signaling Reference

Piezo1 Dmp1-Cre mice Decreased
cortical
thickness,

spontaneous
tibial fracture

MLO--Y4, bone
marrow

macrophages

Yoda1 Piezo1 suppresses
age--associated bone

resorption

Through Ca2+/
CaM/mTOR
pathway

Li et al. (2023)

Piezo1 Lyz2-Cre;
Dmp1-Cre; Col2a1-Cre;

Runx2-Cre mice

Reduced
trabecular and
cortical bone

mass; secondary
spongiosa

development
abnormality;
Aberrant
osteoblast
morphology

Primary
osteoblasts,
MC3T3-E1,
ATDC5 cells

Shear stress,
Yoda1

Piezo1 plays an
essential role in
endochondral

ossification and bone
remodeling

Hendrickx
et al. (2021)

Piezo1 Prx1-Cre; Sp7-
Cre mice

Multiple bone
fractures,
reduced

trabecular and
cortical bones

Primary Mouse
BMSCs

FSS, Yoda1,
matrix rigidity

Piezo1 is essential for
bone development and

osteoblast
differentiation

Through NFAT-
YAP1-ß-Catenin

pathway

Zhou et al.
(2020)

Piezo1 Dmp1- Cre mice Reduced bone
volume of the
mandible and
maxilla; loss of
the vertical
alveolar bone

height; increased
osteoclasts
number; no
significant

differences in
tooth movement

distance

Piezo1 is crucial for
osteoclast function

Nottmeier
et al. (2023)

Male C57BL/6 wild-type
mice

Poor bone;
remodeling,
fewer bone
trabeculae

Exercise on the
treadmill and

GsMTx4 treatment

BMSCs,
RAW264.7 cells

Cyclic tensile
strain (CTS),

Yoda1

Piezo1 promotes
BMSCs proliferation,

migration and
osteogenic

differentiation by
induced

M2 macrophage
polarization

Through P53 Cai et al.
(2023)

C57BL/6J mice Rescued Bone
Loss by Yoda1

Hindlimb unloading
mouse model; OVX-
induced osteoporosis
and aging male mouse

models

BMSCs Yoda1 Piezo1 promotes the
proliferation and

osteogenic
differentiation of

BMSCs and related to
bone loss especially
under unloading

Piezo1/β-catenin/
ATF4 Axis

Hu Y et al.
(2023)

Medaka fish Impaired caudal
fin ray

development

HP loading UE7T-13,
SDP11, Saos-2,
HuO9, MG63,
MC3T3-E1,

Primary human
MSCs

HP loading,
Yoda1

Piezo1 regulates
osteoblast

differentiation and
adipocyte

differentiation of
MSCs under HP

pressure

Through BMP2 Sugimoto et al.
(2017)

SD rats Smaller damage
to the cartilage
and subchondral
bone of the

Piezo1 inhibitor
group

Temporomandibular
joint osteoarthritis
animal model (TMJ-

OA models)

Piezo1 regulates the
condylar bone and
subchondral bone

destruction

Through pSmad3 Wu et al.
(2022)

(Continued on following page)
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mice exhibit no calvarial bone defects at birth nor changes in
calvarial thickness (Hendrickx et al., 2021). Osterix (also known
as Sp7) is another critical transcription factor expressed in osteoblast

progenitors and osteoblasts. Reduced trabecular and cortical bone
mass has been reported in Piezo1 SP7-Cre mice, which is markedly
lower than Piezo1 Prx1-Cre mice (Zhou et al., 2020). Collagen type 1

TABLE 2 (Continued) Piezo1 function in bone cells.

Animal Phenotype Animal
condition

Cell Cell
condition

Function Signaling Reference

Piezo1flox/flox;
AggrecanCreERT2 mice

Decreased
meniscus

ossification and
osteophyte
formation;
significant

reductions in
cartilage
erosion,

proteoglycan
loss, osteophyte
and synovial
formation and
an increase in
OARSI score in

articular
cartilage

Destabilization of
medial meniscus

(DMM)induced OA
model

Human primary
articular

chondrocytes

Piezo1 inactivation
slows the development

and progression
of OA.

Through
PI3K-AKT

Gan et al.
(2023)

MC3T3-E1 FSS Piezo1 regulates
osteogenesis

Through AKT/
GSK-3β/β-catenin

pathway

Song et al.
(2020)

MC3T3-E1 Static
magnetic field

Piezo1 promotes
osteogenic

differentiation

Hao et al.
(2019)

MC3T3-E1 Direct
mechanical

stimulation to
cell membrane
by the pipette,

Yoda1

Piezo1 responds to
mechanical
stimulation

Nagai et al.
(2023)

MC3T3-E1 Low-intensity
ultrasound
stimulation
(LIPUS)

Piezo1 promotes
migration and

proliferation ability

Activate ERK1/
2 phosphorylation
and perinuclear
F-actin filament
polymerization

Zhang et al.
(2021)

MLO-Y4
osteocytes

FSS, Yoda1 Piezo1 promotes OPG
and inhibits RANKL

Notch 3 Liu Z et al.
(2022)

MLO-Y4
osteocytes

FSS, Yoda1 Piezo1 activates
connexin

43 hemichannels in
bone

Through PI3K
signaling pathway

Zeng et al.
(2022)

IDG-SW3 Cyclic
stretching,
Yoda1

Piezo1 downregulates
Sost expression

Piezo1-Akt
pathway

Sasaki et al.
(2020)

DPSCs, PDLSCs LIPUS Piezo1 promotes cell
proliferation

MAPK signaling Gao et al.
(2017)

Human
periodontal
ligament
fibroblasts

Compression
force

Piezo1 is activated by
compression force and
then induces ATP

release

Horie et al.
(2023)

DPSCs Yoda1 Piezo1 regulates MSC
migration

PYK2 and MEK/
ERK signaling

pathways

Mousawi et al.
(2020)

Human dental
follicle cells

Yoda1 Piezo1 enhances the
osteogenic

differentiation

Wnt/β-catenin
signaling pathway

Xing et al.
(2022)
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(Col1) is an important structural protein of the ECM in bone and is
expressed throughout the differentiation stages from preosteoblasts
to mature osteoblasts. Piezo1 Col1-CreERT mice is characterized by
increased bone resorption and decreased collagen expression, which
leading to decreased bone density and changes in trabecular bone
structure (Wang et al., 2020). Osteocalcin (OCN) is highly expressed
in mature osteoblasts and plays a role in the regulation of bone
mineralization and calcium ion homeostasis. Incomplete closure of
cranial sutures was observed in Piezo1 OCN-Cre mice, accompanied
with shorter weight-bearing long bones and significant bone mass
loss (Sun et al., 2019).

Some studies have shown that Piezo1 regulates osteoblast
differentiation under different forces, including HP loading
(Sugimoto et al., 2017), static magnetic force (Hao et al., 2019),
low-intensity pulsed ultrasound (LIPUS) (Zhang et al., 2021) and
FSS (Song et al., 2020). Sun et al. (2019) found that mechanical-
loading treatment can increase Piezo1 levels and osteoblasts
function, while hind-limb suspension or simulated microgravity
treatment can inhibit Piezo1 expression, impairing bone integrity
and strength in mice. These results demonstrate that Piezo1 effect is
correlated with mechanical force in osteoblasts.

3.3 Piezo1 in osteocytes

Osteocytes, mainly found in osteoblasts, are the predominant
cellular inhabitants in bone tissue. The expression of Piezo1 is
significantly higher in osteocytes than Piezo2 (Li et al., 2019).
Fluid-flow stimulation on mature osteocytes can activate and
upregulate Piezo1 channels (Li et al., 2019; Liu Z. et al., 2022).
Yoda1 can enhance intracellular calcium mobilization and inhibit
sclerostin (Sost) expression in osteocytes in a dose-dependent
manner, thus promoting osteoblast differentiation (Sasaki et al.,
2020). Whereas Piezo1 inactivation increases the expression of
receptor activator of NF-κB ligand (RANKL) and osteoclasts
number and decreases the expression of osteoprotegerin(OPG),
thus promoting osteoclastogenesis (Li et al., 2019; Li et al., 2023).
Furthermore, Piezo1 knockdown in osteocytes can decrease the
bone formation-related genes (Alkaline Phosphatase, ALP) of
osteoblasts induced by ultrasound stimulation in 3D osteocyte-
osteoblast co-culture (Inoue et al., 2023).

Dentin matrix protein 1 (Dmp1) is a non-collagenous protein
known to be an indicator of osteocytes. Compared to Piezo1 Runx2-
Cre mice, Piezo1 Dmp1-Cre mice displayed a moderate reduction in
trabecular and cortical bone mass. No significant spontaneous bone
fractures were recorded (Li et al., 2019; Wang et al., 2020; Hendrickx
et al., 2021). Similarly, Nottmeier et al. (2023) reported that
Piezo1 deletion in osteocytes and osteoblasts suppresses the bone
volume of the mandible and maxilla, as well as the height of the
vertical alveolar bone. However, the morphology and length of the
mandible and skull are unaffected by Piezo1 deletion.

3.4 Piezo1 in osteoclasts

Multinucleated osteoclasts are mainly found in myeloid
hematopoietic precursors in the bone marrow (Boyle et al., 2003; de
Vries et al., 2009). Themice with targeted deletion of Piezo1 in osteoclast

lineage cells (Lyz2-Cre) (Hendrickx et al., 2021) and Ctsk-Cre (Wang
et al., 2020) exhibited normal bone mass. Wang et al. (2020) also found
that osteoblastic Piezo1 deficiency significantly decreases the levels of
matrix proteins Col2α1 (alpha-1 type II collagen) and Col9α2 (alpha-
2 type IX collagen) but markedly increases the number and activity of
osteoclasts in the co-culture system of osteoclasts and Piezo-deficient
osteoblasts. These findings suggest that Piezo1 can regulate osteoclast
activation via type II and IX collagens, thus indirectly affecting bone
resorption.

3.5 Piezo1 in PDLSCs and PDLFs

PDLSCs were initially isolated from human-impacted third
molars (Seo et al., 2004). PDLSCs exhibit strong proliferation
capability and high multilineage differentiation potential (Wang
et al., 2011; Zhu and Liang, 2015). Mechanical force regulates the
differentiation ability of PDLSCs and PDLFs and modifies
associated genes (Panchamanon et al., 2019; Jin et al., 2020).

The Leptin receptor (Lepr) serves as a distinguishing factor for a
distinct multipotent population of PDLSCs. Deletion of Piezo1 in
Lepr + cells leads to a decrease in cellular cementum formation and
alveolar bone mass, a lower ECM mass of cementum, and
disorganized collagen fibrils. In contrast, femur bone mineral
density are not affected. Hence, Piezo1 plays a crucial role in
maintaining the equilibrium of the periodontium (Zhang et al.,
2023). These findings underscore the role of Piezo1 in maintaining
periodontal homeostasis.

Shen et al. (2020) showed that tension force activates and
upregulates Piezo1. Besides, Piezo1 participates in periodontal
ligament cells (PDLCs) mechanotransduction via the ERK
signaling pathway. Piezo1 can also regulate osteoclastogenesis
when the compression force is applied to PDLFs (Schröder et al.,
2023). The release of adenosine triphosphate (ATP) and the
activation of inflammatory genes during this process is also
regulated by Piezo1 (Horie et al., 2023; Schröder et al., 2023).
GsMTx4 treatment can significantly inhibit NF-kB activation and
osteoclast-related factors induced by compression force, indicating
that Piezo1 can regulate osteoclast differentiation via the NF-κB
signaling pathway (Jin et al., 2015). Shen et al. (2023) also showed
that Piezo1 inhibition can mitigate PDLFs apoptosis and damage
under compression force by modulating the p38/ERK1/2 signaling
pathway. In summary, Piezo1 participates in many processes that
maintain the health and function of the periodontal ligament,
including ATP release, osteoclastogenesis and osteogenesis.

4 Piezo1 signaling in bone remodeling

Piezo1 mediates MA cationic currents and induces Ca2+ influx
(Sun et al., 2019). This influx initiates downstream Ca2+ signaling,
including the activation of the nuclear factor of activated T-cells
(NFAT) (Zhou et al., 2020) and Ca2+-calmodulin (CaM)-dependent
protein kinase (CaMKII) (Chen et al., 2022). The Piezo-Ca2+

signaling cascade plays a crucial in bone growth and significantly
enhances the understanding of fundamental molecular and
biological functions in the skeletal system. The signaling pathway
of Piezo1 in bone tissue is summarized in Figure 4.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Du et al. 10.3389/fbioe.2024.1342149

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1342149


4.1 Piezo1 and NFAT

Studies have shown that the Ca2+/CaN/NFAT signaling pathway
regulates bone formation and bone resorption (Tomita et al., 2002;
Koga et al., 2005). Elevated Ca2+ concentrations activate calcineurin
(CaN), leading to NFAT dephosphorylation and subsequent nuclear
translocation (Ren et al., 2021).

CaN/NFAT1 signaling axis participated in Piezo1-mediated
chondrocyte apoptosis, cartilage matrix production (Ren et al.,
2023), fibrochondrogenesis (Yan et al., 2023) and vascular niche
regeneration (Zhang et al., 2022).

Ppp3ca, also known as CaN, is a calcium and CaM -dependent
serine/threonine protein phosphatase. Notably, Zhou et al. (2020)
demonstrated that Piezo1 activation leads to NFAT, YAP, and
β-catenin activation in BMSCs, and then regulates gene expression
during osteoblast differentiation and bone formation, which can all be
prevented by knocking down Piezo1. This implies a functional
relationship between these proteins in bone formation and homeostasis.

4.2 Piezo1 and CAMKII

When intracellular calcium levels rise, calcium binds to CaM,
which in turn binds to CaMKII, inducing its activation. This
activation leads to autophosphorylation of CaMKII, and alters its
conformation, allowing it to translocate and bind to different
proteins within the cell (Rostas and Skelding, 2023). The
phosphorylated CaMKII can then phosphorylate CREB, which is
a transcription factor that regulates the expression of genes involved
in numerous cellular processes (Yan et al., 2016).

Piezo1 modulates different biological processes through
CAMKII, including blood pressure regulation (Zheng et al.,
2022), immune response (Geng et al., 2021), perfusion recovery
after ischemia (Xie et al., 2023), chronic inflammation (Liu H. L.
et al., 2022) axon regeneration (Song et al., 2019) and cardiomyocyte
hypertrophy (Yu et al., 2022).

In addition, CaMKII signaling is essential for Piezo1-mediated
new bone formation in ankylosing spondylitis (Chen et al., 2022).
Piezo1 also regulates osteoblast differentiation via CAMKII.
CaMKII and Creb phosphorylation are downregulated in
osteoblasts derived from Piezo1 OCN-Cre mice with lower
osteoblast activity (Sun et al., 2019).

4.3 Piezo1 and YAP

Yes-associated protein (YAP) and its paralogue transcriptional
coactivator with PDZ-binding motif (TAZ) are two highly related
transcriptional cofactors in Hippo signaling (Dupont et al., 2011).
The activity of YAP/TAZ is regulated by a complex interplay of
mechanical and biochemical signals, including the tensional state of
the F-actin cytoskeleton, cell-cell and cell-ECM adhesions, and
interactions with other signaling pathways (Totaro et al., 2018).
This YAP/TAZ axis can promote osteoblast differentiation by
activating the downstream target Runx2 (Tang et al., 2016).

The increase in intracellular calcium levels can lead to the
dephosphorylation and nuclear translocation of YAP, transforming
it into a transcriptional co-activator (Sayedyahossein et al., 2023).
Once in the nucleus, YAP collaborates with β-catenin, forming a YAP/
β-catenin complex that directly interacts and upregulates osteogenic,

FIGURE 4
Signaling of Piezo1 in bone tissue.
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chondrogenic, and angiogenic factors crucial for bone repair and
regeneration (Liu Y. et al., 2022). In osteoblastic cells, Piezo1 controls
the YAP-dependent expression of type II and IX collagens in response
to mechanical loads, influencing osteoclast development in bone
remodeling (Wang et al., 2020). In addition, YAP has been found
to be decreased in degenerated cartilage (Sun et al., 2021b). The
activation of Piezo1 via the YAP facilitates mechanically induced
cartilage degradation (Feng et al., 2023).

However, some studies demonstrates that YAP could regulate
Piezo1 expression in turn. Kong et al. (2022) found the nuclear
localization of YAP could activated Piezo1 and enhance
osteogenesis. Additionally, YAP, in collaboration with the G
protein-coupled estrogen receptor (GPER) pathway, suppresses
Piezo1 activation, thereby mitigating chondrocyte apoptosis (Sun
et al., 2021b).

4.4 Piezo1 and β-catenin

Zhou et al. (2022) identified several pathways, including the
Wnt/β-catenin and PI3K-Akt pathways to be potential targets of
Piezo1 through bioinformatic analysis.

Wnt/β-catenin pathway promotes osteoblast development and
proliferation (Gong et al., 2001; Hu et al., 2005). It is known to interact
with the Hippo signaling pathway, specifically with the transcription
factors YAP/TAZ, which are key components of the β-catenin
degradation complex in the canonical Wnt signaling pathway.
Upon Wnt/Frizzled binding, the destruction complex releases β-
catenin and YAP/TAZ into the cytoplasm, triggering their
subsequent translocation into the nucleus (Imajo et al., 2015;
Totaro et al., 2018).

YAP and Piezo1 could serve as the downstream factor of Wnt5a,
which work together to encourage the 3D cell intercalations that
form the mandibular arch in mice (Tao et al., 2019). Another study
suggested that Piezo1 promotes Wnt1 expression partly by
activating YAP1 and TAZ, and then regulates bone development
and homeostasis (Li et al., 2019).

Moreover, Piezo1 regulates the stemness of BMSCs through β-
catenin. Blocking Wnt/β-catenin pathway via IWR-1 treatment
inhibited the Yoda1-induced osteogenic differentiation of BMSCs
(Hu et al., 2023). The involvement of Piezo1 in the proliferation and
osteogenic differentiation of human dental follicle cells has been
shown to be mediated by the Wnt/β-catenin signaling pathway
(Xing et al., 2022).

4.5 Piezo1 and AKT

AKT plays a crucial role in cell survival, proliferation, growth, and
metabolism (Manning and Toker, 2017). Notably, Sasaki et al. (2020)
indicated that Piezo1 activation leads to Akt phosphorylation,
subsequently down-regulating Sost. This process promotes bone
formation, suggesting that Piezo1 participates in osteocyte
mechanotransduction by triggering downstream Piezo1-Akt
signaling. The canonical Wnt/β-catenin pathway involves the Ser
and Thr protein kinase glycogen synthase kinase 3 (GSK3), initially
recognized as an AKT substrate (Cross et al., 1995). Phosphor-GSK-
3 prevents β-catenin degradation and facilitates nuclear translocation

of accumulated β-catenin, regulating downstream target genes that
control bone homeostasis, including Runx2 (Cai et al., 2016). FSS
induces the expression of Runx-2 in MC3T3-E1 cells via the
upregulation of Piezo1. This process involves the activation of the
AKT/GSK-3β/β-catenin pathway to regulate bone formation under
mechanical strain (Song et al., 2020).

Phosphorylated PI3K-AKT is related to Piezo1-mediated
osteoblast maturation and ossification (Chen P. et al., 2021).
Moreover, Piezo1-induced increase in intracellular calcium influx
activates connexin 43 hemichannels (Cx43 HCs) in osteocytes
through PI3K-Akt signaling under mechanical stress, thus
regulating bone anabolic function (Zeng et al., 2022). Artemisinin
(ART), a highly efficacious antimalarial drug, was found to exert
therapeutic effects on osteoarthritis (OA) by acting on Piezo1 and
AKT proteins. ART can downregulate Yoda1-induced upregulation
of OA-related genes, and inhibit PI3K and AKT phosphorylation in
chondrocytes (Gan et al., 2023).

4.6 Piezo1 and MAPK

Studies have reported that theMAPK signaling pathway participates
in the regulation of osteogenic differentiation (Lu and Malemud, 2019).
The C-terminal region of Piezo1, containing the domain that interacts
with R-Ras, modulates the influx of calcium and activation of the ERK1/
2 signaling pathway. This process regulates the osteoblastic development
in BMSCs (Sugimoto et al., 2023). Piezo1 can also inhibit apoptosis of the
human chondrocyte via the classic MAPK/ERK1/2 signal pathway (Li
et al., 2016). Activation of the Piezo1 can induce ATP release and its
binding with P2 receptor, and then enhances MSC migration.
Researches have shown that process could be blocked by U0126, an
inhibitor of the MEK/ERK signaling pathway, suggesting MEK/ERK
signaling participates in Piezo1-mediated MSC migration (Mousawi
et al., 2020).

It has been demonstrated that activation of Piezo channels in
response to ultrasound stimulation can activate the MAPK pathway,
particularly ERK1/2, in dental pulp stem cells (Gao et al., 2017). Shen
et al. (2020) showed that blocking the Piezo1 channel can significantly
increase the phosphorylation of GSK3α/β in PDLCs, indicating that
GSKmay be involved in PDLCs mechanotransduction. Also, GSK3 is
a negative regulator of ERK1/2, c-Fos, and c-Jun (Wang et al., 2006;
Götschel et al., 2008) and promotes β-catenin activation via Ras
suppression (Liu et al., 2008). Nonetheless, further investigations
should explore the potential interplay between the MAPK pathway
and the Piezo1 channel in the above process.

5 Piezo1 and clinical therapy

5.1 Piezo1 and OP

OP is characterized by compromised bone strength, which
substantially elevates the susceptibility to fractures, especially in
the hip, spine, and wrist regions. OP is usually diagnosed after the
fracture occurrence, and its etiology encompasses various elements,
such as hormone fluctuations, the aging process, genetic
predisposition, lifestyle choices, and certain medical disorders
(Sheik Ali, 2023).
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Polymorphisms in the Piezo gene are associated with human
bone mineral density (BMD), a critical biomarker for the diagnosis
and treatment of OP. A cross-phenotype meta-analysis for human
BMD at various skeletal sites yielded the top 14 SNPs for Piezo1.
Notably, the SNP rs62048221 was substantially correlated with
BMD, especially around the heel, where mechanical force is
applied during physical activities, such as standing. The T allele
of this SNP was linked to BMD reduction, indicating that it can
modulate the activity of cis-regulatory elements, thus influencing
Piezo1 expression levels, which in turn affects BMD (Bai et al.,
2020). OP patients have considerably lower levels of Piezo1 mRNA
and protein than normal patients (Sun et al., 2019). Zhou et al.
(2020) discovered that age is negatively correlated with gene
expression of Piezo1 and Piezo 2 from human bone MSCs.
Dzamukova et al. (2022) also discovered that mechanical forces,
which increase with body weight during late adolescence, can
trigger the Piezo1 activation, subsequently upregulating the
kinase FAM20C within osteoblasts. Notably, FAM20C
significantly regulates skeletal growth and bone mineralization
by phosphorylating DMP1. Furthermore, simulated microgravity
can decrease osteoblast function by inhibiting Piezo1 expression
(Sun et al., 2019). Hu et al. (2023) revealed that the mitigation of
bone loss in simulated microgravity conditions can be achieved
through Piezo1 activation with Yoda1. Furthermore,
Piezo1 activation induces a slight protective effect against bone
loss in mice subjected to ovariectomy (OVX) and aging (Hu et al.,
2023). Piezoelectric microvibration stimulation (PMVS) can
alleviate OP induced by estrogen deficiency through Piezo1,
MicroRNA-29a, and Wnt3a signaling pathways in osteoblasts,
thus enhancing osteogenic activity and suppressing osteoclastic
bone resorption (Wu et al., 2021). Furthermore, Sciancalepore
et al. (2022) were the first to indicate that Piezo1 participates in the
release of myokines. They also proposed the use of Yoda1 as a
novel therapeutic intervention to augment the physiological
advantages associated with exercise-induced myokine release.
Guan et al. (2023) constructed a nanocarrier (ZOL-PLGA@
Yoda1/SPIO) which combines the bone-targeting ability of
Zoledronate (ZOL) and the magnetic properties of
Superparamagnetic iron oxide (SPIO) to achieve dual-targeted
administration and precise Piezo1-activated therapy for
osteoporotic bone defects. In vivo and in vitro experiments have
revealed that this nanocarrier not only enhances bone formation
but also promotes the osteogenesis-angiogenesis coupling via the
YAP/β-catenin signaling axis, providing a potentially effective
strategy for the clinical treatment of osteoporotic bone defects.

The maintenance of alveolar bone homeostasis relies on
occlusal force. The absence or reduction of occlusal force can
lead to a disorder called alveolar bone disuse osteoporosis (ABDO),
characterized by a net loss of alveolar bone. Furthermore,
recombinant Slit guidance ligand 3 (SLIT3) protein into the
periodontal ligament can stimulate Type H angiogenesis and
osteogenesis by activating the Piezo1/Ca2+/HIF-1α/
SLIT3 signaling pathway (Chen et al., 2023).

Moreover, Piezo1 is a novel biophysical intervention for OP
caused by various factors, such as aging, diminished mechanical
stimulation (microgravity), and estrogen insufficiency. Therefore,
Piezo1 may be crucial for astronauts or persons who undergo
protracted immobility for fractured bones.

5.2 Piezo1 and bone fracture

A bone fracture is widely caused by significant mechanical force
or strain, such as falling, vehicular collisions, or athletic traumas.
Nevertheless, specific medical diseases, such as osteoporosis and
certain cancer types, can compromise bone strength, rendering them
more vulnerable to fractures, even when subjected to modest
pressure. Notably, the duration of the healing process often spans
from 4 to 8 weeks depending on age, overall health, and the specific
nature of the fracture (Einhorn and Gerstenfeld, 2015).

Piezo1 downregulation impairs fracture healing in the callus (Chen
P. et al., 2021), while Piezo1 chemical activation by Yoda1 enhances
fracture healing by stimulating periosteal stem cells (PSCs)-modulated
chondrogenesis and osteogenesis and expediting the transformation of
cartilage into bone (Liu Y. et al., 2022). Moreover, Piezo1 activation can
increase the expression of vascular endothelial growth factor A,
suggesting that Piezo1 may have a secondary function in
angiogenesis, which creates new blood vessels to feed oxygen and
nutrients to the fracture site (Liu Y. et al., 2022).

Higher-intensity ultrasound can effectively accelerate fracture
healing, particularly in a mouse osteoporotic fracture model, by
accelerating the process of endochondral ossification through
Piezo1 activation. However, Piezo1 inhibition by a specific inhibitor
(GsMTx4) negatively affects fracture healing induced by ultrasound
exposure (Inoue et al., 2023). Besides, Piezo1 can sense LIPUS and
regulate the proliferation of osteoblasts by triggering the activation of
ERK1/2 phosphorylation and perinuclear F-actin polymerization,
indicating that Piezo1 can enhance fracture repair (Zhang et al., 2021).

5.3 Piezo1 and cancer

Breast cancer metastasis, particularly in the bone, significantly
limits cancer treatment. Piezo1 regulates cancer cell migration
and invasion by modulating cell adhesion, stiffness, and
contractility, thus influencing invadopodia formation and MMP
expression (Karska et al., 2023). Piezo1 modulates breast cancer
metastases in the bone by affecting osteoclast and osteocyte
activity. The Piezo1 ion channel is essential for osteocyte
mechanotransduction. Besides, the chemical activation of
Piezo1 ion channel enhances the capacity of osteocyte to prevent
cancer extravasation under low-magnitude high-frequency (LMHF)
vibration (Song et al., 2022). Cancer cells can penetrate and spread to
bone through osteoclasts, which are cells that tear down bone tissue.
Piezo1 stimulation improves osteocytes’ mechanoresponse to
LMHF vibration, thus inhibiting osteoclastogenesis and
decreasing MDA-MB-231, a type of breast cancer cell, from
migrating (Lin C. Y. et al., 2022). In addition, Piezo1 is highly
expressed in osteosarcoma (OS) cells and regulated apoptosis,
invasion, and cell proliferation of OS cells (Jiang et al., 2017).

5.4 Piezo1 and tooth movement

Understanding the mechanism of alveolar bone remodeling under
mechanical force is a primary concern in orthodontics. Alveolar bone
and periodontal ligament (PDL) are closely related structures in
periodontium development and mechanotransduction during
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orthodontic tooth movement (OTM). PDL, a vital connective and
supporting tissue, attaches the tooth to the adjacent bone through
collagen fiber bundles, enabling the tooth to disperse and withstand
loading force, including the masticatory and orthodontic force.
Osteoclasts, osteoblasts, osteocytes, periodontal ligament fibroblasts,
and periodontal ligament stem cells in the periodontium function as
sensory cells and effectors, convertingmechanical force into intracellular
signals and facilitating tooth movement induced by orthodontic force
(Jiang et al., 2016; Zhou et al., 2022).

The established pressure-tension hypothesis indicates that
orthodontic force induces PDL compression in certain areas where
blood flow is reduced, and PDL stretch in others where the blood flow is
enhanced or maintained. Different force stimuli in the PDL result in
diverse biological reactions and chemical environments, including
oxygen concentration and transcription factor levels, leading to bone
resorption on the compression side and bone creation on the tension
side (Meeran, 2012; McCormack et al., 2014) (Figure 5).

Piezo1 exhibits intense immunoreactivity in both human and
murine periodontal ligaments (Kang et al., 2014; Gao et al., 2017;
Gaite et al., 2023). Besides, Piezo1 is crucial for sustaining the rate of
OTM and promoting alveolar bone remodeling on the tension side
(Jiang Y. K. et al., 2021; Du and Yang, 2023). However, Nottmeier et al.

(2023) proposed a different opinion that Piezo1 impairment has
minimal effect on the tooth movement distance by establishing an
OTM rat model. Nonetheless, a longer testing period may reveal
significant variation in bone remodeling since the OTM model was
only tested for 12 days.

Furthermore, Piezo1 offers a strong theoretical foundation for the
potential use of 3D-printed implants in orthopedic surgery. The low
stiffness of the three-dimensionally printed Ti2448 promoted
angiogenesis and osteogenesis by enhancing the Piezo1/YAP
signaling axis, which in turn regulated macrophage polarization
(Tang et al., 2021).

6 Discussion and conclusion

Recent research has made notable advancements in uncovering the
distinct structure and function of Piezo1 in various tissues and animals.
Emerging evidence suggests that Piezo1 can detect mechanical stress and
convert it into biological signals, thereby maintaining bone homeostasis.
The latest research on the function of the Piezo1 channel in bone
remodeling is thoroughly reviewed in this article. However, further
investigation is essential to fully comprehend the underlying processes

FIGURE 5
Illustration of orthodontic tooth movement process.
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behind Piezo1-mediated bone remodeling. Such insights hold promising
solutions for bone diseases and may expedite advancements in OTM
techniques (Figure 6).
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FIGURE 6
Piezo1 and related bone diseases.
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