:' frontiers ‘ Frontiers in Bioengineering and Biotechnology

’ @ Check for updates

OPEN ACCESS

EDITED BY
Julie Choisne,
University of Auckland, New Zealand

REVIEWED BY
Qichang Mei,

Ningbo University, China

Maedeh Amirpour,

The University of Auckland, New Zealand

*CORRESPONDENCE
Bryce A. Killen,
bryce killen@kuleuven.be

RECEIVED 06 December 2023
ACCEPTED 08 February 2024
PUBLISHED 23 February 2024

CITATION
Killen BA, Van Rossom S, Burg F, Vander Sloten J
and Jonkers | (2024), In-silico techniques to
inform and improve the personalized
prescription of shoe insoles.

Front. Bioeng. Biotechnol. 12:1351403.

doi: 10.3389/fbioe.2024.1351403

COPYRIGHT

© 2024 Killen, Van Rossom, Burg, Vander Sloten
and Jonkers. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology

TvPE Original Research
PUBLISHED 23 February 2024
po1 10.3389/fbioe.2024.1351403

In-silico techniques to inform and
Improve the personalized
prescription of shoe insoles

Bryce A. Killen'*, Sam Van Rossom?, Fien Burg?,
Jos Vander Sloten*® and Ilse Jonkers®

Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven,
Leuven, Belgium, Materialise Motion, Materialise, Leuven, Belgium, *Biomechanics Section, Department
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Background: Corrective shoe insoles are prescribed for a range of foot
deformities and are typically designed based on a subjective assessment limiting
personalization and potentially leading to sub optimal treatment outcomes. The
incorporation of in silico techniques in the design and customization of insoles may
improve personalized correction and hence insole efficiency.

Methods: We developed an in silico workflow for insole design and customization
using a combination of measured motion capture, inverse musculoskeletal
modelling as well as forward simulation approaches to predict the kinematic
response to specific insole designs. The developed workflow was tested on
twenty-seven participants containing a combination of healthy participants (7)
and patients with flatfoot deformity (20).

Results: Average error between measured and simulated kinematics were 4.7 + 3.1,
45+ 31,23+ 23, and 2.3 + 2.7 for the chopart obliquity, chopart anterior-posterior
axis, tarsometatarsal first ray, and tarsometatarsal fifth ray joints respectively.

Discussion: The developed workflow offers distinct advantages to previous
modeling workflows such as speed of use, use of more accessible data, use of
only open-source software, and is highly automated. It provides a solid basis for
future work on improving predictive accuracy by adapting the currently implemented
insole model and incorporating additional data such as plantar pressure.
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Introduction

The foot-ankle is a highly intricate collection of bones, and joints supported by a
complex system of soft tissues including ligaments, tendons, and muscles (Golan¢ et al.,
2010; Merian et al,, 2011). This complex structure is matched by the complex function it
performs. The foot-ankle complex forms the connection with the ground and is essential for
a majority of tasks of daily living, and all locomotion tasks (Matsui et al., 2017). Due to the
complexity and its load bearing role, the foot-ankle is highly prone to injury and by
extension dysfunction. Injuries to the foot-ankle complex can be acute in nature such as a
lateral ligament tear, however chronic conditions may occur due to foot congenital
predisposition, ligament overloading and subsequent laxity, inducing chronic pain and
ultimately osteoarthritis (Arnold et al., 2019).
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Treatment for many of these chronic conditions involves, in
combination with conservative physical therapy, prescription of
corrective insoles. Such insoles are common treatment for flatfoot
deformity (Glassman et al., 2006; Kido et al., 2014; Su et al., 2017)
which aim to correct the structural deformity and support the foot.
Other common uses are for diabetes mellitus (Paton et al., 2011)
whereby insoles are prescribed to alleviate high pressure
concentrations under the foot. Despite their widespread use and
prescription, the decision-making within the design process for
patient-specific insole design is largely reliant on outdated, and
subjective approaches (Bacarin et al., 2009; Paton et al.,, 2011).

The design of insoles is typically reliant predominantly on
clinical experience of the podiatrist prescribing the insole. This
clinical ~design-making is often supplemented by limited
quantitative measurements such as static footprints and in some
rare cases limited single plane x-ray imaging. These measurements
and assessments fail to properly consider the function of the foot
under dynamic conditions, where the insole should exert its
corrective function. Despite this, attempts are being made to
assess foot function more objectively through a range of different
methods including video-based 2D movement analysis, dynamic
plantar pressure measurement and in some cases 3D motion
capture. The analysis of the dynamic motion of the numerous
joints of the foot-ankle complex can allow for a deeper
understanding of the dynamic deficits of individual patients and
supplement the clinicians’ decision-making process.

Combing 3D motion capture data with ground reaction force
plate data together with musculoskeletal models in so-called inverse
workflows allows for the estimation of parameters important for
pathology description. These inverse workflows use measured data
(i.e., marker trajectories and ground reaction forces) to estimate
joint angles and subsequently joint moments using musculoskeletal
models. These models are mathematical and physics-based
representations of the human body and are used to estimate
parameters which cannot be measured such as joint contact
loading, and muscle forces. These parameters are often of high
clinical interest and already serve to support clinical decision-
making in many different clinical use cases (Killen et al., 2020).
Related to foot-ankle function, such in silico techniques permit to
estimate the strain on ligaments and the estimation of muscle forces
which could be of particular interest in flatfoot pathologies where
ligamentous and muscle dysfunction are often observed (Kaufman
et al., 1999; Keegan et al., 2002; Boey et al., 2022). As such the
combination of 3D motion capture data, and in silico
musculoskeletal modelling already provides relevant information
on dynamic foot-ankle function potentially prior to, as well as after,
insole prescription (Mannisi et al, 2019; Sinclair et al, 2019).
However, these approaches do not inform the design process. In
fact, the application of the above-mentioned techniques would only
be possible if multiple candidate insoles (with different geometries
and stiffnesses) were produced, and their effect during dynamic
motion subsequently measured and modelled. While this would
provide valuable information and potentially the best insole
specification, such an approach is infeasible due to increased
time as well as cost requirements for manufacturing and testing.

Instead of relying on the manufacturing and testing of multiple
insoles, a convenient solution is to instead create an in silico
representation of the insole which allows for the virtual testing of
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multiple insole designs without the need to explicitly manufacture
them. Previous research has invested in such approaches using
highly complex finite-element analysis (Telfer et al., 2014; Telfer
et al,, 2017). Although these approaches allow integrating highly
complex material definitions for the insole as well as the studying the
effect on skin tissue pressure, these models often require a
specialized and expensive computational infrastructure, infeasible
computational times, highly specialized knowledge, and expertise to
create and execute, and typically these models do not consider the
gait cycle and dynamics of the entire foot-ankle complex.

In this paper we will describe an in silico workflow which
combines motion capture data, musculoskeletal modelling, and a
simplified insole model to predict the effect of a prescribed on a
participants’ gait pattern, with specific interest in flatfoot deformity.
Such a predictive model would permit the optimization of
mechanical parameters for insole design to correct the highly
complex and dynamic behavior of the foot-ankle during gait.

Materials and equipment

The developed workflow was implemented and tested on
twenty-seven participants containing a combination of healthy
participants (n = 7) and patients with flatfoot deformity (n = 20).
These participants were measured as part of an industry
collaboration project (Flemish Government IWT: Aladyn project)
between KU Leuven and industrial partner Materialise Motion. Each
participants’ data was collected as part of an extensive insole testing
process whereby multiple insoles and highly detailed foot-ankle
motion-capture data were collected in different conditions,
including barefoot, in a standardized shod condition
(i.e., “labshoe” condition), and with two different types of insoles
both designed to apply a mid-forefoot correction.

Participants were fitted with an extensive foot-ankle centered
motion capture marker set (Figure 1) with the addition to a four-
marker cluster on the tibia. Following fitting of the marker set,
participants performed a static calibration trial standing in a pre-
defined position (Cappozzo et al., 1995) which was captured by a
Vicon (Vicon, Oxford Metrics, United Kingdom) motion capture
system consisting of 16 cameras collecting at 200 Hz. In addition to
marker trajectories, ground reaction forces from in-ground force
plates (AMTI, 1,000 Hz) were acquired synchronously. For each
participant, and each condition, four repeated walking trials were
collected and used in the developed workflow. Marker trajectories
were exported from motion capture data following standard
labelling and gap filling procedures in Vicon Nexus (Vicon,
Oxford Metrics, United Kingdom). Measured data was first used
to define the initial walking gait pattern using data from the shod
condition where each participant wore a standardized lab footwear
without insoles.

Methods

The developed in silico workflow (Figure 2) is implemented in
OpenSim (version 3.3). In short, the workflow combines in-vivo
measured marker trajectories with an extended musculoskeletal
model of the foot-ankle complex to determine patient-specific
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FIGURE 1

View of the lateral aspect (A) and medial aspect (B) of a participant fit with the extensive foot-ankle centered marker with markers placed on each of

the modelled bone segments.
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FIGURE 2

Overview schematic of the workflow from data collection (Motion Capture), musculoskeletal model personalization (Model Scaling), estimation of
joint kinematics from each condition (Inverse Simulations), calibration of the insole model stiffness values (Insole Calibration), and the combination of
forward simulation outputs (i.e, from shod without insole condition) with the calibrated insole model to estimate individual patient responses

(Predictive Model).

foot-ankle kinematics and moments. A model of the insole consisting
of multiple springs is added to the mid/forefoot segments and a
predictive simulation then calculates the estimated change in foot-
ankle kinematics. The stiffness of these springs is defined in a
calibration step where we iteratively vary spring stiffness constants
to best match average measured insole condition. Each of these steps is
described in detail in subsequent sections.

Musculoskeletal model

When considering in silico applications for insole design, an
adequate representation of the complex foot-ankle structure,
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including different bones, joints and degrees of freedom is vital.
Whereas the inclusion of complex hip and knee joint definitions
received quite some attention, relatively less attention is paid to
include more complex definitions of the ankle and foot joints within
musculoskeletal models. Hence, degrees of freedom in the ankle and
foot joints are often highly simplified (Figure 3). Specifically, these
models often neglect the degrees of freedom of the mid- and forefoot
joint, often treating them as a single rigid body. As a result, many
musculoskeletal models only have three degrees of freedom,
specifically ankle and metatarsal-phalangeal joint plantar-/dorsi-
flexion, and subtalar inversion/eversion. While potentially not
influential when studying more proximal joints (i.e., knee or hip)
these simplifications are a major hurdle when studying the foot and
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FIGURE 3

(A) Typical representation of a 3 degrees of freedom foot-ankle in many generic musculoskeletal models where each colour represents a different
foot segment. (B) The previously developed complex foot-ankle musculoskeletal model with (C) 8 degree of freedom (Malaquias et al., 2017).
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FIGURE 4

(A) Lateral and (B) medial view of the extended foot-ankle musculoskeletal model where motion capture markers (pink dots), muscles (red lines), and
ligaments (green lines) are visualized. (C) Contact surfaces under the foot which model the interaction between the foot and the ground.

ankle, particular in those with potential foot pathologies relating to
structural abnormalities and consequent dysfunction. As such
developed more complex foot-ankle
musculoskeletal models which contain more physiological and
functionally ~complete representations (Oosterwaal, 20165
Malaquias et al., 2017; Maharaj et al., 2022).

Our workflow for insole design integrated a musculoskeletal model
developed in our group (Malaquias et al., 2017) that contains 8 degrees
of freedom (Figures 3B, C) and a complex representation of the
ligaments and muscles of the foot-ankle complex (Figures 4A, B).

researchers  have

For use in forward simulations, our model needs to contain a contact
model representing the interaction between the foot (our model) and
the ground. To do this, we utilized contact ellipsoids attached to specific
foot bones (i.e., Calcaneus, midfoot, forefoot, and toes) and an infinite
plane for the ground (Figure 4C). Contact geometries were based on
medical imaging from 12 individuals where contacting regions of the
foot were extracted (Malaquias, 2022). The average shape and size of
these geometries were then added to the generic OpenSim model.
Contact between these foot geometries and the ground were modelled
using an elastic foundation formulation whereby force was
proportional to penetration of the foot geometries and the ground
where stiffness values were defined based on values from previous work
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(Malaquias, 2022). These ground-foot contact forces in turn induce
rotational joint moments which can in turn affect the estimation of foot
joint kinematics when included in forward simulations (see later
sections). They -by default-do not affect the inverse simulations
performed here which estimate foot-ankle kinematics using only the
marker-based trajectories.

This extended generic musculoskeletal model was then used for all
subsequent steps within the developed framework. A personalized
version of this model was generated for each participant where marker
trajectories from the static trial were used in anthropometric scaling.
Specifically, markers pairs were defined and the ratio between model
(i.e., on the generic model) and measured (i.e., from motion capture)
distances were used to determine scale factors. These scale factors
were then applied to the corresponding model segment to match the
gross anthropometry of each individual participant.

Inverse simulations
For all acquired gait trials, marker positions were exported as. trc

files and used in the open-source OpenSim musculoskeletal
modelling platform, to estimate joint angles using a standard
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FIGURE 5

Representation of the implemented spring-based insole model.
Shown are the two different bushing forces which are implemented,
the first (red) spanning the calcaneus and the midfoot, and the second
(green) spanning the calcaneus, midfoot, and metatarsals.

Inverse Kinematics (Lu and O’Connor, 1999) approach. Estimated
joint angles were restricted to the motion of the tibia (6 degrees of
freedom) and the 8 degrees of freedom of the foot-ankle. Gait trials
were then limited to only include the stance phase of gait based on
measured ground reaction forces and standard thresholding
techniques (>10 N).

Preparatory forward simulations

The next step was to ensure that our preparatory forward
simulations can recreate estimated joint kinematics from our inverse
simulations detailed above. To achieve this goal, we first estimated the
joint moments required to produce the measure joint kinematics (using
in-built OpenSim tools for moment-driven froward simulations).
These joint level moments were then applied and contact forces/
moments generated between the foot and ground, in a forward
simulation to verify that measured joint kinematics could be
recreated. Once we can successfully reproduce our inverse results in
our forward simulations—we can then add our insole model to
estimate it is kinematic effect. When comparing forward simulation
kinematics—to those from inverse kinematics, the average error across
all 8 degrees of freedom of the foot-ankle and all participants was 4.69°.

Insole model

We implemented a lumped insole model in OpenSim utilizing
Bushing Forces. These can be thought of as translational or rotational
springs which span 2 or more bodies. These springs are characterized
by a position (on each body), an initial rotational offset
(e, orientation) as well as multiple stiffness parameters. These
stiffnesses can be applied along any of the three axes and can resist
either translations, or rotations around these axes. When two bodies,
spanned by a bushing force translate/rotate away from their initial
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position these springs generate either a force or moment to resist such
motion, proportional to their stiffness and the amount of translation/
rotation. We reduced the tested insoles to a pair of rotational bushing
forces. The first (Figure 5 red line) spanned from the calcaneus to the
midfoot which aimed to resist plantar/dorsiflexion of the midfoot
relative to the calcaneus. The second spring (Figure 5 green) spans
from the calcaneus to the metatarsals and aims to support the medial
longitudinal arch of the foot in the distal foot segments.

Insole calibration

It was our initial intention to estimate the stiffness of each of
these springs from mechanical testing of the specific insoles which
participants wore. However, as the insole stiffness and geometry
parameters (e.g., arch height) were highly variable across
individuals, finding a set of stiffness values which reproduced the
observed experimental kinematic effect in our simulations was
challenging. This was further complicated by the simplified insole
definition that does not explicitly account for geometry, and
therefore the contact between the foot and the insole, nor the
insole/shoe and the ground. Therefore, to derive an initial set of
spring stiffness values (for each individual participant) an
optimization routine was first executed to calibrate the insole
model for each participant.

Insole model calibration was performed for each participant
separately. To this end, a single trial (of the participant being
calibrated) from the reference shod condition was used as initial
input to find a set of insole stiffness parameters (i.e., stiffness and
orientation) which reproduces the measured (i.e., from motion
capture) response. Specifically, we use the participants’ scaled
musculoskeletal model, the joint level moments which produce the
kinematics (see Preparatory forward simulations section), and a
template insole model (ie, bushing forces) whose stiffness
parameters and orientations will be defined by our calibration process.

Within an optimization routine deployed in Python, we leverage
OpenSim API functions to run multiple iterations of forward
simulations with differing bushing force (ie., insole model)
parameters. We specifically adjust for both bushing forces, their
stiffness (Nm/radian), and orientation. At each iteration the error
between predicted (from this specific iteration) and target (average
measured insole) kinematics is calculated. Note that despite having gait
analysis data throughout the entire stance phase of gait, we focused our
error calculations and estimations to the period where the foot was flat
on the ground as this is the period where the insole is likely to have the
largest effect and the period of interest when assessing corrections.
Further, despite estimating a total of 8 degrees of freedom we only
consider a subset of foot-ankle kinematics, specifically chopart and
tarsometatarsal joint degrees of freedom as these are the joints spanned
by our insole model. Each of these joints had two degrees of freedom
which were a combination of flexion/extension and inversion/eversion.

This calibration is run until the specific stiffness and orientations
which yield the minimum error between the two conditions is
found—an example of these results for two participants can be
seen below (Figure 6). Specifically, the objective function which is
evaluated at each iteration calculates the root mean squared error
between the average measured insole kinematics and predicted
kinematics for each degree of freedom of interest. The average
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freedom from inverse kinematics. Red lines show the kinematics from the optimal calibration solution. Note the dotted black vertical lines indicate where
error was calculated within the calibration and correspond to the stage where the foot is flat on the ground.

error across the four degrees of freedom, and entire time of interest is
then calculated and minimized within the optimization routine. The
specific stiffness and orientations yielding the minimum error are then
used in the final predictive model and simulations.

Predictive model

In the final predictive simulation, the participant’s
musculoskeletal model, their calibrated insole model (from
above) was combined with joint moments (see Preparatory
forward simulations section) from the remaining (ie., excluding
the trail used for calibration) reference lab shoe trials to predict a set
of simulated insole kinematics across multiple trials. The average
simulated insole kinematics were then compared to measured insole
kinematics to determine predictive model accuracy. Again, the time
of interest was restricted to the period where the foot is flat on the
ground, and to the mid- and fore-foot joints.

Results

When designing this workflow, first, proof of concept simulations
were performed to ensure that the implemented insole model which
utilizes spring-based bushing forces did alter estimated ankle-foot
kinematics, and that these estimations were in fact sensitive to changes
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in these stiffness parameters (Figure 7). Compared to a reference
stiffness as obtained from mechanical testing (black line), increasing
or decreasing the insole stiffness effectively alters the estimated
kinematics in the targeted degrees of freedom.

Finally, we used the in silico workflow for all participants and the
average error between measured and predicted kinematics was
calculated. Below (Figure 8) are two exemplary participants for
which the
(i.e., predictive insole model) conditions are shown. Across the

measured (shod with insole), and simulated
entire cohort, the average root mean squared error +standard
deviation between measured and simulated kinematics were 4.7 +
3.1, 45 + 3.1, 2.3 £ 2.3, and 2.3 + 2.7 for the chopart obliquity,
chopart anterior-posterior axis, tarsometatarsal first ray, and
tarsometatarsal fifth ray respectively. We observed a wide range
of errors in the cohort, with maximum and minimum errors of
0.5-11.7,1.07-13.12, 0.25-9.31, 0.25-12.5" for the chopart obliquity,
chopart anterior-posterior axis, tarsometatarsal first ray, and
tarsometatarsal fifth ray respectively.

Following the analysis of the prediction error of the developed
workflow (above), we additionally assessed 1) if the prediction error
(i.e, measured vs. predicted) between the joints of interest were
correlated, 2) whether the predicted error was correlated with the
measured effect (i.e., difference between shod with and without
insoles), finally we assessed whether these relationships were
different between healthy participants and flatfoot patients. To
determine if prediction error was correlated with the measured
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Predicted Insole kinematics (red), measured insole (green), and reference (blue) conditions for two participants (A, B). Note the reason the predicted
kinematics are in a smaller range compared to the other conditions is because we focused on a time where the foot was flat on the ground which is
representative of this period.

insole effect (Figure 9), we graphed measured effect on the X-axis for Following graphing, a line of best fit was overlayed for each plot
each joint (on a column-by-column basis), the Y-axis showing the  and the Pearsons Correlation calculated. In this analysis, we see only
prediction error (i.e., measured vs. predicted) on a row-by-row basis.  one strong correlation (* 0.8) between the error and effect in the
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FIGURE 9

Shown are the measured effect of the insole on X axis for each joint (on a column-by-column basis), and the Y axis showing the prediction error (ona
row-by-row basis). Each star represents a different participant were red are flatfeet patients and black are healthy participants. This distinction allowed us

to further analyse if the relationship is biased by the population.

tarsometatarsal fifth ray, however this seems to be biased by an outlier
with a large error and large effect (top right). All remaining correlations
were weak or negligible except for two moderation correlations
between tarsometatarsal fifth ray error and chopart obliquity effect
(r* 0.64) as well as chopart obliquity error and tarsometatarsal fifth ray
effect (r* 0.46). Examining this relationship in healthy participants
(black) and flatfoot patients (red) individually, there appears to be no
bias in our workflow between these groups affecting this
relationship. The lack of a repeatable relationship suggests that our
workflows accuracy is not dependant on a low or high effect, providing
confidence in its generalizability.

A similar approach was then applied to determine the correlations
between the prediction error (Figure 10) of the different degree of
freedom errors (e.g., correlation between chopart obliquity and
chopart anterior-posterior). Examining the correlations, only weak
and negligible correlations were observed for all comparisons
suggesting the error in one degree of freedom in independent of
the errors in the remaining degrees of freedom. Similar to the previous
comparison, this relationship appears to not be biased or different
between the two studied groups.

Discussion

The design and customization of insoles could benefit from
computational approaches that help in determining the appropriate
mechanical parameters (i.e., stiffness) to provide the most optimal
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correction for a targeted foot-ankle kinematic dysfunction. In this
paper we aimed to develop a workflow to predict individuals’
response to a specific corrective insole. The workflow described
here, implemented in OpenSim, maximally exploits the added value
of 3D motion capture, musculoskeletal modeling of the foot-ankle
complex, dynamic simulations together with optimization
approaches to define the mechanical properties of a lumped
insole model that maximally predicts the foot-ankle kinematics.
In contrast to previous work, this workflow was developed using
a rigid body musculoskeletal model in OpenSim. Typical insole
model-based workflows assessing corrective insole effects utilize
finite-element models that explicitly model contact between the
foot and the insole to inform in the first instance on predicted
changes in plantar contact pressures. Less often the explicit effect on
foot-ankle kinematic predictions is targeted. While this approach
permits accounting for complex material models relevant for insole
design as well as the effective geometrical shape of the insole its
drawback is that the time to develop and execute these models is in
the magnitude of numerous hours, complicating their use in the
context of a parameter optimization approach as described above.
Furthermore, it requires highly specific input data for the material
parameters that cannot readily be identified in a sole-specific
manner, as well as dedicated expertise to build and execute these
simulations. The workflow developed here only requires seconds to
execute and does not require highly detailed imaging of the
participants foot nor the insole. Additionally, the workflow itself
is highly automated making execution simple. An additional

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1351403

Killen et al.

10.3389/fbioe.2024.1351403

Correlations of prediction error between individual joint degrees of freedom

5 5 D12 4 s T2 5 P e
G 12 g [
x5 210 & 10 10 4
2 5l € e . 3 e o - E -
g L2 =-0.04 58 2 = -0.04 5 81 P =-02 81 2 =023
8% s 5 * £ - *
g5 26 % * 26 * . 6 * W
= g *
E%G - 3_ — * g, . - 3
b . g,/ g 4] ]
e - 4 . * = 41+ 41 %=
; 44 % * = ] * el * -
- * had * Anhd
g s o 24 % P T o2qar L - . 2] M.
2 - * L -§0 - _§' ol* o -
o T r S r S T r T
] s
b * - * * *
5 5 e e
£ £ G 12 3 12
¢ g4 T g e =
> > 8 k)
& 2 ] g 10 * 5 104%* 2
x 2=-02 L r=-0.13 2 r?=-0.13 - r=-0.18
i w61 % 7 QW * ow -
hal - ¥ ba ) 1 3 8 o8- 8 vs4
5841 i LA +|58s1, * $81s
£ b £ |, 8% 232
£ > £ * = 44N g 4 o *
£ 24 % - «| E 2.\ 2 £
& - b s ., H * - g 5
o - * 2 * * 2 24 * Q 24 * *
S * o« * - < o »> - o » 5 *
Eoor * : . . ol T . 5 * 3 5 *e
* * * *
5 12 5 124 5 12 5
g g g £ s
o " o .| o n | o
2 10 2 10 2 10 2
g .l P? =023 g ] ? =-0.18 g ] 7?2 =-0.15 g 7?2 =-0.15
£ = i = B = g %
B 52 57 iw *
L 64+ = 96 * 06 % =0
ﬁ'& * EE’ * 95 * v o wv
53 s3 s 3 s3 *
£3 4 . £34q 241 . £ *
o o o Q@ o] aW *
£ 24 * . £ z-N E 24 ¥ & £ N
- - e - - »
@ T we ¥, - * g L * g L5 * g "3‘.0 3
N 04 - * 5 oA * * 5 o0 * * 5 04 *
(o - - - - - - - - : - - - = - - - - - jd - - - - - - -
o 2 4 6 8 10 12 2 a6 8 10 12 o 2 4 6 8 o 2 4 8 10 12

Chopart anterior-
posterior error (degrees)

Chopart obliquity error
(degrees)

FIGURE 10

Tarsometatarsal 5™ ray
error (degrees)

Tarsometatarsal 15t ray
error (degrees)

Shown are the errors between the measured and predicted kinematics for all participants for each of the joints of interest. From left to right, on the X
axis is the Chopart obliquity, chopart anterior-posterior, tarsometatarsal first ray and finally the tarsometatarsal fifth ray. Each star represents a different
participant were red are flatfeet patients and black are healthy participants. This distinction allowed us to further analyse if the relationship is biased by the

population.

advantage of this OpenSim musculoskeletal modelling approach is
that an entire stance phase and numerous gait cycles can be
simulated meaning a larger number of trials can be collected,
potentially in different environments and speeds meaning the
effect of an insole in variable gait conditions can be tested. This
contrasts with previously mentioned finite-element modelling
approaches that typically only consider a combination of static or
quasi-static time points.

The developed musculoskeletal modeling workflow uses measured
motion capture data from shod conditions without insoles as a
reference condition and predicts the effect of the insole on foot-
ankle kinematics during stance phase of gait using a spring-based
insole model. Insole models were calibrated based on measured data to
improve the predictive ability of the framework. This was a necessary
step as initial parameters derived from mechanical testing did not
generate a sufficient effect of the predicted kinematics and often yielded
the same kinematics as the reference condition. Although a hurdle of
the workflow being fully predictive, this is currently required as there is
currently no direct way to translate the properties of corrective insoles
from the manufacturer to our musculoskeletal modelling framework.
However this is a preliminary implementation which we believe can be
phased out in later and more developed implementations when a larger
cohort can be modelled and considered.

When considering the magnitude of errors between measured
and predicted insole conditions (See Results and Figure 8), these are
between 2 and 5° for the tarsometatarsal and chopart joints,
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respectively. These errors also need to be considered in the
context of the actual effect of the insole. The effect of the insole
to measured kinematics in many cases was highly variable between
participants and in many cases is in the range of error in our
predictive model. When examining the average effect of the insole in
the measured values we see the following: 4.18 + 2.98, 6.28 + 3.11,
2.67 + 223, and 2.75 + 3.05" for the chopart obliquity, chopart
anterior-posterior axis, tarsometatarsal first ray, and tarsometatarsal
fifth ray respectively. Importantly, the secondary analysis performed
shows our model’s accuracy is not dependent on the magnitude of
the response, nor does it seem to be influenced if it is applied to a
healthy participant or flatfoot patient providing confidence in the
generalizability of the results.

As with any study, several limitations need to be considered.
First, the predictive framework is currently reliant of high-fidelity
motion capture data which may limit the scope and application of
the current approach. Such equipment is not typically available in
clinical practice where such an approach would have the most
impact. Second, the use of the calibration steps relies on a-prior
knowledge of an individual’s response which would still require
fabrication of numerous insole candidates meaning the framework
cannot be run fully predictive.

Future research should focus on reducing the reliance on the use
of motion capture data. The use of such data reduces the wider
adoption of these approaches as they do not have access to such
specialized infrastructure. As this approach is only currently reliant
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on accurate estimations of joint kinematics, leveraging of other
modalities such as video-based analysis or machine learning may
provide a viable alternative to inform such a developed workflow in
the future. To this end, current low fidelity approaches such as the
use of plantar pressure measurements are becoming more common.
Such approaches would allow for the application and translation of
such a framework in clinics to facilitate its translation and impact on
patients. Future research should focus on improving the simplified
spring-based insole model by processing larger data sets with a larger
variety of insole designs and mechanical properties potentially
augmented and assisted by formal mechanical testing procedures.
The improvement of this spring-based model will improve the
of the these
improvements and refinements, a complete clinical validation
including not only quantitative measures of kinematic response,

predictive accuracy framework.  Following

but also patients’ subjective outcomes, and clinical outcomes should
be done to compare the effectiveness of the in silico based workflow
for insole design compared to current practice.

This framework serves as an important first step in realizing
such an approach not reliant on finite element methods. Examining
the results of calibration (Figure 6) using our approach, it is possible
to reproduce measured insole gait kinematics using measured shod
data (without an insole) and a spring-based insole model. This is a
promising outcome as it means that if we can effectively and
accurately the
manufacturer (e.g., arch support and height, regional stiffness) to

translate insole design parameters from
spring-based parameters (i.e., bushing force stiffness) the accuracy

of this workflow can likely be increased.

Conclusion

The developed workflow provides a solid basis for future in silico
work to improve the predictive accuracy of the effect of insoles on
foot-ankle kinematics, given that the lumped insole model can be
further optimized, in terms of mapping the experimental insole
mechanical properties and the formulation of the spring-based
constants. Combined, a reduced burden of data collection, and
improved spring-based model provides an exciting potential for a
fully predictive model to assist design and prescription of corrective
insoles and improved patient outcomes.
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