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Bispecific antibodies (bsAbs) have attracted significant attention due to their
dual binding activity, which permits simultaneous targeting of antigens and
synergistic binding effects beyond what can be obtained even with
combinations of conventional monospecific antibodies. Despite the
tremendous therapeutic potential, the design and construction of bsAbs
are often hampered by practical issues arising from the increased
structural complexity as compared to conventional monospecific
antibodies. The issues are diverse in nature, spanning from decreased
biophysical stability from fusion of exogenous antigen-binding domains to
antibody chain mispairing leading to formation of antibody-related impurities
that are very difficult to remove. The added complexity requires judicious
design considerations as well as extensive molecular engineering to ensure
formation of high quality bsAbs with the intended mode of action and
favorable drug-like qualities. In this review, we highlight and summarize
some of the key considerations in design of bsAbs as well as state-of-the-
art engineering principles that can be applied in efficient construction of
bsAbs with diverse molecular formats.
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1 Introduction

In recent years, bispecific antibodies (bsAbs) have emerged as a powerful class of
therapeutic molecules, opening new avenues for targeted therapy. BsAbs possess the unique
ability to simultaneously engage two different targets, enabling synergistic targeting of
disease pathways that cannot be obtained even with combinations of conventional
immunoglobulins. While therapeutic bsAbs are engineered molecules, bsAbs can also be
found in rare cases in nature where they can be formed through Fab-arm exchange of
IgG4 half molecules (Rispens et al., 2011). The binding versatility of engineered bsAbs has
sparked significant interest in their potential applications across a wide range of diseases,
including cancer, autoimmune disorders, and infectious diseases (Labrijn et al., 2019). In a
recent publication, bi- and multispecific drugs were even classified as a new wave of
transformative therapeutics (Deshaies, 2020). The therapeutic potential of bsAbs has made
the bsAb space very crowded and extremely competitive but it has also fostered truly
ingenious feats of engineering as illustrated by the diversity of the clinical-stage bsAb
landscape (Labrijn et al., 2019; Wei et al., 2022).
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2 Mechanisms of action

The dual binding activity of bsAbs enables synergistic antigen
targeting with more complex mechanisms of action (MOA) than
what can be obtained for conventional monoclonal antibodies. For
many bsAbs the desired MOA is dependent on a certain
spatiotemporal connection between the two binding events. This
means that the two binding specificities must be engaged in a specific
physical arrangement (e.g., positioning targets near each other to
induce downstream signaling (Sampei et al., 2013)) and/or with a
specific timing (e.g., simultaneously linking cells (Li et al., 2021) or
sequential targeting for translocating across barriers (Wec et al.,
2016; Do et al., 2020)). Such bsAbs where the MOA cannot be

obtained through combination of the two separate parental
antibodies are known as obligate bsAbs (Spiess et al., 2015;
Labrijn et al., 2019). However, even bsAbs without obligate MOA
often corroborate to be more than simply the sum of their parts,
which is illustrated by non-obligate bsAbs still showing superior
potency relative to combination of the parental antibodies (Kast
et al., 2021). The advantage of such combinatorial MOA has been
speculated to stem from avidity effects (De Gasparo et al., 2021).
Dual targeting might also help minimize side effects by improving
target selectivity and localization (Mazor et al., 2015a; Mazor et al.,
2017), which is especially relevant to limit “on-target, off-tumor”
effects (Ishiguro et al., 2017). Even in cases where the bsAb activity is
comparable to that of the parental antibody combination, the bsAb

FIGURE 1
Obligate mechanisms of action for bsAbs. (A) In-trans cell bridging established a physical link between different cells through the bsAb. This
mechanism is especially relevant for T cell redirecting bsAbs where the physical connection helps target the cytotoxicity of the activated T cells. (B) In-cis
bridging of receptors causes agonistic crosslinking and associated activation of receptor signaling. (C) In-cis antagonism blocks receptor association thus
preventing signaling through the receptor complex. (D) Piggybacking bsAbs use one specificity for targeting a receptor that facilitates translocation
across a barrier to an otherwise inaccessible compartment where the second specificity exerts its functionality. The lightning bolt indicates an activity
mediated by binding of the antibody. (E) BsAbs can exert localization effects. An example is agonistic bsAbs that also contain a tumor-targeted specificity,
which limits on-target, off-tumor effects by restricting the agonistic mechanism to sites where the tumor marker is present. (F) BsAbs acting as a co-
factor mimetic by accurately positioning of enzyme and substrate.
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may offer an advantage regarding manufacturing since only a single
molecule needs to be produced (Hmila et al., 2010).

The dual targeting activity of bsAbs can broadly be characterized
as working in-trans or in-cis. The possibility of judiciously
combining selected antigen-binding domains to specifically act
on the same (in-cis) or different (in-trans) cellular/molecular
targets in a highly tailored manner is essential in synergistic
bsAb functionalities.

In-trans acting bsAbs engage distinct targets to create a physical
linkage. For bsAbs engaging cellular targets in-trans this means the
MOA is dependent on binding of two different cells thus permitting
bridging of the cells. A common example of in-trans cellular binding
are bispecific T cell engagers that bind to both a tumor associated
antigen and CD3, a highly potent costimulatory receptor, thus
bridging T cell and tumor cells (Löffler et al., 2000; Hoffmann
et al., 2005) (Figure 1A). The bispecific T cell engagers are bypassing
the natural T cell activation through clustering of low-affinity T cell
receptors (Krogsgaard and Davis, 2005) and recruit T cells directly
towards cells expressing the tumor-associated antigen (Löffler et al.,
2000). The term “in-trans” has also been used on a molecular level to
describe a biparatopic anti-HER2 bsAb that bind two distinct
HER2 molecules (in-trans) rather than the same (in-cis). The
cross-binding links adjacent molecules to induce distinct
HER2 reorganization with complement-dependent cytotoxicity
not seen for combinations of monospecific anti-HER2 antibodies
(Weisser et al., 2023). Such molecular in-trans binding is primarily
relevant for biparatopic bsAbs targeting different and non-
overlapping epitopes on the same antigenic target.

In-cis acting bsAbs primarily target antigens on the same cell
(Figures 1B,C). Agonistic bsAbs that activate two receptors on the
surface of the same cell (cellular in-cis activation) can be used to
selectively control signaling mechanisms by precisely steering
bridging of receptor subunits. In one example, a bsAb targeting
the interleukin (IL)-2 receptor subunits IL-2Rβ and IL-2Rγwas used
to increase signaling through the intermediate affinity IL-2Rβγwhile
downregulating signaling through the high affinity IL-2Rαβγ (Ha
et al., 2021). In another example a dual agonistic bispecific
Surrobody targeting death receptor (DR) 4 and 5 showed
superior potency than combinations of the parental antibodies
potentially due to heterodimeric clustering of DR4 and DR5
(Milutinovic et al., 2016).

Another type of in-cis activating bsAbs is known as co-factor
mimetics that essentially acts to promote optimal positioning of an
enzyme and its cognate substrate (Figure 1F). Coagulation factor
FVIIIa mimetics have been developed to promote complexation of
FIXa and FX (Sampei et al., 2013; Østergaard et al., 2021). Assembly
of the FIXa-FX enzyme-substrate complex leads to formation of
activated factor Xa (FXa), which is a key mediator of the coagulation
pathway (Borensztajn et al., 2008) and the bsAbs are therefore
relevant for treatment of hemophilia A (Shima et al., 2016;
Mahlangu et al., 2018; Lauritzen et al., 2022). This bsAb cofactor
mimetic is especially relevant for patients that develop alloantibodies
against FVIII and which are therefore largely restricted from
treatment with recombinant FVIII (Muto et al., 2014).

Signaling pathways can also be targeted through antagonistic
bsAbs working by occupying cellular receptors and blocking binding
of soluble receptor ligands. Such antagonistic bsAbs are commonly
used in blocking of immune checkpoint receptors, which is an

extremely successful class of anti-cancer immunotherapy targets
(Robert, 2020). Examples include dual blockade of immune
checkpoint pathways (Kraman et al., 2020; Chen et al., 2021;
Dovedi et al., 2021) and targeting of immune checkpoints
together with negative regulators of anti-tumor immunity, such
as TGF-β, that is associated with poor prognosis (Bai et al., 2019; Yi
et al., 2021). Antagonistic bsAbs working in-cis can also be used for
targeting related or overlapping signaling pathways (Dong et al.,
2011). Such bsAbs can thus be used to preempt immune evasion of
cancer cells by targeting a primary cancer-related pathway as well as
other connected pathways that might be upregulated by the cancer
cell in response to blocking of the primary pathway. An example of
antagonistic dual pathway targeting is seen for HER2xHER3 bsAbs
where upregulation of HER3 is a driver in resistance to
HER2 inhibiting agents (Garrett et al., 2011).

Discovery of agonistic bsAbs is generally more challenging than
antagonistic bsAbs because the agonistic activity of antibodies
depends on multiple factors that are difficult to properly
formalize (Mayes et al., 2018). As an example, the cytotoxic
activity of agonistic anti-CD3 bsAbs have been found to be
influenced by both the affinity, epitope, and molecular geometry
(Bluemel et al., 2010; Moore et al., 2015; Root et al., 2016).
Contrarily, an effective antagonistic antibody is typically
characterized by a high affinity and ability to compete with the
natural ligand thereby blocking its action. Further, additional
synergies in therapeutic effector mechanisms might be obtained
from combinations of bsAbs although this will likely increase the
MOA complexity and thus further complicate bsAb design.

3 The role of Fc

All natural antibodies contain an Fc region that is paramount for
the antibody effector functions, which triggers the host cell
responses through binding to cognate Fc receptors and soluble
immune mediators such as complement proteins (Lu et al.,
2018). Fc protein engineering and glycoengineering can be used
to either remove or largely enhance Fc-mediated effector functions
such as antibody-dependent cellular cytotoxicity (ADCC) by NK
cells, antibody-dependent cellular phagocytosis (ADCP) by
macrophages and even certain CD8 T cell responses (Hart et al.,
2017; Goletz et al., 2018; Liu et al., 2020). Significant efforts have
been made to engineer Fc regions of conventional monospecific
antibodies to obtain Fc effector functions (or lack thereof) that are
not naturally observed for a given isotype (Saunders, 2019). As an
example, FcγR silencing mutations can be used to create effector-
reduced IgG1 antibodies that still possess the favorable
characteristics that are associated with the IgG1 isotype (Tang
et al., 2021; Cain et al., 2023). On the other hand,
glycoengineering, such as de-core-fucosylation of Fc-IgG1
N-glycans, or mutations can increase binding to certain Fc
receptors and thereby mediate increased effector functions such
as FcγRIIIa mediated ADCC or ADCP. Such effector-modulating
mutations or glycoengineering are typically not overlapping with
common bsAb-related mutations (discussed below) such as those
used for chain-steering and hence can be combined in Fc-containing
bsAbs as well (Escobar-Cabrera et al., 2017). Depending on the
intended MOA, certain bsAbs might be more effectively designed
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FIGURE 2
Schematic overview of the most common bsAb formats categorized according to molecular configuration. (A) Fragment-based bsAbs are formed
by combining small antigen-binding fragments without a Fc domain. The building blocks are typically scFv fragments or sdAbs. (B) Symmetric Fc-
containing bsAbs are expressed from one to two polypeptide chains often by fusing additional antigen-binding fragments onto an IgG scaffold. (C)
Asymmetric Fc-containing bsAbs assembled from two to four polypeptide chains. Asymmetric bsAbs require measures to avoid chain mispairing.
The small “knob” and “hole” in the schematics are used to generically illustrate places where a chain steering technology is needed to ensure HC:HC
heterodimerization and/or proper HC:LC pairing.
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with a modified Fc region or without one altogether. Most clinically
developed bsAbs contain a Fc region (Labrijn et al., 2019) as this
domain confers easy purification using protein A (Liu et al., 2010) as
well as prolonged half-life from FcRn recycling (Ghetie et al., 1996;
Christianson et al., 1997). Fc-containing bsAbs are broadly
categorized as symmetric or asymmetric according to their
molecular geometry, as discussed below.

Despite effective engineering of the Fc region, there are cases where
smaller fragment-based bsAbs offer advantages over large IgG-like
bsAbs. Fragment-based bsAbs are typically constructed through
genetic fusion of independent antigen-binding domains but can also
be assembled through multimerization domains (Blanco-Toribio et al.,
2013;Walter et al., 2022; Burke et al., 2023). This simplistic approach has
the advantage that its products are typically small and without important
glycosylation sites, meaning that they can be produced at high titers
using simple expression systems like bacteria (Zhu et al., 1996; Lu et al.,
2022) or yeast (Xiong et al., 2018). Fragment-based bsAbs typically
consist of only one to two polypeptide chains, which limits the risk of
antibody-related impurities due to chain mispairing, which is an issue
often encountered for larger and structurally more complex bsAbs as
discussed below. Further, simple genetic fusion of antigen-binding
domains permits high flexibility with regard to combination of
valencies and specificities as exemplified by 1 + 3 (Harwood et al.,
2018) and 3 + 3 (Blanco-Toribio et al., 2013; Compte et al., 2018)
bsAb formats.

Fragment-based bsAbs lacking an Fc region have traditionally been
based on scFv fragments that can be combined in different ways to
form, e.g., BiTE (Mack et al., 1995; Löffler et al., 2000), TandAb (Reusch
et al., 2014; Reusch et al., 2015), or DART (Johnson et al., 2010; Chichili
et al., 2015) molecules, which are the main classes of fragment-based
bsAbs utilizing scFvs (Figure 2A). Such scFv fragments are, however,
often associated with thermodynamic instability (Wörn and Plückthun,
2001) and promiscuous VH-VL pairing leading to undesired self-
assembly (Weatherill et al., 2012). The limitations of scFvs have
sparked interest in single-domain antibodies (sdAbs) which are also
small (~15 kDa) antigen-binding domains that can be genetically fused
to form fragment-based bsAbs (Conrath et al., 2001; de Bruin et al.,
2018) but because they are stable, robust, and monomeric in nature,
they are not prone to undesired self-assembly. SdAbs have also been
combined without linkers by fusion onto CH1 and Cκ, respectively,
thus using the natural pairing of the constant domains as a natural
dimerizationmotif to generate small Fab-like bsAbs (Rozan et al., 2013).
It should of course be noted that antigen-binding domains can be
combined in numerous otherways than those listed above, as previously
described (Brinkmann and Kontermann, 2017). A potential drawback
from fragment-based bsAbs is their faster clearance due to the small size
and lack of FcRn binding regions, however, the clearance issue has been
addressed for certain applications and formats by coupling of the bsAb
to HSA (McDonagh et al., 2012; Mandrup et al., 2021; Hangiu et al.,
2022) or including an anti-HSA antibody fragment (Austin et al., 2021;
Edwards et al., 2022; Ishiwatari-Ogata et al., 2022).

4 Symmetric bispecifics

Symmetric bsAbs are typically IgG-like molecules that adhere to
the HC2LC2 format but with additional exogenous binding domains
fused to the scaffold thus adding specificity towards a second antigen

to the original scaffold. These bsAbs are thus typically tetravalent 2 +
2 bispecifics (bivalent targeting of each antigen) (Pang et al., 2023)
but can also be made as hexavalent 2 + 4 bsAbs by double fusions
(Madsen et al., 2023). Some of the most common tetravalent 2 +
2 formats include scFv-IgG fusion (Orcutt et al., 2010;
DiGiandomenico et al., 2014; Pang et al., 2023), DVD-Ig (Wu
et al., 2007; Wu et al., 2009), tandem scFv-Fc (Chang et al.,
2022), sdAb-IgG fusions (Madsen et al., 2022; Yanakieva et al.,
2022; Madsen et al., 2023), and tetra-VH IgG (Ljungars et al., 2020;
Misson Mindrebo et al., 2023) (Figure 2). A strong practical
advantage of symmetric bsAbs resides in the relatively simple
antibody assembly where only one or two different polypeptide
chains need to be expressed. This means there is less optimization of
plasmid transfection ratios in initial screens compared to co-
expression of three to four chains for asymmetric bsAbs. The
HC2LC2 format also greatly reduces the risk of misassembly of
antibody chains and thus also simplifies the purification scheme
compared to asymmetric bsAbs where additional polishing steps are
often needed to remove impurities formed through incorrect
assembly of antibody chains (Li, 2019). The HC2LC2 format,
however, also limits the flexibility in valencies as the antigen-
binding domains will always appear in pairs. This limits the
application to antigens where monovalent targeting is required to
prevent undesired crosslinking, such as CD3 (Lee et al., 2019). The
choice of a suitable exogenous antigen-binding domain is an
important consideration when designing symmetric bsAbs.
Traditionally, scFvs have often been used because they can be
readily derived from Fv domains of conventional antibodies.
Smaller sdAbs are, however, gaining increasing attention as
attractive fusion partners because they are naturally small and
monomeric and thus not prone to undesired self-assembly and
aggregation, which is often seen for scFvs (Cao et al., 2018; Andrade
et al., 2019).

Glycine-serine linkers of 10–25 amino acids are commonly used
for fusion of exogenous antigen-binding domains as these exhibit
favorable flexibility and stability in aqueous solutions (Chen et al.,
2013). Other bsAb constructs have utilized linkers derived from
natural antibody linker regions such as the antibody hinge region
(Kuo et al., 2012) or the flexible link connecting Fv and CH1/Cκ
(Wu et al., 2007;Wu et al., 2009). The choice of an appropriate linker
is important to ensure proper spacing and display of the antigen-
binding domains (Wu et al., 2009; Madsen et al., 2023). One study
found linker lengths to affect both antigen-binding and stability of
DVD-Ig molecules (Wu et al., 2009).

The highly modular nature of antibodies means that the
exogenous antigen-binding domains can be fused both within or
at the ends of polypeptide chains of the scaffold, thus enabling
formation of structurally diverse bsAbs that can be tailored to fit the
purpose (DiGiandomenico et al., 2014; Swope et al., 2020). While
fusions of these exogenous antigen-binding fragments are often
made onto full length IgG molecules they can also be fused directly
to Fc domains to keep the constructs smaller than full length IgG
molecules while still including the Fc region (Asano et al., 2020). In
addition to the fusion of independent antigen-binding domains onto
IgG scaffolds, other strategies have been employed to develop
symmetric IgG-like bsAbs. One example is formation of tetra-VH
IgGs by separating out distinct binding specificities onto each
variable domain of the Fv by replacing VH and VL with
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independent sdAbs (Ljungars et al., 2020). It has also been possible
to spatially segregate the 6 complementarity-determining regions
(CDRs) of a single Fab domain into a VH paratope (CDRH1,
CDRL2 and CDRH3) and a VL paratope (CDRL1, CDRH2 and
CDRL3) (Beckmann et al., 2021). Combining these individual
paratopes allowed formation of a single bispecific Fab domain
dubbed DutaFab.

5 Asymmetric bispecifics

Themolecular geometry of asymmetric bsAbs makes themmore
challenging to design and produce compared to symmetric bsAbs
mainly due to formation of antibody-related impurities formed
through co-expression of the different antibody chains. Despite
these practical issues, asymmetric bsAbs are still the major type
of bsAb entering into clinical development (Labrijn et al., 2019). A
notable advantage of asymmetric bsAbs is the close adherence to the
native molecular geometry of IgG to harness the favorable drug-like
qualities of this molecule.

The asymmetric architecture allows high flexibility in valencies,
e.g., to form monovalent specificities (1 + 1) (Kienast et al., 2013;
Zhang et al., 2015), which cannot be obtained for symmetric bsAbs.
Further, formation of asymmetric bsAbs with high structural
resemblance to IgG molecules is believed to reduce the risk of
immunogenicity liabilities. It should, however, be noted that
asymmetric bsAbs can also be formed to deviate from the strictly
bivalent Y-shaped IgG geometry to form, e.g., trivalent 2 + 1 bsAbs
(Metz et al., 2012; Bacac et al., 2016a; Bacac et al., 2016b).

5.1 HC:HC pairing

The main issue associated with asymmetric bsAbs is mispairing
of polypeptide chains leading to product-related impurities. Many
asymmetric bsAbs rely on heterodimerization of two different HC,
thus spiking interest in HC steering platforms for promoting HC
heterodimerization. Numerous HC steering platforms have been
developed (Liu et al., 2017), of which the majority is industry-
originated, and functions by creating complementary interfaces in
the CH3 domains (Ridgway et al., 1996; Atwell et al., 1997; Merchant
et al., 1998; Davis et al., 2010; Gunasekaran et al., 2010; Moore et al.,
2011a; Choi et al., 2013; Labrijn et al., 2013; Von Kreudenstein et al.,
2013; Choi et al., 2015a; Choi et al., 2015b; Leaver-Fay et al., 2016; De
Nardis et al., 2017; Skegro et al., 2017; Estes et al., 2021), which are
key in governing the antibody structural integrity (Feige et al., 2010;
Bertz et al., 2013). The mutations in the structurally important
CH3 domain are therefore also known to often affect the bsAb
thermal stability (Pomarici et al., 2022). While the detailed design
principles of these CH3 steering platforms are thoroughly reviewed
elsewhere (Ha et al., 2016; Brinkmann and Kontermann, 2017), it
should be noted that the platforms seek to introduce structurally
complementary mutations that favors HC heterodimerization while
disfavoring formation of HC homodimers. The first reported, and
most widely used, platform is the knob-into-hole (KiH) which
introduces a large bulky tryptophan in one HC and smaller
sterically complementary residues in the other HC (Atwell et al.,
1997; Merchant et al., 1998). The KiH strategy is widely

implemented because it is highly effective in suppressing HC
homodimers (except for trace amounts of hole-hole homodimers
(Chen et al., 2019; Tang et al., 2020)) and because its patent has
expired. The KiH thus provides relatively easy and free access to
construction of asymmetric bsAbs in a field that is otherwise highly
competitive and industry-dominated as illustrated by several other
patent-protected platforms (Godar et al., 2018).

When engineering HC for heterodimerization it should be
realized that the relative abundance of HC heterodimer should be
considered an equilibrium rather than a fixed amount. This
equilibrium is affected by several factors such as the relative
plasmids- and expression levels, which is typically controlled
through optimizing plasmid transfection ratios (Ding et al., 2021;
Ong et al., 2022). This can be time consuming especially if
expressing many different bsAbs. As an example, we recently
reported production of an asymmetric IgG/sdAb-Fc construct
where a skewed HC plasmid transfection ratio yielded the most
equal expression of the two HC chains (Madsen et al., 2022), thus
suggesting the two HCs did not co-express equally well. Other
studies have similarly found that the nature of the variable
domains affect HC heterodimerization (Stutz and Blein, 2020;
Estes et al., 2021). The CH1 domain plays an important role in
the assembly and transport of IgG molecules (Hendershot et al.,
1987; Feige et al., 2009), which can help explain changes in
expression behavior of HCs where the Fab domain has been
replaced with fragments such as sdAbs or scFvs. Interestingly,
improved assembly of heterodimeric κλ bsAbs has also been
obtained through codon de-optimization of the high-expressing λ
chain to balance the relatively low-expressing κ thus actually
increasing the yield of the target bsAb (Magistrelli et al., 2017).

5.2 HC:LC pairing

In addition to HC heterodimerization, strategies also exist for
ensuring correct HC:LC pairing. Selection of bsAbs with common
LC eliminates the risk of HC:LC mispairing (Merchant et al., 1998;
Sampei et al., 2013) although identification of common LC bsAbs
can be time consuming and restrictive in terms of sequence diversity
(Sampei et al., 2013; Shiraiwa et al., 2019; Ching et al., 2021), which
may complicate the search for target-specific and high-affinity
binders. The common LC approach further has the advantage
that only three polypeptide chains need to be expressed thus
easing manufacturability to a certain extent. Analogously, bsAbs
with common HC can also be discovered to avoid HC mispairing
(Fischer et al., 2015). Other approaches have focused on rational
design of Fab steering that prevents HC:LC mispairing during co-
expression of the different polypeptide chains, including Crossmab
(Schaefer et al., 2011), orthogonal Fab interfaces (Lewis et al., 2014;
Liu et al., 2015; Dillon et al., 2017; Froning et al., 2017; Koga et al.,
2023), swapping of CH1/CL domains (Wu et al., 2015; Wozniak-
Knopp et al., 2018), engineering of native interchain disulfide bonds
(Mazor et al., 2015b), and grafting of IgE-derived
heterodimerization domains (Kühl et al., 2022). The use of two
different HC and LC allows flexible pairing of VH and VL domains
and thus unrestricted access to antibody diversification when
searching for target-specific bsAbs. On the other hand, balanced
co-expression of all 4 polypeptide chains can be challenging thus
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potentially requiring additional efforts in vector design and
production clone generation as well as added pressure on
downstream processes. Proper HC:LC pairing can also be
obtained through careful post-expression assembly where each
antibody half is expressed individually and subsequently
assembled to the final bsAb construct. This strategy, however,
introduces additional manufacturing steps such as clone
generation and manufacturing of 2 components before
combination adding further challenging processing steps
including sufficient reduction and oxidation of hinge disulfides
(Strop et al., 2012; Labrijn et al., 2013; Spiess et al., 2013; Labrijn
et al., 2014). Oher strategies include replacing one of the Fab arms
with a single-chain Fab (scFab) domain so the bsAb consists of only
3 polypeptide chains and where the flexible linker of the scFab
promotes proper pairing of VH/CH1 and VL/CL (Schanzer
et al., 2014).

Interestingly, some Fab domains appear to exhibit inherent
preferential cognate HC:LC pairing whereas other Fabs exhibit a
universally more promiscuous HC:LC pairing (Dillon et al., 2017;
Joshi et al., 2019; Gong et al., 2021). The determinants of pairing
are mainly located in the CDRs, and such insights might be
applicable in selecting compatible HC:LC pairs or identifying
common LC. The issue of HC:LC mispairing can also be avoided
by simply replacing one or both Fabs with antibody-fragments,
such as scFv fragments or sdAbs, to ensure that the bsAb contains
a single LC at most thus avoiding HC:LC mispairing (Huang
et al., 2020; Ne et al., 2020; Madsen et al., 2022). The importance
of proper chain pairing of bsAbs has also spiked interest in
advanced analytics and efficient downstream purification
processes for accurately removing and quantifying mispaired
species with high throughput (Schachner et al., 2016; Yin
et al., 2016; Yan et al., 2019; Ziegengeist et al., 2023).

5.3 Alternative chain steering

In addition to the assembly methods described above, other
strategies more heavily relying on chemical processing have also
been explored. One example is expression of an IgG-like bsAb
consisting of 4 different polypeptide chains expressed as a single
construct where the antibody chains had been connected by linkers
that steered chain assembly and could be removed post-expression
(Dimasi et al., 2017). BsAb chain association has also been
controlled by appending leucine zippers (Wranik et al., 2012)
and full-length IgG molecules have been combined through
SpyTag/SpyCatcher system (Mei et al., 2022) or using click
chemistry (Wagner et al., 2014).

6 Molecular geometries

BsAbs are more than just the sum of their parts and selection of
an optimal molecular architecture, is an important design
consideration to obtain the desired functionality. This means that
bsAbs that are constructed from the same molecular building blocks
(and thus sharing the same total amino acid content) only differing
in molecular geometry can exhibit varying activity (Dickopf et al.,
2020; Madsen et al., 2023). The dual targeting is often complex

because the bsAb configuration must account for both internal and
external restraints to obtain the desired therapeutic functionality.
Internal restraints are imposed by the molecular geometry in itself
such as steric hindrance between the binding domains (Do et al.,
2020; Madsen et al., 2023). One study examining a comprehensive
set of symmetric sdAb-IgG bsAbs including mirroring the
specificities found that the binding affinity of the antigen-binding
domains was affected by inter-domain steric hindrance arising from
the molecular geometry and that this effect was more pronounced
when the sdAb was linked to the LC as compared to the HC (Madsen
et al., 2023). Such internal restraints might be alleviated through
engineering of the configuration, e.g., by extending linkers to
increase the intramolecular flexibility and distance between target
binding (Wu et al., 2007). External restraints, on the other hand, are
imposed by the spatial organization of the target environment where
the bsAb must adopt a specific conformation to achieve the desired
spatiotemporal target engagement. Such external restraints are
especially evident for bsAbs with (inter-)cellular activity
(Croasdale et al., 2012; Kühl et al., 2023) due to the inherently
complex nature of spatial cell surface receptor organization (Bethani
et al., 2010). As an example, the immunological synapse required for
T cell activation is dependent on the spacing of the T cell antigen
receptor and the peptide-MHC ligand (Choudhuri et al., 2005).
Given that artificial immunological synapses, established through
T cell redirecting bsAbs, have shown high phenotypical similarity to
natural immunological synapses (Offner et al., 2006) it is worthwhile
considering the natural spacing restraints when designing these
T cell redirecting bsAbs. In another example, FynomAbs
demonstrated higher cytotoxic activity when the Fynomer (small
binding protein derived from the SH3 domain from Fyn kinase) was
attached N-terminally as opposed to C-terminally thus further
illustrating how the geometry can be tailored for optimal
interparatopic positioning (Wuellner et al., 2015). Small
fragment-based configurations might also be applicable in cases
where short interparatopic distances are favorable. The MOA can
likewise be influenced through judicious design of the molecular
configuration and interparatopic spacing of antigen-binding
domains. This has been shown for T cell engaging scFv-IgG
bsAbs where shorter interparatopic spacing obtained through
fusion of the scFv C-terminally on the LC proved superior anti-
tumor effect both in vitro and in vivo (Santich et al., 2020). Similarly,
fragment-based DART molecules targeting CD19 and CD3 have
shown superior cell lysis compared to a tandem scFv composed the
same binding domains, thus indicating that the more compact
configuration of DART molecules are favorable for maintaining
cell-cell contacts (Moore et al., 2011b).

The importance of spatial receptor organization has spiked
interest in structural analyses of receptor:antibody complexes
aiming to uncover underlying mechanisms of effective antibody
binding (Lee et al., 2016; Li et al., 2017; Chin et al., 2018). Ideally,
such findings will aid the design of improved antibody
therapeutics. The importance of the interparatopic distance is
not only important in inter-cellular targeting but also for bsAbs
where both epitopes are located on the same target cell
(DiGiandomenico et al., 2014). For example, the ability of
biparatopic anti-HER2 bsAbs to effectively trap HER2 in
inactive crosslinked confirmations were highly dependent on
the molecular geometry (Kast et al., 2021).
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Given the influence of the bsAb configuration, the most potent
and effective bsAb cannot be ascertained from analysis of parental
monospecific antibodies alone. Efforts are thus made to develop
functional screening strategies that goes beyond assessment of
parental antibody binding alone and enables screening of
combinatorial bsAb panels to also evaluate optimal molecular
geometry and combinations of antigen-binding domains (Geuijen
et al., 2018; Dengl et al., 2020; Segaliny et al., 2023).

Furthermore, it is not only the molecular geometry that is
affecting the bsAb potency but also the relative orientation of the
specificities. As an example, significantly reduced HER2 binding was
observed when fusing anti-HER2 scFv to an anti-PD1 IgG scaffold
compared to reverse orientation, i.e., fusion of the anti-PD1 scFv to
the anti-HER2 IgG (Guling et al., 2022). Similar effects from relative
orientation have also been shown for fragment-based bsAbs (de
Bruin et al., 2018; Andres et al., 2019). In the design of bsAbs, it is not
only the molecular configuration and the valencies that must be
optimized to achieve the desired MOA but also the relative binding
affinities between the different antigen-binding arms. There might
thus be a need evaluate combinations of affinity variants to identify
the optimal relationship. The importance of balancing the binding
affinities has raised interest in mechanistic modelling for
understanding the affinity interplay to allow informed bsAb
design (Rhod et al., 2016; Kareva et al., 2018; Kareva et al.,
2021). This affinity tuning has proven especially important for
T cell engaging bsAbs, targeting CD3 and a tumor-associated
antigen, and where the relative binding affinities have been
shown to affect both efficacy and selectivity (Haber et al., 2021).

7 Developability considerations

In addition to efficient and specific antigen-binding, successful
therapeutic bsAbs must possess favorable drug-like qualities, such as
high expression, good biophysical stability, low self-association, and
aggregation as well as excellent solubility. These traits are commonly
known as the developability profile and screening for developability
is typically done early in the drug development process to avoid
investing in antibodies that are unlikely to succeed as clinical
candidates (Jain et al., 2017; Raybould et al., 2019). Extensive
work has been aimed at developing in silico predictive tools and
high-throughput assays for early screening of candidate
developability liabilities (Bailly et al., 2020; Mieczkowski et al.,
2023; Svilenov et al., 2023). The methods were, however,
primarily developed for conventional monoclonal antibodies and
extra attention might therefore be required for bsAbs because the
engineering strategies used for constructing the bsAb also risk
introducing unexpected liabilities. As an example, we recently
showed that fusion of sdAbs onto IgG scaffolds cause changes in
the expression yields and biophysical stability and that these changes
were dependent on the molecular geometry, the sdAb fusion site on
the IgG scaffold, and the number of domains fused (Madsen et al.,
2023). This study thus highlights the importance of an optimal
molecular geometry and that the bsAb developability profile cannot
be ascertained from analysis of the individual building blocks or the
parental antibodies alone.

Other examples of developability liabilities potentially
introduced by a bsAb configuration include fragmentation,

aggregation propensity as well as reduction and re-oxidation of
engineered disulfides (Cao et al., 2018; Andrade et al., 2019; Swope
et al., 2020; Cramer et al., 2023). Molecular geometry is thus an
important design consideration also with respect to chemical and
biophysical stability. Further, the molecular format has also been
shown to influence the pharmacokinetics of the bsAb (Datta-
Mannan et al., 2016; Datta-Mannan et al., 2021) and efforts have
been made to establish in vitro assays for predicting bsAb
pharmacokinetics (Müller et al., 2023).

The general developability properties of bsAbs are not very well
characterized and compared across the large variation of format and
geometries available potentially due to the sheer number of bsAb
formats (Brinkmann and Kontermann, 2017), making it difficult to
generalize on bsAb developability. While larger systematic studies
would be advantageous to establish more comparative common
rules and developability properties of various molecular formats and
geometries the current approach often aims to identify bsAbs with
favorable developability profiles within certain intellectual property
platform spaces through high-throughput screening of
combinatorial libraries and/or through rational multiparameter
optimization (Sampei et al., 2013; Dengl et al., 2020; Furtmann
et al., 2021; Root et al., 2021).

While some of the very high-throughput screening pipelines are
dependent on advanced and automated instrumentation that is not
readily available in most research labs, combinatorial bsAb panels
for screening can also be generated through bioconjugation of
individually expressed antibody components that are assembled
to the final bsAb post-expression (Labrijn et al., 2014; Dengl
et al., 2020; Hofmann et al., 2020). Practically, this allows
construction of large bsAb panels without having to go through
tedious production of each individual bsAb thus enabling screening
of combinatorial binder formats.

Rational improvement of bsAb developability typically
entails targeted optimization of the problematic fragment(s).
Examples include engineering fragments for increased thermal
stability (Miller et al., 2010; Von Kreudenstein et al., 2013;
Boucher et al., 2023), solubility (Sampei et al., 2013), chemical
stability (Sampei et al., 2013) and aggregation (Miller et al., 2010;
Boucher et al., 2023). It is, however, important that optimized
domains are subsequently re-evaluated in the context of the full
length bsAb. Requirements for drug-like qualities can also be
included already in the discovery, e.g., by including selective
pressure for drug-like qualities in the screening process (Jespers
et al., 2004).

8 Conclusion

Bispecific antibodies (bsAbs) represent a highly promising class
of therapeutic modalities, demonstrating significant potential in
various medical applications. The success of these molecules is
highly dependent on efficient design and construction, which
requires careful consideration to ensure optimal balance between
therapeutic potency and favorable physicochemical properties. As
previously demonstrated, the intricate interplay between the
function and performance of bsAbs is intricately tied to their
structural configuration. As discussed in this work, considerable
efforts are directed towards the engineering of bsAbs with dual
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binding activity, while concurrently addressing the imperative
need for developability profiles that align with, or even surpass,
those of conventional monospecific antibodies. The
comprehensive insights presented herein underscore the
complexity of bsAb engineering, emphasizing the importance
of strategic design to harness their full therapeutic potential.
Notably, our exploration delves into the nuances of engineering
strategies and practical considerations, shedding light on the
challenges and opportunities inherent in efficient bsAb design.
By dissecting the intricacies of these design principles, we
contribute to the continued advancement of bsAbs as versatile
and effective therapeutic agents, providing a roadmap for future
research and development of improved bsAb therapeutics.
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