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Objective: Compare the spine’s stability after laminectomy (LN) and laminoplasty
(LP) for two posterior surgeries. Simultaneously, design a new vertebral titanium
porous mini plate (TPMP) to achieve firm fixation of the open-door vertebral LP
fully. The objective is to enhance the fixation stability, effectively prevent the
possibility of “re-closure,” and may facilitate bone healing.

Methods: TPMP was designed by incorporating a fusion body and porous
structures, and a three-dimensional finite element cervical model of C2-T1
was constructed and validated. Load LN and LP finite element models,
respectively, and analyze and simulate the detailed processes of the two
surgeries. It was simultaneously implanting the TPMP into LP to evaluate its
biomechanical properties.

Results: We find that the range of motion (ROM) of C4-C5 after LN surgery was
greater than that of LP implanted with different plates alone. Furthermore,
flexion-extension, lateral bending, and axial rotation reflect this change. More
noteworthy is that LN has a much larger ROM on C2-C3 in axial rotation. The
ROM of LP implanted with two different plates is similar. There is almost no
difference in facet joint stress in lateral bending. The facet joint stress of LN is
smaller on C2-C3 and C4-C5, and larger more prominent on C5-C6 in the
flexion-extension. Regarding intervertebral disc pressure (IDP), there is little
difference between different surgeries except for the LN on C2-C3 in axial
rotation. The plate displacement specificity does not significantly differ from
LP with vertebral titanium mini-plate (TMP) and LP with TPMP after surgery. The
stress of LP with TPMP is larger in C4-C5, C5-C6. Moreover, LP with TMP shows
greater stress in the C3-C4 during flexion-extension and lateral bending.
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Conclusion: LP may have better postoperative stability when posterior approach
surgery is used to treat CSM; at the same time, the new type of vertebral titanium
mini-plate can achieve almost the same effect as the traditional titaniummini-plate
after surgery for LP. In addition, it has specific potential due to the porous structure
promoting bone fusion.

KEYWORDS

finite element analysis, biomechanics, laminectomy, laminoplasty, titanium miniplate,
cervical spondylotic myelopathy

1 Introduction

Cervical Spondylotic Myelopathy (CSM) is a type of cervical
spondylosis, which mainly refers to the degeneration of the
intervertebral connection structure of the cervical spine, resulting
in spinal cord compression or ischemia and, subsequently, spinal
cord dysfunction (Xiong et al., 2015; Ghogawala et al., 2021). It is
critical to realize that cervical spinal cord injury could be traumatic
or non-traumatic. Cervical spondylosis with neuropathy and
myelopathy comes under non traumatic spinal cord injury (Goel
et al., 2018; Tyagi et al., 2019). CSM accounts for 10%–15% of
cervical spondylosis and is the most common cause of spinal cord
dysfunction worldwide (Badhiwala et al., 2020). Currently, the main
posterior surgical methods for CSM include LN and LP. The
purpose of LP is to open and expand the vertebral canal, causing
the cervical spinal cord to drift backwards and alleviating the
patient’s symptoms (Wang et al., 2022). Lumbar LN and fusion
can expand the spinal canal, shift the cervical segment of the spinal
cord backwards, release pressure, and significantly stabilize the
cervical spine. The computed endpoints may not be adequate to
make firm conclusions, although several prior meta-analyses have
compared LP and LF in the treatment of CSM and ossification of the
posterior longitudinal ligament (Lee et al., 2016; Ma et al., 2018;
Yuan et al., 2019). There is currently limited research on the
biomechanical effects of the cervical spine after LN and LP. In
the original LP outlined by Hirabayashi, the vertebral lamina is
reconstructed through suturing and fixation. Although the long-
term neurological results of cervical LP with suture fixation have
been satisfactory (Suk et al., 2007; Okada et al., 2009), LP re-closure
is also considered a problem related to this surgery. Matsumoto et al.
(Matsumoto et al., 2008) reported that up to 34% of patients have
varying degrees of lamina re-closure at one or more segments after
LP using suture fixation. There are also some clinical reports
indicating the risk of re-closure between the vertebral lamina and
lateral mass (Wang et al., 2011). At the same time, existing LP also
has some defects, such as the risk of re-closure of the vertebra, the
possibility of intraoperative self-bone transplantation, and the
inability of the solid structure of the spacer to promote bone fusion.

Cervical biomechanics research primarily uses in vitro and in
vivo models. Obtaining human specimens is exceedingly tricky
because of medical ethics and conventional ethics limits, even
though body specimens have good human representativeness and
can effectively support cervical biomechanics research (Cho et al.,
2022; Silva et al., 2023). Furthermore, the broad restrictions imposed
by medical ethics restrict the utilization of human living models.
However, the progression of science and technology has facilitated
the introduction of computer simulation technology and finite

element analysis methods, presenting novel approaches and
technologies for investigating cervical biomechanics. (Sun et al.,
2022; Gerringer et al., 2023). Finite element analysis can be utilized
to compare the biomechanical properties of the cervical spine under
physiological or pathological conditions by altering parameters and
analyzing their effects. This enables an examination of pathological
processes’ impact on the cervical spine’s mechanical characteristics
(Srinivasan et al., 2021; Frantsuzov et al., 2023; Hsieh et al., 2023).
This method can evaluate the biomechanical effects of various spinal
surgeries and assess the mechanical stability of different implants by
calculating and analyzing parameters such as ROM, IDP, facet joint
stress, and stress in the spinal cord, among other factors. (Chen et al.,
2020; Lin et al., 2023; Wang et al., 2023).In this study, we developed
finite element models of the healthy C2-T1, C3-C6 LN, C3-C6 LP,
and C3-C6 LP with vertebral TPMP. This research aims to improve
and optimize the current vertebral plate fixation system, devise a
novel vertebral plate fixation system, and assess the biomechanical
effects following LN and LP.

2 Materials and methods

2.1 Design process of a new type of vertebral
titanium mini-plate

The design process is depicted in Figure 1. Initially, the
traditional vertebral TMP implanted in LP (Ke et al., 2021; Liang
et al., 2023) is extracted (Figure 1A). It has come to our attention that
there is a lack of spacer (Figure 1B) between the vertebral lamina and
lateral mass. We introduced a fusion body (Figure 1C) to address
this issue while incorporating serrations to prevent extraction.
Afterwards, fill the fusion body with a porous structure
(Figure 1D). The parameters of the porous structure include a
small beam diameter of approximately 200 μm. This process
completed the design of the vertebral TPMP (Figure 1E).

2.2 Establishment of a complete finite
element model of the cervical spine

The subject of this study is a healthy volunteer (male, age 26,
height 174 cm, weight 66 kg). The participants’ dual-source CT
scans were acquired at 0.625 mm intervals (SOMATOM
Definition AS +, Siemens, Germany). Furthermore, we
established a three-dimensional finite element model of the C2-
T1 cervical spine using DICOM data (Ahn et al., 2023). The research
was carried out following the guidelines in the Declaration of
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Helsinki. This study was reviewed by the Medical Ethics Committee
of Southern Hospital of Southern Medical University, and the
participants signed an informed consent form (license number: 1,
date: 2 January 2022).

The complete cervical spine model comprises seven vertebrae,
six intervertebral discs, and related ligaments. It is a detailed three-
dimensional finite element model based on cross-sectional CT
images. The DICOM format imaging files of healthy volunteers

should be read by the medical 3D reconstruction software MIMICS
21.0 (Materialize, Leuven, Belgium). Then, reconstruct the
geometric structure of the cervical vertebrae through threshold
segmentation, editing masks, cavity filling, and other operations.
Subsequently, the data was imported into the reverse engineering
software Geomagic Studio 2017 (Geomagic, NC, USA) for
smoothing, converted into corresponding geometric entities, and
exported as an STP file. Then, the C2-T1 vertebral model of the

FIGURE 2
Intact C2-T1 spine finite element model andmaterial properties of the ligaments. (A) Intact C2-T1 spine finite element model. (B)Material properties
of the ligaments.

FIGURE 1
The design process of TPMP. (A) Extracting traditional spinal TMP implanted with LP. (B) A lack of spacer between the vertebral lamina and lateral
mass. (C) The combination of fusion body and TMP. (D) Fusion body filled with porous structure. (E) The overall appearance of TPMP.
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cervical spine was imported into Solidworks 2021 (France, Dassault
Company) to generate a computer-aided design (CAD) model of the
cervical spine. The models of the cortical bone, cancellous bone,
facet joint, fibrous ring, nucleus pulposus, and endplate cartilage

were created based on the contours of the cervical spine vertebra
(Mo et al., 2015). At last, the finite element model was analyzed using
the finite element analysis software Ansys (ANSYS Ltd.,
Canonsburg, Pennsylvania, United States).

FIGURE 4
Comparison of the ROM of the intact three-dimensional finite element models of C2-T1 with the prior biomechanical studies. (A) ROM in flexion-
extension. (B) ROM in lateral bending. (C) ROM in axial rotation.

FIGURE 3
The finite element models of different posterior approach surgeries on C3-C6. (A) The finite element models of C3-C6 LN. (B) The finite element
models of C3-C6 LP + TMP. (C) The finite element models of C3-C6 LP + TPMP.
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The C2-T1 finite element model can be divided into cortical bone,
cancellous bone, intervertebral disc (IVD), facet joints, and related
ligaments (Figure 2A). Cortical bone is constructed as a tetrahedron

with a thickness of 0.5 mm (Hua et al., 2020). The intervertebral disc
(IVD) comprises annulus fibrosus and nucleus pulposus. The nucleus
pulposus is located near the centre of the intervertebral disc and accounts

FIGURE 5
ROM of different posterior approach surgeries on C3-C6. (A) ROM in flexion-extension. (B) ROM in lateral bending. (C) ROM in axial rotation.

TABLE 1 Material characteristics of three-dimensional finite element model of cervical spine.

Component Element type Young’s modulus (MPa) Poisson’s ratio

Cortical bone solid187 12,000 0.29

Cancellous bone solid187 450 0.29

Facet cartilage solid187 10.4 0.4

Endplate solid187 500 0.4

Nucleus pulposus solid187 1 0.49

Annulus fibrosus solid187 3.4 0.4

Titanium alloy solid187 110,000 0.3

Anterior longitudinal Ligament Spring (tension only) - -

Posterior longitudinal Ligament Spring (tension only) - -

Ligamentum flavum Spring (tension only) - -

Interspinous Ligament Spring (tension only) - -

Supraspinous Ligament Spring (tension only) - -

Intertransverse Ligament Spring (tension only) - -
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for 40% of the intervertebral disc (Li et al., 2021; Tang et al., 2022). The
endplate is a tetrahedron with a thickness of 0.5 mm. The facet joint is
recognized as cartilage tissue and has frictionless sliding contact with its
upper and lower vertebrae (Lin et al., 2023). The ligaments consist of
Anterior longitudinal ligament, Posterior longitudinal ligament,
Ligamentum flavum, Interspinous ligament, Supraspinous ligament,
and Transverse ligament. These ligaments were established with
nonlinear tension only spring elements (Wang et al., 2017; Xu et al.,
2022). The material characteristics of the model are listed in Figure 2B
and Table 1 (Cai et al., 2020; Guo H. et al., 2021; Guo X. et al., 2021).

2.3 Finite element models of C3-C6 LN

In order to simulate LN on a cervical spine model, a portion of the
interspinous ligament (ISL), supraspinal ligament (SSL), and
ligamentum flavum (target segment) were removed, and then some
of the lamina elements and spinous processes were removed until the
medial side of the facet joint was shown (Song et al., 2014; Nishida et al.,
2022). This method creates a LNmodel at the C3–C6 level (Figure 3A).

2.4 Finite element models of C3-C6 LP
with TMP

As shown in Figure 3B, LP was performed at the C3-C6 segment.
This is developed based on the surgical method proposed by
Hirabayashi et al. (Hirabayashi et al., 2010). Firstly, remove the

ligaments flavum, interspinal ligament, and supraspinal ligament
from C3-C6, and then create a V-shaped opening on the hinge side
of the vertebral plate, with a width of 12 mm on the opening side. The
vertebral plate is fixed with titanium alloy and screws, and the material
properties of titanium alloy are as follows: Young’s modulus is 110 Gpa,
and Poisson’s ratio is 0.3 (Xu et al., 2022).

2.5 Finite element models of C3-C6 LP
with TPMP

The surgical method is similar to LP. Replace the traditional
TMPwith TPMP as an implant, which is fixed with screws and is still
considered as titanium alloy material (As shown in Figure 3C).

2.6 Boundary and model validation

To validate the intact finite element model of the cervical spine, the
lower surface of the T1 vertebra was fixed within 6 degrees of freedom
(Mo et al., 2015). Additionally, a vertical load of 73.6 N and a moment
of 1.0 Nmwere applied on the upper surface of C2 to replicate the spinal
movements in forward flexion, backward extension, left and right lateral
bending, and axial rotation (Hua et al., 2020; Ke et al., 2021). The range
of motion, intervertebral disc pressure, von-Mises stress in the facet
joint, and stress in the vertebral plate of the spine were analyzed.
Furthermore, the biomechanical effects of various surgical techniques
and post-operative implants were investigated.

FIGURE 6
Stress of the facet joints different posterior approach surgeries on C3-C6. (A) Stress of the facet joints in flexion-extension. (B) Stress of the facet
joints in lateral bending. (C) Stress of the facet joints in axial rotation. (D) Stress distribution of LN in flexion-extension. (E) Stress distribution of LP + TMP in
flexion-extension. (F) Stress distribution of LP + TPMP in flexion-extension.
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3 Result

3.1 Model validation

Comparative analysis was conducted between the current intact
finite elementmodel of the cervical spine and three prior biomechanical
studies to assess the efficacy of the aforementioned finite element model
(Moroney et al., 1988; Panjabi et al., 2001; Finn et al., 2009). The
projected degree of flexion extension, lateral bending, and axial rotation
of the entire cervical spine model is congruous with the findings of
previous experimental research investigations (Figure 4). A
considerably favourable concurrence existed between our
experimental data and the reference data. The results indicate that
the model can effectively and reasonably predict the biomechanical
properties of the cervical spine.

3.2 Analysis of biomechanical effects of two
different posterior surgical methods for C3-
C6 after surgery

It can be found that the ROM of C4-C5 after LN surgery
surpassed that of LP implanted with different plates alone. This

change manifests in flexion-extension, lateral bending, and axial
rotation. More noteworthy is that LN has a much larger ROM on
C2-C3 in axial rotation. In general, the ROM implanted with two
different plates in LP is similar (Figure 5). As for the stress of the
facet joints, there is little difference between different surgeries
during lateral bending. The facet joint stress of LN is smaller on
C2-C3 and C4-C5, and larger more prominent on C5-C6 in the
flexion-extension (Figure 6). Regarding intervertebral disc
pressure (IDP), there is not much difference between
different surgeries except for the LN on C2-C3 in axial
rotation (Figure 7).

3.3 Biomechanical analysis of C3-C6 LP with
TMP and TPMP

By extracting and comparing data between different implanted
plates, it was found that the displacement of the vertebral TMP and
TPMP was almost the same, and they both gradually increased
with the elevation of the segment (Figure 8). The stress of LP with
TPMP is larger in C4-C5, C5-C6. And LP with TMP shows greater
stress in the C3-C4 during flexion-extension and lateral
bending (Figure 9).

FIGURE 7
Stress of the IDP of different posterior approach surgeries on C3-C6. (A) The IDP in flexion-extension. (B) The IDP in lateral bending. (C) The IDP in
axial rotation.
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4 Discussion

This study aims to compare various biomechanical indicators
after LP and LN, as well as the biomechanical effects of LP using
TPMP in the treatment of CSM. The biomechanical results
indicate that the ROM of C4-C5 after LN surgery was greater
than that of LP implanted with different plates alone.
Furthermore, flexion-extension, lateral bending, and axial
rotation reflect this change. LN results in a significantly more
extensive ROM on C2-C3 in axial rotation. The ROM implanted
with two different plates in LP is similar. There is almost no
difference in facet joint stress in lateral bending. The facet joint
stress of LN is smaller on C2-C3 and C4-C5 and more prominent
on C5-C6 in the flexion-extension. The facet joint stress of LP
with TPMP is smaller on C2-C3 and C4-C5 in the axial rotation
compared with LN. This indicates that LP with TPMP can
achieve biomechanical effects similar to LN, even better at
specific segments and degrees of freedom. Regarding
intervertebral disc pressure (IDP), there is little difference
between different surgeries except for the LN on C2-C3 in
axial rotation. The Increased IDP and facet joint stress of LN
on C2-C3 in the axial rotation may be related to ROM. Greater
ROM may generate greater stress. TMP and TPMP are almost
identical in displacement. The stress of LP with TPMP is larger in

C4-C5, C5-C6. And LP with TMP shows greater stress in the C3-
C4 during flexion-extension and lateral bending.

The cornerstone of treatment for CSM is spinal canal
decompression with cervical LN. This operation aims to expand
the back of the cervical spine by removing the spinous processes,
lamina, ligamentum flavum, and enlarged bone that cause spinal
stenosis (Brown et al., 2021). A dorsal approach is the most effective
treatment for patients with congenital spinal stenosis and dorsal
compression. In this sense, cervical LN is still a helpful treatment
option for CSM (Lu, 2007). Several studies have constructed finite
element models for posterior cervical LN and analyzed the resultant
alterations in stress distribution within the intervertebral discs and
themobility of the vertebral bodies (Hong-Wan et al., 2004; Ng et al.,
2005). Some literature analyses the biomechanical effects and
instability based on the range of the posterior bone and ligament
complex resection of the LN surgery using finite element technology
(Khuyagbaatar et al., 2017). LN was previously considered the “gold
standard” for treating CSM, but postoperative cervical instability
limited its use (Lu, 2007; Highsmith et al., 2011). In this study, it is
possible that LN removed the spinous process and part of the
vertebral lamina, resulting in a larger ROM of the entire cervical
spine in the flexion and extension direction.

LP is the surgical process of reconstructing the vertebral
lamina after opening the spinal canal. The general surgical

FIGURE 8
Comparison of the displacement of the C3-C6 LP with TMP and TPMP. (A) Displacement in flexion-extension. (B) Displacement in lateral bending.
(C) Displacement in axial rotation.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Lin et al. 10.3389/fbioe.2024.1353797

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1353797


principle is to create one or more hinges for opening the door,
and the vertebral lamina is lifted but not removed on the hinges.
This process increases the cross-sectional area of the vertebral
canal, relieves spinal cord compression, and then implants
multiple segments with vertebral TMPs (Kurokawa and Kim,
2015; Cho et al., 2018). Currently, cervical LN and cervical LP
(single or double door) are the main implementation methods of
cervical posterior decompression surgery. These two surgical
methods have become classic surgeries, but there has yet to be a
significant innovation in the specific vertebral TMP for cervical
LP in recent decades. In 1997, it was first reported that patients
with Hypertrophic spinal pachymeningitis underwent LP,
which confirmed that spinal canal decompression and
autologous bone graft were acceptable treatment methods for
young patients (Kanamori et al., 1997). In recent years, a
research team has designed and implemented a technique for
inserting an autologous bone spacer between the opened lamina
and lateral mass, but without the need for suturing and fixing
autologous bone spacer and plates (Kono et al., 2021). Due to
the limited number of autologous bone donor sites, long surgical
time, and pain in the autologous bone donor site during surgery,
HA spacers have been used in LP. This study expands the
surgical scope of LP (Goto et al., 2002; Takayasu et al.,
2002). In the experimental study of hydroxyapatite/alginate
composite injection of three-dimensional polylactic acid
scaffolds and mesenchymal stem cells as spacers for LN, the
application of the scaffolds has biocompatibility similar to
autologous bone graft (Rahyussalim et al., 2022). The above

research prompted our team to design a new type of vertebral
titanium porous mini-plate, which allows the original TMP to
have spacers. Due to the presence of spacers, the risk of vertebral
lamina re-closure can be reduced. In addition, TPMP can
potentially promote bone fusion due to its porous titanium
alloy structure.

There are also some limitations in this study. Firstly, due to the
lack of muscles and tendons in this finite element model, it is
impossible to simulate various states of the cervical spine accurately.
Secondly, the attributes of the intact cervical spine material are
outlined as linear and isotropic while ignoring the anisotropy of the
material. Therefore, this model has specific differences from the
actual human body. Thirdly, a three-dimensional finite element
model of a healthy volunteer, which cannot simulate the neck
condition of patients with CSM was used as the research object.
However, this study can clarify the effects of LN, LP, and LP with
TPMP on intervertebral discs and facet joints. Meanwhile, future
research should focus on the ability of this TPMP to promote bone
fusion. This finite element model helps to infer the application
strategies of different posterior cervical surgeries and implants.

5 Conclusion

When using posterior surgery to treat CSM, LP may have better
immediate postoperative stability than LN. LP can perform spinal
cord decompression without significantly altering the cervical ROM.
TPMP can achieve biomechanical effects similar to TMP during LP.

FIGURE 9
Comparison of the plate von-Mises stress of the C3-C6 LPwith TMP and TPMP. (A) Plate stress in flexion-extension. (B) Plate stress in lateral bending.
(C) Plate stress in axial rotation. (D) Stress distribution of LP + TMP in flexion-extension. (E) Stress distribution of LP + TPMP in flexion-extension.
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In addition, due to the presence of porous structures in TPMP that
promote bone fusion, it has a particular potential value.
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