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The Lipomyces clade contains oleaginous yeast species with advantageous
metabolic features for biochemical and biofuel production. Limited
knowledge about the metabolic networks of the species and limited tools for
genetic engineering have led to a relatively small amount of research on the
microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi
NRRL Y-11557 was built using orthologous protein mappings to model yeast
species. Phenotypic growth assays were used to validate the GSM (66% accuracy)
and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more
limited catabolism of organic acids. The final GSM contained 2,193 reactions,
1,909 metabolites, and 996 genes and was thus named iLst996. The model
contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a
flux distribution in line with oleaginous yeast measurements and was utilized to
predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade
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Abbreviation: Lipst1_1, Lipomyces starkeyi NRRL Y-11557; Liptetr1, Lipomyces tetrasporus NRRL Y-
11562; Liptet1, Lipomyces tetrasporus NRRL Y-64009; Liptetra1, Lipomyces tetrasporus NRRL Y-8875;
Lst7536_1, Lipomyces starkeyi CBS 7536; Lipotetr1, Lipomyces tetrasporus Phaff 51–55; Lipokono1,
Lipomyces kononenkoae CBS 7786; Ldo8726_1, Lipomyces doorenjongii CBS 8726; Lipori1_1,
Lipomyces orientalis CBS 10300; Lipstark1_1, Lipomyces starkeyi Phaff 55–103; Lipsta1_1, Lipomyces
starkeyi Phaff 78–25; Lipstar1_1, Lipomyces starkeyi Phaff 78–24; Lst7851_1, Lipomyces starkeyi CBS
7851; Lipdoo1, Lipomyces doorenjongii Phaff 78–26; Lipodoor1, Lipomyces doorenjongii NRRL Y-
27504; Lst8064_1, Lipomyces starkeyi CBS 8064; Lipkon1, Lipomyces kononenkoae NRRL Y-11553;
Yarlip1, Yarrowia lipolytica FKP355; Lipmes1, Lipomyces mesembrius CBS 7600; Lipchi1, Lipomyces
chichibuensis CBS 12929; Babin1, Babjeviella inositovora NRRL Y-12698; Myxme1, Myxozyma melibiosi
Phaff 52–87; Lipsuo1, Kockiozyma suomiensis NRRL Y-17356; Lipsmi1, Limtongia smithiae NRRL Y-
17922; Dipuni1, Dipodascopsis uninucleata Phaff 50–6; Lipjap1, Lipomyces japonicus CBS 7319; Lipoli1,
Lipomyces oligophaga CBS 7107; Liparx1, Lipomyces arxii Phaff 12–163; Diptot1, Dipodascopsis tothii
CBS 759.85.
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were then genome sequenced and annotated. Sixteen of the Lipomyces species
had orthologs for more than 97% of the iLst996 genes, demonstrating the
usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that
diverged from iLst996 mainly revolved around alternate carbon metabolism, with
ortholog groups excluding NRRL Y-11557 annotated to be involved in transport,
glycerolipid, and starch metabolism, among others. Overall, this study provides a
useful modeling tool and data for analyzing and understanding Lipomyces species
metabolism and will assist further engineering efforts in Lipomyces.

KEYWORDS

oleaginous yeasts, genome-scale metabolic model, flux balance analysis, Lipomyces,
genome sequencing

1 Introduction

The Lipomyces clade consists of soil-dwelling oleaginous yeasts
that possess a diverse set of saccharification enzymes and are known
for their ability to accumulate triacylglycerol (TAG), a potential
biofuel precursor. Due to their extensive number of carbohydrate-
active enzymes (CAZymes), Lipomyces species have demonstrated
growth on a wide range of carbon sources and waste feedstocks and
have also displayed tolerance to inhibitory compounds found in
hydrolysates (Deinema and Landheer, 1956; Angerbauer et al., 2008;
Oguri et al., 2012; Xavier et al., 2017; Pomraning et al., 2019). Thus,
Lipomyces have become attractive candidates for renewable biofuel
and chemical production from waste feedstocks. The most well-
studied species in the clade is Lipomyces starkeyi, which has been
genome sequenced (Riley et al., 2016). Several L. starkeyi strains
have been reported to accumulate over 60% of dry cell weight as
TAG, with more than 80% lipid obtained (Azad, 2014; Zhou et al.,
2021). The recent development of genetic engineering tools has
further enabled the manipulation of lipid production properties
(Calvey et al., 2014; Dai et al., 2017; McNeil and Stuart, 2018; Takaku
et al., 2020); however, further improvement of lipid yields and
productivities is needed to de-risk industrial production (Zhang
et al., 2022).

Genome-scale metabolic models (GSMs) are tools that provide a
convenient way to link genes to reactions (Han et al., 2023).
Combining GSMs with flux balance analysis has proven to be an
effective strategy for identifying engineering targets and optimal
conditions for increased product yields and have been used to
enhance biofuel production (Bro et al., 2006; Li et al., 2012; Xu
et al., 2013). Oleaginous yeast-based GSMs have been used to gain an
insight into lipid metabolism and identify optimal genetic
engineering strategies for improved TAG production (Wei et al.,
2017; Dinh et al., 2019; Ventorim et al., 2022). In Yarrowia lipolytica,
a model oleaginous yeast, an insight into the lipid metabolism led to
the identification of optimal production conditions that increased
lipid yields (Kavscek et al., 2015).

A small-scale metabolic model was previously developed for L.
starkeyi and used to model several strategies for improving lipid
yields (Zhou et al., 2021). A more comprehensive GSM can provide
further understanding of metabolism and allows for comparisons of
reactions with GSMs of other species. Additionally, GSMs facilitate
the use of computational algorithms to identify non-intuitive
metabolic targets outside of central metabolism (Kim et al., 2019;
McNaughton et al., 2021). Here, we develop a L. starkeyi GSM

(iLst996) based on the genome of strain NRRL Y-11557 (Riley et al.,
2016). We utilize omics data from a derived strain that produces less
exo-polysaccharides (NRRL Y-11558 (Dai et al., 2019)) than the
parent strain to correct the biomass equation and further validate the
model on collected phenotypic data. We then sequence 25 other
Lipomyces strains and examine the applicability of the built model
for modeling the Lipomyces clade.

2 Materials and methods

2.1 Genome sequencing

For L. starkeyi CBS 7536, L. tetrasporus Phaff 51-55, L.
kononenkoae CBS 7786, L. doorenjongi CBS 8726, L. starkeyi CBS
7851, L. doorenjongii NRRL Y-27504, L. starkeyi CBS 8064, L.
mesembrius CBS 7600, L. chichibuensis CBS 12929, L. japonicus
CBS 7319, L. oligophaga CBS 7107, L. arxii Phaff 12-163, and
Dipodascopsis tothii CBS 759.85, a plate-based DNA library for
Illumina sequencing was prepared on the Hamilton VANTAGE
robotic liquid handling system using a Kapa Biosystems HyperPrep
library preparation kit (Roche). A measure of 200 ng of genomic
sample DNA was sheared to 600 bp using a Covaris LE220 Focused-
ultrasonicator. The sheared DNA fragments were size-selected by
double-SPRI using TotalPure NGS beads (Omega Bio-tek), and
then, the selected fragments were end-repaired, A-tailed, and
ligated with Illumina compatible unique dual-index sequencing
adaptors (IDT, Inc.). The prepared libraries were then quantified
using Kapa Illumina library quantification kits (Roche) and run on a
LightCycler 480 real-time PCR instrument (Roche). The quantified
libraries were multiplexed, and the pool of libraries was then
prepared for sequencing on the Illumina NovaSeq
6000 sequencing platform using NovaSeq XP v1.5 reagent kits
(Illumina) and an S4 flow cell, following a 2 × 150 indexed run
recipe. For L. tetrasporus NRRL Y-11562, L. tetrasporus NRRL Y-
8875, L. orientalis CBS 10300, L. starkeyi Phaff 55-103, L. starkeyi
Phaff 78-25, L. starkeyi Phaff 78-24, L. doorenjongii Phaff 78-26, L.
kononenkoae NRRL Y-11553, Kockiozyma suomiensis NRRL Y-
17356, Limtongia smithiae NRRL Y-17922, and Dipodascopsis
uninucleata Phaff 50-6, a plate-based DNA library for Illumina
sequencing was prepared on the PerkinElmer Sciclone NGS robotic
liquid handling system following the same protocol described above.

Following sequencing, all raw Illumina sequence data were
filtered for artifact/process contamination using the JGI QC
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pipeline, and then, an assembly of the target genome was generated
using a 20.00-M read-pair subsample of the resulting nonorganelle
reads using SPAdes v3.15.2 (Bankevich et al., 2012). Prior to
assembly, organellar contamination was removed using
GetOrganelle.py (Jin et al., 2020).

ForMyxozyma melibiosi, 2 µg of genomic DNAwas treated with
DNA prep to remove single-stranded ends and repair DNA
damages, followed by end repair, A-tailing, and ligation with
PacBio adapters using the SMRTbell Template Prep Kit 1.0
(Pacific Biosciences). The final size was selected using the Sage
BluePippin system using a 6-kb lower cutoff. The PacBio sequencing
primer was then annealed to the SMRTbell template library, and
version P6 sequencing polymerase was bound to them. The prepared
SMRTbell template libraries were then sequenced on a Pacific
Biosciences RSII sequencer using version C4 chemistry and 1 ×
240 sequencing movie run times. Filtered subread data were then
assembled using Falcon version 0.7.3 to generate an initial assembly
(Chin et al., 2016). The mitochondria data were assembled
separately from the Falcon pre-assembled reads (preads) using an
in-house tool (assemblemito.sh) to filter the preads and polished
using Quiver version smrtanalysis_2.3.0.140936.p5 (https://github.
com/PacificBiosciences/GenomicConsensus) (Chin et al., 2013). A
secondary Falcon assembly was generated using the mitochondrion-
filtered preads, improved using FinisherSC version 2.0 (Lam et al.,
2015), and polished using Quiver version smrtanalysis_2.3.0.140936.
p5 (https://github.com/PacificBiosciences/GenomicConsensus) (Chin
et al., 2013). Statistics were based on 1 N to denote a gap. Contigs less
than 1,000 bp were excluded.

2.2 Transcriptome sequencing and genome
annotation

For all lineages except M. melibiosi, plate-based RNA sample
prep was performed on the PerkinElmer Sciclone NGS robotic liquid
handling system using an Illumina TruSeq Stranded mRNA HT
sample prep kit, with the poly-A selection of mRNA as outlined by
the Illumina user guide protocol: https://support.illumina.com/
sequencing/sequencing_kits/truseq-stranded-mrna.html. The
following conditions were used: the total RNA starting material
was 1 µg per sample, and 8 PCR cycles were used for library
amplification. The prepared libraries were quantified using the
Kapa Illumina library quantification kit (Roche) and run on a
LightCycler 480 real-time PCR instrument (Roche). The
quantified libraries were then multiplexed, and the pool of
libraries was then prepared for sequencing on the Illumina
NovaSeq 6000 sequencing platform using NovaSeq XP v1.
5 reagent kits (Illumina) and an S4 flow cell, following a 2 ×
150 indexed run recipe. For M. melibiosi, stranded cDNA
libraries were generated using the Illumina TruSeq Stranded
RNA LT kit. mRNA was purified from 100 ng of total RNA
using magnetic beads containing poly-T oligos. mRNA was
fragmented using divalent cations at high temperatures. The
fragmented RNA was reverse-transcribed using random hexamers
and SSII (Invitrogen), followed by second-strand synthesis. The
fragmented cDNA was treated with an end-pair, A-tailing, adapter
ligation, and 10 cycles of PCR. The prepared library was quantified
using Kapa Biosystems next-generation sequencing library qPCR kit

(Roche) and run on a Roche LightCycler 480 real-time PCR
instrument. The quantified library was then multiplexed with the
other prepared libraries, with the pool of libraries prepared next for
the Illumina HiSeq sequencing platform via a TruSeq paired-end
cluster kit v4 and an Illumina cBot instrument to generate a
clustered flow cell for sequencing. The flow cell was sequenced
on the Illumina HiSeq 2500 sequencer using HiSeq TruSeq SBS
sequencing kits, v4, following a 2 × 150 indexed run recipe.

Following sequencing, raw FASTQ file reads were filtered and
trimmed using the JGI QC pipeline. Using BBDuk (BBTools version
38.79), the raw reads were evaluated for artifact sequences by k-mer
matching (k-mer = 25), allowing 1 mismatch. The detected artifacts
were trimmed from the 3′end of the reads. RNA spike-in reads, PhiX
reads, and reads containing any Ns were removed. Quality trimming
was performed using the Phred trimmingmethod set at Q6. Following
trimming, reads under the length threshold were removed (minimum
length 25 bases or 1/3 of the original read length—whichever is
longer). The filtered FASTQ files were used as the input for the de
novo assembly of RNA contigs. Reads were assembled into
consensus sequences using Trinity v2.11.0 (v2.3.2 for M.
melibiosi) (Grabherr et al., 2011). Following genome and
transcriptome sequencing, all genomes were annotated using
the JGI annotation pipeline (Grigoriev et al., 2013). CAZyme
annotations were obtained after a semi-manual curation of
protein-filtered model sequences by the Carbohydrate-Active
enZYmes (CAZy) team (www.cazy.org (Drula et al., 2021)).

2.3 Genome-scale model construction and
validation

The NRRL Y-11557 genome sequence was published in a previous
study (Riley et al., 2016). The OrthoMCL pipeline was employed to
identify L. starkeyi orthologs in the Rhodosporidium toruloides
IFO0880, Y. lipolytica CLIB122, and Saccharomyces cerevisiae S288C
genomes (Li et al., 2003). The respective GSMs of the species, Rt_
IFO0880 (Kim et al., 2020), iYLI647 (originally published by Mishra
et al. (2018) and updated by Xu et al. (2020)), and Yeast8 (Lu et al.,
2019), were utilized to construct L. starkeyi GSM iLst996. Reactions
corresponding to genes with L. starkeyi orthologs were imported to the
iLst996 model, and the reaction gene associations were updated to
reflect the L. starkeyi genes (see Supplementary Material S1 and https://
github.com/AgileBioFoundry/LstarkeyiGSM). IFO0880 was used as the
initial scaffold, with S. cerevisiae andY. lipolyticamodels used to identify
potential gaps or missed annotations. The reaction naming convention
was adjusted to follow the BiGG GSM format (King et al., 2016). All
gene reaction rules were set to “OR” in the GSM. Biomass composition
was updated using transcriptomic and proteomic data collected from
batch bioreactor growths on glucose and xylose containing a minimal
medium (https://github.com/AgileBioFoundry/LstarkeyiGSM) and
previously published lipid (Calvey et al., 2016) species and
composition data (Itoh and Kaneko, 1974; Suzuki and Hasegawa,
1974; Kaneko et al., 1976) using the Python package BOFdat
(Lachance et al., 2019). The lipid data were also used to update lipid
molecular species and lipid synthesis reactions in the model. The
utilized published fatty acid compositional data were from strain
NRRL Y-11557 grown under five different conditions, while the
lipid macromolecule data were collected from L. starkeyi strain
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IAM-4753 ((Itoh and Kaneko, 1974). Gap filling was performed using
the COBRApy gap-fill function to enable growth (Ebrahim et al., 2013).
Futile cycles and missing reactions were identified using parsimonious
flux balance analysis. Reactions involved in redox cycles had bounds
modified to prevent the redox cycle. The reactions that were involved in
the blocked futile cycles are two alcohol dehydrogenases, ALCD2y and
ALDD19x_P, and a homoserine dehydrogenase HSDy. The blocked
reactions are further documented in https://github.com/
AgileBioFoundry/LstarkeyiGSM. Non-growth-associated
maintenance (NGAM) was experimentally determined for growth
on xylose (Anschau and Franco, 2015a) and was used as the
NGAM value in the GSM. Growth-associated maintenance (GAM)
was estimated using published continuous cultivation data during
growth on glucose and xylose (Anschau and Franco, 2015b).
DeepLoc v 2.0 and BUSCA were utilized to predict protein
subcellular locations (Almagro Armenteros et al., 2017; Savojardo
et al., 2018). The metabolic flux distribution was modeled using
COBRApy (Ebrahim et al., 2013). Model quality evaluation was
analyzed via MEMOTE (Lieven et al., 2020). The iLst996 GSM
construction process was documented in Jupyter Notebooks (https://
github.com/AgileBioFoundry/LstarkeyiGSM), and an overview is given
in Figure 1. The respiratory quotient for each GSM was determined
using the COBRApy “model.summary” function during growth on
1 mmol/gDCW/h of glucose. The quotient was calculated by dividing
the absolute value of the carbon dioxide flux released (HCO3

− was
added to the carbon dioxide released for models in which it was
secreted) by the oxygen uptake. In our hands, we observed glucose
uptake rates reach as high as 1.5 mmol/g DCW/h, with a corresponding
growth rate of ~0.07–0.1/h. We set the model uptake to 1 mmol/g
DCW/h as an easy-to-use realistic approximation.

2.4 Phenotypic data collection

Biolog Inc. (Hayward, CA) phenotypicmicroarray plates were used
to collect growth/no-growth data on metabolic substrates. Biolog 96-
well plates PM1, PM2A, PM3B, and PM4A were used for the
phenotypic assays, along with Biolog Dye D. Each well contains a
different carbon (plates PM1 and PM2A), nitrogen (PM3B), phosphate,
or sulfur source (both in PM4A) for growth evaluation. L. starkeyi strain
NRRL Y-11558 (a mutant of NRRL Y-11557, which produces less exo-
polysaccharides (Dai et al., 2019)) was grown on YPD plates at 28°C for
4–5 days. The strain was then scraped, resuspended in sterile water, and
used to inoculate Biolog inoculation fluid (IFY-0) to an OD600 value of
0.005. For nitrogen (PM3B), phosphorus, and sulfur sources (PM4A),
100 mM of glucose was added to IFY-0. Microarray plates were
inoculated with 100 μL of cell suspension, cultured at 28°C, and
shaken at 800 rpm on a microplate shaker (Fisherbrand, Waltham,
MA). Growth and metabolic activity were determined via measuring
the reduction in the dye at 750 nm.

2.5 Media and growth conditions for
genomic sequencing

Strains were cultivated on a YPD medium (10 g/L yeast extract,
10 g/L peptone, and 20 g/L glucose) in shake flasks at 28°C at
200 rpm in an incubated orbital shaker to produce biomass.
Genomic DNA was extracted by the CTAB method, as
previously described (Dai et al., 2021), and RNA was extracted
from samples using a Maxwell 16 LEV Plant RNA kit (Promega,
Madison, WI). The samples were sequenced on an Illumina

FIGURE 1
Schematic diagram of iLst996 genome-scale metabolic model (GSM) construction. Lipomyces starkeyi orthologs were identified using the NCBI
blast tool for bidirectional best hits (bbhs) and the OrthoMCL pipeline. Orthologs were identified in three other yeast GSMs and were used to develop the
initial draft GSM. The biomass composition and lipid synthesis reactions were then updated using L. starkeyi omics and lipid data. Manual curation was
performed to remove futile cycles, leading to realistic flux predictions. Phenotypic microarray plates were then used to assess the accuracy of
the model.
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platform and annotated by the Joint Genome Institute as described
in Method Sections 2.1 and 2.2 and are available on the MycoCosm
portal (https://mycocosm.jgi.doe.gov/mycocosm/home (Grigoriev
et al., 2013)).

2.6 Evaluating iLst996 model applicability

The JGI-generated protein files for each of the sequenced
Lipomyces species, along with Y. lipolytica FKP355 (Pomraning
et al., 2018) and Babjeviella inositovora NRRL Y-12698 (Riley
et al., 2016), were used in the OrthoMCL pipeline (Li et al.,
2003). Ortholog groups (OGs) were obtained from the pipeline
and used to assess the relatability of species and gene inclusion. The
L. starkeyi NRRL Y-11557 JGI-generated Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups
(KOGs) of protein annotations were used to label each OG when
determining the conservation of metabolism. The presences or
absence of orthologs for each gene in the iLst996 model was
determined for individual species through the examination of OG
members for the specified iLst996 gene. Reaction inclusion was
determined by ensuring that at least one gene for the specified
reaction was in the particular species. Annotations from JGI-
generated KOG or KEGG terms for each species were combined
when generating consensus annotations for each OGwhen an NRRL
Y-11557 gene was not present.

2.7 Heatmaps, dendrogram generation, and
visualization

The Biolog heatmaps were generated using the following
procedure: a threshold was chosen based on the values from each
substrate and plate negative control (i.e., carbon, nitrogen,
phosphate, and sulfur). The maximum values reached were then
recorded, and the span was split into four steps (based on the
threshold and maximum value). An integer (1–4) was used to
describe the growth on each substrate, with 0 being assigned to
wells below the threshold. For dynamic data, the maximum integer
reached was used to describe the growth. The Seaborn package was
used to generate the heatmap via the “seaborn.heatmap” function
(Waskom, 2020). The dendrogram was generated according to the
following procedure: a co-occurrence matrix of species genes was
constructed for each OG. Multiple genes from a species were
considered as one occurrence in an OG. A cosine similarity
matrix was then constructed using scikit-learn (Pedregosa et al.,
2011) and SciPy library (Virtanen et al., 2020) functions “pairwise_
distance” and “cosine,” respectively. The Seaborn (Waskom, 2020)
and Matplotlib (Hunter, 2007) python packages were utilized for
visualization.

3 Results

3.1 Genome-scale model construction

The published genome of L. starkeyi strain NRRL-11557 was
utilized to construct L. starkeyi GSM iLst996. The construction

procces was documented in Jupyter Notebooks (https://github.com/
AgileBioFoundry/LstarkeyiGSM), and an overview is provided in
Figure 1. Three high-quality published yeast GSMs were utilized as
scaffolds for iLst996 construction: Y. lipolytica (iYLI647), S.
cerevisiae (Yeast8), and R. toruloides (Rt_IFO0880). The scaffolds
were chosen based on the extensive annotation of metabolism for
their respective species and because models Rt_IFO0880 and
iYLI647 represent oleaginous yeast metabolic networks. Metabolic
reactions were directly imported to iLst996 if there was an L. starkeyi
ortholog for the corresponding scaffold gene/genes. The biomass
composition, lipid bodies, and lipid synthesis reactions were
updated using experimental data as described in Methods Section
2.1 Genome-scale model construction and validation. We also
updated the non-growth-associated ATP maintenance (NGAM)
and growth-associated ATP maintenance (GAM) demands to
reflect L. starkeyi. GAM was estimated from published
experimental growth data under continuous cultivations, while
NGAM was previously experimentally determined under xylose
growth conditions (Anschau and Franco, 2015b). Interestingly,
the NGAM value was much lower than what was predicted for
R. toruloides, while the GAM requirement was slightly lower
(111 mmol/gDCW/h vs. 105 mmol/gDCW/h for GAM, 1.2 vs. 0.
4 mmol/gDCW/h for NGAM). The updated biomass equation is
given in Supplementary Table S1. The final model L. starkeyi GSM
iLst996 contained 2,193 reactions, 1,909 metabolites, and 996 genes.
The model was then verified through MEMOTE, a platform used to
determine the quality of metabolic models (Lieven et al., 2020).
iLst996 had a MEMOTE score of 83%, with high scores in
annotations and consistency.

3.2 L. starkeyi NRRL Y-11557 phenotypic
growth and iLst996 validation

Phenotypic growth data from different nutrient sources were
collected from Biolog phenotypic microarrays plates (PM1, PM2A,
PM3B, and PM4A). Each 96-well plate contains a different carbon
(plates PM1 and PM2A), nitrogen (PM3B), phosphate, or sulfur
(PM4A) source in each well for growth evaluation. The substrates
cover a broad range of chemicals, such as organic acids, saccharides,
and amino acids. A dye is also added to each well, and when the dye
becomes reduced during growth, there is a change in color. Growth
was observed in 54% of the Biolog nutrient conditions (206 out of
379 (excluding the negative controls); Supplementary Figures
S1–S10). In three instances, the phenotypic assay results
contradicted those observed in the literature and were corrected
to indicate growth (Naganuma et al., 1985; Liu et al., 2017). L.
starkeyi showed an extensive ability to grow on carbohydrate
substrates but displayed limited growth on organic acid
compounds (Figure 2). Of the different substances tested,
213 had corresponding metabolites in the GSM, with 123 of
those nutrients supporting growth. Initially, the GSM was unable
to predict growth under many sugar phosphate conditions that
experimentally demonstrated growth. Gap filling indicated that
reactions catalyzed by secreted phosphatases can enable growth.
Several phosphatases were predicted to be extracellular in L. starkeyi
NRRL Y-11557, and thus, the reactions were included in the GSM
(localization predicted via DeepLoc version 2 and BUSCA (Almagro
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FIGURE 2
Heatmap indicating growth of L. starkeyi on different carbon substrates. Asterisks (*) indicate values that were corrected based on the literature
evidence. Growth was classified into categories based on the maximum OD750 value achieved on each substrate compared to the negative control for
each nutrient source and plate.

TABLE 1 Summary of scaffold models and iLst996 growth, CO2 generation, and O2 uptake on 1 mmol/gDCW/h of glucose.

Saccharomyces cerevisiae Rhodosporidium toruloides Yarrowia lipolytica Lipomyces starkeyi

mu (h-1) 0.082 0.073 0.114 0.089

CO2 secretion mmol
gDCW .h 2.468 2.561 1.679 2.253

O2 uptake mmol
gDCW.h 2.332 2.287 1.499 1.799

HCO3
− secretion mmol

gDCW .h - 0.002 - 0.002

Respiratory quotient 1.058 1.121 1.120 1.253
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Armenteros et al., 2017; Savojardo et al., 2018)). However, the sugar
phosphate catabolism in L. starkeyi likely needs further investigation
to confirm mechanisms and pathways. Overall, the final model
(iLst996) correctly predicted growth in 89 of the 123 growing
conditions and had a total accuracy of 72% (34 conditions were
incorrectly predicted to grow).

iLst996 predicted a growth rate of 0.089/h with 1 mmol/gDCW/h
of glucose as a carbon source, the second highest of the scaffolded
models (Table 1). The predicted growth rate was consistent with our
experimental observations, where the growth rate ranged from 0.07 to
0.1/h and observed glucose uptake rates reached as high as 1.5 mmol/
g/DCW/h. Interestingly, pFBA of iLst996 also predicted a lower
oxygen demand (lower CO2 release than R. toruloides and S.
cerevisiae) and, therefore, a higher respiratory quotient than the
other scaffold models (Table 1). Examining the pFBA-predicted
flux network indicated that 20% of the uptaken glucose carbon is
routed through the pentose phosphate pathway (PPP; Figure 3), with
approximately 70% of the glucose carbon entering glycolysis. The

remaining carbon was directed toward glucose-1-phosphate, a
precursor for cell wall components. The citrate synthesis step was
predicted to be highly active, although nearly half of the flux entering
the step was exported to the cytoplasm for acetyl-CoA (AceCoA)
synthesis through ATP citrate lyase. The remaining flux proceeded
through the tricarboxylic acid cycle (TCA). Anaplerotic reactions
were moderately active (~10–20% of the glucose carbon uptake flux).

Further examination of the cofactor and energy balances
revealed three redox cycles involving NADPH and NADH. Two
of the cycles were involved in acetaldehyde/ethanol metabolism
(reaction IDs: ALCDy2/ALCD2x and ALDD19x_P/ALDD19xr),
while the third cycle was involved in a homoserine
dehydrogenase reaction (reaction IDs: HSDy/HSDxi). Blocking
the redox cycles (see Materials and Methods and Supplementary
Material S1) resulted in a predicted flux shift, with nearly 70% of the
glucose uptake flux being routed through the PPP and an increase in
anaplerotic reaction activity (Supplementary Figure S11). GSM
redox reactions can be difficult to constrain without

FIGURE 3
Predicted flux distribution of central carbonmetabolism. The central carbon predicted flux values using parsimonious flux balance analysis and with
an uptake of 1 mmol/gDCW/h of glucose. Flux values were normalized to a percentage of the carbon source uptake. Colors correspond to different
metabolic pathways. Blue—glycolysis; green—pentose phosphate pathway; yellow—citric acid cycle; purple—anaplerotic reactions; and
brown—transport reactions. Hollow arrows represent biomass drainage reactions. Some arrows represent lumped reactions for ease of
visualization.
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13C-metabolic flux analysis (MFA) data. Although data were not
available for L. starkeyi, 13C-MFA was performed in closely related
oleaginous organisms, including the yeast Y. lipolytica and the
fungus Mucor circinelloides. Both organisms had relatively high
PPP flux, with 30%–52% of the uptaken glucose routed through
the pathway, consistent with the predicted L. starkeyi flux (Christen
and Sauer, 2011; Wasylenko et al., 2015; Zhao et al., 2015).

3.3 Growth characteristics, lipid yields, and
gene essentiality

We next utilized the model to determine lipid yields from
diverse carbon sources (Supplementary Table S2). A small-scale
L. starkeyi metabolic reconstruction that contained approximately
130 reactions had previously been used to assess lipid yields (Zhou
et al., 2021). Small-scale models can often represent core metabolism
with a good degree of accuracy, and comparing theoretical lipid
yields from the small-scale model with iLst996 indicated that the
results were consistent (using the blocked futile cycle model).
iLst996 did predict higher theoretical yields than the smaller
model, which may be due to potentially more NADPH
generation routes in the genome-sized model, and indicates that
there are differences in metabolism that can influence final yields
that were not captured in smaller-scale models.

Another useful feature of GSMs is their ability to in silico predict
gene essentiality by removing genes and associated reactions from
the model and assessing if biomass can still be formed.
iLst996 predicted 202 genes to be essential, with the

corresponding reactions spread across metabolism
(Supplementary Figure S12 and Supplementary Material S2).
Many of the predicted essential genes were involved in cofactor,
amino acid, and nucleotide biosyntheses.

3.4 Lipomyces clade sequencing and
iLst996 applicability

Although a GSM, based on a single strain, is an invaluable tool,
extendibility to other strains and species can be limited. To assess the
model usability in the Lipomyces clade, we sequenced 25 other
Lipomycesmembers and analyzed the similarity of metabolism. The
published genome of L. tetrasporus NRRL Y-64009 was also
included in the analysis (Jagtap et al., 2023). The full lists of
species and an overview of their genome characteristics are
provided in Supplementary Material S3. L. starkeyi NRRL Y-
11557 had the largest assembled genome (21.3 Mbp) and the
highest number of predicted genes (8,192; Supplementary Figure
S13). The majority (60%) of the sequenced strains had genome
sizes >18.4 Mbp and >7,000 proteins. There were 6 species with
genome sizes <14.2 Mbp, with L. arxii Phaff 12-163 having the
smallest genome at 11.9 Mbp (Figure 4).

To gain an insight into the applicability of iLst996 to the Pan
species clade, an OrthoMCL pipeline was ran with the 25 newly
sequenced strains and L. starkeyi NRRL Y-11557. Y. lipolytica
FKP355 (Madzak et al., 2000) and B. inositovora NRRL Y-12698
(Riley et al., 2016) were included in the analysis as two outgroup
species. Nearly 60% of the obtained OGs contained at least one gene
from our base strain (NRRL Y-11557, Figure 5). The newly
sequenced species had at least one predicted protein in over 80%
of the groups, with NRRL Y-11557 genes (Supplementary Figure
S14). OGs that did not contain an NRRL Y-11557 gene had a small
number of proteins, indicating relatively small differences
between species.

The co-occurrence of species genes in an OG was generated
from the OrthoMCL results and was used to construct a similarity
matrix and a phylogenetic tree (Figure 6). As expected, Y. lipolytica
and B. inositovora were the most phylogenetically distant species. L.
starkeyi strains and more closely related species formed a distinct
group from the L. tetrasporus strains. The strains with smaller
genomes were grouped together and were also more evolutionary
distant to the L. tetrasporus and L. starkeyi strains. L. starkeyi is
notable for its expanded repertoire of CAZymes and ability to
consume a wide variety of carbohydrates compared to most
Saccharomycotina yeasts (Riley et al., 2016). The strains with
larger genome sizes were also correlated with the number of
CAZymes predicted to be within each group (Figure 4).
Glycoside hydrolase family (GH2, GH3, GH13, GH25, GH17,
GH18, GH27, GH32, and GH78), glycosyltransferase family
(GT15, GT25, GT32, and GT34), and auxiliary activity family
(AA6) genes are enriched in the genomes of L. starkeyi and
closely related species in the genus (L. doorenjongii, L. orientalis,
and L. kononenkoae), suggesting the expanded role these organisms
play in the production and degradation of carbohydrates and lignin
breakdown products in the environment. Of the 243 annotated
CAZymes in L. starkeyi NRRL Y-11557, 69 were included in iLst996
(Supplementary Material S3).

FIGURE 4
Genome and carbohydrate-active enzyme (CAZyme)
characteristics of the Lipomyces clade. (Top) The genome sizes of the
species. (Bottom) The number of CAZymes annotated in
each genome.
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FIGURE 5
OrthoMCL ortholog group (KOG) breakdown (A). Percentage of OGswith andwithout a gene in the L. starkeyiNRRL Y-11557 strain (Lipst1_1) used to
build GSM iLst996 (B). Sizes of the OGs containing L. starkeyi NRRL Y-11557 genes (C). Sizes of OGs without L. starkeyi NRRL Y-11557 genes.

FIGURE 6
Phylogenic diagram of species based on the co-occurrence of proteins in OGs. The dendrogram was constructed from data based on the co-
occurrence of species genes in the ortholog groups. The numbers on the y-axis after the JGI identification indicate the size of the genome in Mbp.
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Finally, to determine the applicability of iLst996 to the clade, the
presence or absence of an OG for each reaction in the GSM was
determined for every species (Supplementary Material S4). In the
context of the GSM, most reactions in central carbon metabolism
were conserved in closely related species. Supplementary Figure S15
visualizes the percentage of conserved metabolic reactions for the
reaction network. Individual species had various orthologs absent in
the L. starkeyi-specified genes, which are provided in Supplementary
Material S4. The largest deviation of conserved pathways occurred in
alcohol and alternate carbon metabolism (e.g., butanoate
metabolism). Drilling down into the ortholog groups that did not
include L. starkeyi NRRL Y-11557 revealed that there were several
proteins common across many of the species. Many of the unique
proteins were involved in galactose, starch, and glycerolipid pathways,
once again reflecting the diversity of the saccharification enzymes
found in the clad. On further examination, there were also 3-oxoacyl-
ACP reductases and NADPH:quinone reductases in 15/26 of the
species, as well as protochlorophyllide reductases annotated in
11 species (Supplementary Material S3).

4 Discussion

Oleaginous microbes require a large supply of reducing
equivalents to support the generation of lipids. Often, the reducing
requirement is met through NADPH generation via the oxidative
portion of PPP activity, especially in yeasts that lack a NADPH-
dependent malic enzyme, like L. starkeyi and Y. lipolytica. The
iLst996 genome-scale model predicted that approximately 20% of
the consumed glucose is shunted through the oxidative portion of the
PPP during growth. However, this percentage was predicted with the
activity of three identified redox cycles (involving reactions ALCDy2/
ALCD2x and ALDD19x_P/ALDD19xr and HSDy/HSDxi). Blocking
the cycles (see Materials and Methods and Supplementary Material
S1) led to a high portion of flux shifting to the PPP (71%), which met
nearly 90% of the L. starkeyi NADPH requirement. While seemingly
high, 13C-MFA experimentally assesses that Y. lipolytica sends
approximately 40%–50% of its glucose uptake flux through the
PPP (Christen and Sauer, 2011; Wasylenko et al., 2015) and that
two strains of the oleaginous fungusM. circinelloides have similar PPP
flux ranges (~30–50%) (Zhao et al., 2015). Yeasts lack a nucleotide
transhydrogenase for interconversion of NADPH and NADH that is
often present in bacteria (Nissen et al., 2001) and may rely on other
reaction mechanisms to balance redox states. Thus, iLst996 is
consistent with experimental observations in other oleaginous fungi.

Further research has demonstrated that flux through the PPP is
correlated with biomass yields from glucose, with Crabtree-positive
yeasts that produce fermentation products having a lower PPP flux
than Crabtree-negative yeasts (Blank et al., 2005). Preventing
ethanol formation in S. cerevisiae may have led to 90% of the
carbon uptake flux being diverted to the PPP (Jessop-Fabre et al.,
2019), although the authors noted experimental discrepancies in
other studies. L. starkeyi produces relatively limited amounts of
byproducts and has higher lipid yields than Y. lipolytica, which often
secretes high amounts of organic acids (Erian et al., 2020). Thus, the
higher yield likely requires more NADPH per generation, which
would be consistent with the higher PPP activity predicted in L.
starkeyi when the redox cycles are blocked.

Phylogenetic trees are typically constructed using conserved
sequences of the 16S ribosomal subunit. Prior work in the
Lipomyces clade examined the phylogenic tree of many of the
species explored here (Bruce et al., 2016). Using OGs
complements the 16S phylogenic tree analysis and allowed a
more nuanced view of protein presences and absences for the
purpose of examining GSM applicability. Although this approach
will miss paralogs or other enzymes that may perform a similar
function, it allows researchers to identify potential gaps in the
reactions of the other clade members. Thus, the data enable
easier applicability of iLst996 to other Lipomyces species. This is
of particular importance as some species, such as L. tetrasporus, have
higher lipid yields than L. starkeyi (Bruce et al., 2016). Our reaction
presence/absence data indicated that many of the main carbon
pathways were present at 100% (Supplementary Material S5),
with the largest deviations occurring in alternate carbon
metabolism and sugar conversion. As soil-dwelling
microorganisms, the Lipomyces clade may have faced more
evolutionary pressure to adapt to specific carbon compounds in
their local environment, leading to more distinct carbon pathways.
Indeed, Lipomyces are known for having a large number of
CAZymes, and the phenotypic analysis here demonstrated the
ability of L. starkeyi to degrade a wide range of saccharide
carbon sources. Of these CAZymes, nearly 28% were captured in
iLst996. Thus, there is a significant gap between what the base
genome model predicts for metabolism and the ability of L. starkeyi
NRRL Y-11557 to degrade various carbohydrate compounds.
Further work building the GSM pathways to account for more of
the catabolic pathways would increase the predictive power of
modeling L. starkeyi. Interestingly, more limited growth was
observed on organic acids, such as succinic and acetic acid, with
no growth observed on several other organic acids (Figure 2). The
species utilized a diverse set of phosphate and sulfur carbon sources,
which can have benefits for industrial uses, in which cheap nutrients
can be used instead of more expensive sources.

Overall, the developed GSM is a useful tool that can be used in
combination with computational strain design algorithms to identify
strategies for engineering and improving production strains. New
algorithmic methods such as Bayesian metabolic control analysis or
the environmental version of minimization of metabolic adjustment
(eMOMA) provide ways for combining GSMs and omics data for
identifying non-intuitive targets for strain engineering (Kim et al.,
2019; McNaughton et al., 2021). Furthermore, the model provides a
more comprehensive map of L. starkeyi metabolism.

4.1 Limitations

One of the limitations of the construction of the GSM using a
smaller set of orthologous organisms is that many of the genes
remain experimentally unverified. As such, many of the
gene–protein–reaction (GPR) rules were left only as “OR” rules
(i.e., either gene A or gene B as opposed to gene A and gene B
contribute to the reaction). Despite this limitation, the GSM GPR
rules can provide a starting point for launching further investigation
into genetic targets through the use of computational strain design
algorithms (such as Bayesian metabolic control analysis, eMOMA,
and OptKnock (Burgard et al., 2003; Kim et al., 2019; McNaughton
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et al., 2021)). Similarly, many of the predicted essential genes are
unverified. As experimental evidence grows, the model will be
continuously modified to reflect our understanding of Lipomyces
metabolism and physiology. Further work generating fitness
libraries will help with the curation and validation of the GSM.
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