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The study of dose-response relationships underpins analytical biosciences.
Droplet microfluidics platforms can automate the generation of microreactors
encapsulating varying concentrations of an assay component, providing datasets
across a large chemical space in a single experiment. A classical method consists
in varying the flow rate of multiple solutions co-flowing into a single
microchannel (producing different volume fractions) before encapsulating the
contents into water-in-oil droplets. This process can be automated through
controlling the pumping elements but lacks the ability to adapt to unpredictable
experimental scenarios, often requiring constant human supervision. In this
paper, we introduce an image-based, closed-loop control system for
assessing and adjusting volume fractions, thereby generating unsupervised,
uniform concentration gradients. We trained a shallow convolutional
neural network to assess the position of the laminar flow interface between
two co-flowing fluids and used this model to adjust flow rates in real-time. We
apply the method to generate alginate microbeads in which HEK293FT cells
could grow in three dimensions. The stiffnesses ranged from 50 Pa to close to
1 kPa in Youngmodulus and were encoded with a fluorescent marker. We trained
deep learning models based on the YOLOv4 object detector to efficiently detect
both microbeads and multicellular spheroids from high-content screening
images. This allowed us to map relationships between hydrogel stiffness and
multicellular spheroid growth.
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Introduction

Quantifying the relationships between the concentration of a molecule and its effects on
a target biological system is crucial for advancing the field of quantitative biology and
building predictive models for the response of living systems to effectors (Howard, 2014;
Booij et al., 2019). Advances in miniaturization technology, such as microfluidics, make it
possible to generate parallelized, combinatorial and high-throughput assays (Cao et al.,
2012; Gielen et al., 2013; Neun et al., 2022). Droplet microfluidics, in particular, provides the
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capability to produce and test myriads of experiments
simultaneously with stable micro-environments in which
encapsulated living cells can proliferate.

An important application of droplet microfluidics is the
production of hydrogel beads in which cells are encapsulated
(Allazetta and Lutolf, 2015; Kleine-Brüggeney et al., 2019). The
gels provide porous, inert scaffolds, partly mimicking the
mechanical properties of the extracellular matrix (ECM) (Madl
et al., 2018). Hydrogels can be prepared with biocompatible
polysaccharides (natural or synthetic) with various modes of
gelation (e.g., induced by changes in pH, temperature, presence
of chelators. . .) and can be dissolved in aqueous phases in different
concentrations to produce gels of varying stiffness (Yang
et al., 2022).

The relevance of the mechanical properties of cellular micro-
environment to cell phenotypes and drug response is already well
established (Hayaei Tehrani et al., 2021). Mechanosensing is
recognized to play an important role in cellular and embryo
development with many signalling pathways involving stiffness
sensing (Martino et al., 2018). For example, ECM stiffness affects
cancer cell proliferation and tumour drug response (Cavo et al.,
2016). Studying the relationships between cellular growth, self-
organization, and homeostasis in niches of varying stiffness is
therefore crucial to uncover the contribution of mechanical cues
to emerging phenotypes. This knowledge will ultimately help design
organoid models that can more faithfully mimic human physiology
(Li and Kumacheva, 2018a).

To date, there is a lack of methods to systematically investigate
stiffness-growth relationships beyond low-throughput techniques.
Droplet microfluidics holds the potential to provide large scale
assays but altering drop-by-drop composition with high control
remains technically challenging. Current methods require complex
engineering such as the use of droplet-on-demand platforms,
making use of Taylor-Aris dispersion combined with droplet
formation, or the coupling of droplets with other analytical
instruments that separate chemical mixtures (Du et al., 2010;
Theberge et al., 2010; Miller et al., 2012; Gielen et al., 2015).
Conventional droplet microfluidic devices can be also used for
the rapid encapsulation of multiple assay components, by co-
flowing solutions before droplet formation, albeit with lower
degree of control and dynamic range than counterpart systems
(Song and Ismagilov, 2003; Hess et al., 2015). In such
implementation, continuous variation of the pressure or flow rate
provided by pumping elements enable continuous change of the
stoichiometry of multiple co-flowing reagents before encapsulation
into droplets where efficient mixing occurs. A practical limitation
arises when pumping fluids of high viscosity (i.e., orders of
magnitude more viscous than water) (Gielen et al., 2013;
Hamidovic et al., 2020; Wong et al., 2020). Indeed, high
resistance to flow within microchannels and compliance of the
fluidic system (e.g., deformable devices, soft tubings) lead to
hard-to-predict output flows coupled to potentially unstable
droplet formation regime (Perry et al., 2010; Moreira et al.,
2021). For hydrogels such as sodium alginate, apparent viscosity
for a range of grades dissolved at 2% w/w in water was found to be an
average of 900 cP compared to 0.89 cP for water only at 25 C (Fu
et al., 2011). This issue can be alleviated by designing real-time flow
monitoring systems able to quantify and adjust flows.

Recent advancements in machine vision technology, facilitated by
the use of high-performance graphics cards and efficient image analysis
algorithms, have paved the way for the development of self-correcting
and operation-on-demand microfluidic systems (Crawford et al., 2017;
Anagnostidis et al., 2020a; Howell et al., 2021; Luo et al., 2022; Tiwari
et al., 2023). These systems utilize real-time imaging feedback to
monitor the progress of an experiment and adjust the state of
actuators to achieve a desired output. This development is
anticipated to provide rapid and intelligent feedback on microfluidic
function towards fully unsupervised systems but to date has not been
applied to producing concentration gradient coupled to droplet
formation (Srikanth et al., 2021).

Here, we demonstrate how a conventional microfluidic co-flow
device can be coupled to a closed-loop deep learning-assisted
feedback system to generate controllable hydrogel concentration
gradients. We used a shallow convolutional neural networkmodel to
evaluate the position of boundaries between two laminar flows. This
allowed us to generate and screen thousands of HEK293FT 3D cell
cultures growing in alginate beads of stiffness varying between 50 Pa
to close to 1 kPa encoded by a fluorescent reporter. We quantified
cell culture growth over 8 days using high-content imaging. Image
datasets were rapidly analyzed with deep learning object detector
YOLOv4 to obtain quantitative relationships between stiffness and
multicellular spheroid growth.

Materials and methods

Cell culture. The human embryonic kidney (HEK) cell line
293FT was cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Gibco) supplemented with 10% Fetal Bovine Serum (FBS, Gibco)
and 1% Glutamax (Gibco). The medium was filtered through a
0.2 μm filter (Sartorius) before usage. Cells were passed when
reaching approximately 80% confluency using 0.05% trypsin-
EDTA (1X) (Gibco) to detach the cells from the surface of a
T25 flask before resuspension in fresh medium by centrifugation
at 1,200 rpm for 5 min.

Optical setup and electronics.We used an inverted microscope
(IX73, Olympus) and a fast area scan camera (Pike F032B) to acquire
images. A white LED light source (CoolLED, pE-100) was collimated
towards the microfluidic device and directed towards the camera via
two relay lenses (both with focal distance of 50 mm). Exposure time
and gain of the camera were set at 80 μs and 5 dB, respectively.
Optical parts and connectors were purchased from Thorlabs. A
field-programmable gate array (PCIe-7841, National Instruments)
was used to provide a continuous 50 Hz trigger signal to the camera.
An area of interest showing the laminar flow at the interface between
the two aqueous solutions was selected (as shown in Figure 1i, inset)
and images of size 120 × 120 pixels were collected
at ×4 magnification. To train the convolutional neural networks
(CNNs), we used a Windows 10, 64-bit operating system with an
Intel i5-6500 3.2 GHz processor with 32 GB RAM and CUDA
capable dedicated graphics card (GeForce 1080 GTX Zotac).
Images and classification results were saved in real-time on a
local SSD drive as previously reported (Anagnostidis et al.,
2020b). For the gradient generation, we combined the CNN
model and syringe pump commands (Nemesys, Cetoni) in
Python 3.7 using TensorFlow 2.3.0 and OpenCV 4.1.1.26 libraries.
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Microfluidic device and preparation of alginate solutions. A
flow-focusing device (width: 80 μm, height: 80 μm) was fabricated
using soft lithography techniques to produce monodisperse droplets
(Duffy et al., 1998). The device comprised of an inlet for the
continuous oil phase, two inlets for aqueous mixtures and a
collection outlet (Supplementary Figure S1). To achieve a
gradient of alginate concentration, two alginate solutions were
prepared. A low concentration alginate solution was prepared
consisting of 0.75% (w/v) alginate (Merck, medium viscosity
alginate, W201502) directly dissolved in a solution of 200 mM
CaCl2, 200 mM ethylenediaminetetraacetic acid (EDTA) and
100 mM 3-(N-morpholino) propane sulfonic acid (MOPS) in
phosphate buffer saline (PBS) adjusted at pH 8.5. All chemicals
were purchased from Merck. A final 1% (v/v) (125 nM) fluorescein
isothiocyanate (FITC)-dextran (2 MDa) dissolved in PBS was added
to the mixture and used as a fluorescence reporter encoding alginate
bead concentration. The second solution consisted of 3% (w/v)
alginate directly dissolved in 200 mM Zn2+, 200 mM
thylenediamine-N,N′-diacetic acid (EDDA) and 100 mM MOPS

in PBS at pH 8.5. A 5% (v/v) (625 nM) FITC-dextran dissolved
in PBS was supplemented to the mixture. For the hybrid
concentration gradient, we used 1% (w/v) agarose (Merck,
A5030). Both solutions were supplemented with 10% (v/v) of
HEK cells in culture medium to a final density of ~6 × 106 cells/
mL. The continuous oil phase was prepared using HFE-7500
fluorinated oil (Fluorochem) containing 1% (w/v) 008-
Fluorosurfactant (RAN Biotechnologies). Following alginate
gradient generation, the generated emulsion was incubated at
room temperature for 5 min and supplemented with 200 µL
culture medium. The incubation period allows for ion exchange
to take place, facilitating efficient crosslinking of the alginate into gel
beads. The emulsion was subsequently demulsified using an
antistatic gun (Zang et al., 2013). Beads were resuspended in
culture medium and incubated in 24 well plates (Greiner) at
37°C with 5% CO2. The media was exchanged every 2–3 days
after mild centrifugation at 300 rpm for 5 min to prevent
damaging beads and spheroid escape. Images were taken using a
high-content screener (HCS) system at 4x and 10x magnification

FIGURE 1
Schematic of the deep learning-assisted feedback method for the generation of alginate concentration gradients. (i) The method relies on a
microfluidic device in which two aqueous phases co-flow followed by droplet formation at a flow-focusing junction. The junction at which the two
aqueous solutions meet (inset) is imaged using an inverted microscope with transmitted light passing through a collimator (labelled ‘C’). The light is
directed along the imaging path towards an area scan camera passing through two relaying lenses (L1 & L2) and a mirror (M). Plano-convex lenses
L1 and L2 had a focal length of 50 mm. Individual frames were acquired by the camera and passed through a pre-trained CNN. The CNN evaluations were
used to adjust the flow rates of the syringe pumps. Scale bar: 50 μm. (ii) Schematic of the workflow for cell growth in beads of varying stiffness. Different
volume fractions are produced in sequence (as depicted in a, b and c), and the droplets were collected in a tube in which gelation occurred. The beads
were then demulsified, suspended in culture medium and dispensed in a well plate placed in a cell culture incubator. The beads were regularly imaged in
bright-field (BF) and fluorescence (FL) modes using a high-content screener to monitor spheroid growth across all alginate stiffnesses.
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(ImageXpress Pico, Molecular Devices) allowing for automated
scans of entire wells (Supplementary Figure S2). The HCS was
equipped with a precision motorized Z-stage focus hardware and
software system. For bead imaging, an autofocus function was
selected that searches the bottom of the well plate. Once the
optimum focus was found, a further offset was manually adjusted
for imaging the beads on both brightfield and fluorescence channels.
A total of 5 wells were imaged corresponding to approximately
240 and 1,200 images per experiment at 4x and 10x, respectively.

Microfluidic gradient formation. The process for alginate
gradient formation started with using a pre-trained CNN model
able to recognize low and high volume fractions (Figure 2i). We
selected flow rates of 5 μL/min and 1 μL/min for the low and high
concentration alginate solutions respectively (used to generate low
volume fraction) and tested CNN predicted classes. In case of
incorrect or low confidence classification, a new training set was
collected and added to previous data for model retraining. This
process, along with model training, lasted approximately 5 min.
Once the model was satisfactory, flow rates of 3 μL/min and 2 μL/
min were selected for the low and high concentration alginate
solutions respectively, until a stable laminar flow was established.
The continuous oil phase was run at a constant 30 μL/min. The
droplets were generated at a rate of approximately 200 Hz for 5 min.
Upper limits for flow rates (6 μL/min and 13 μL/min for high and
low concentration alginate solutions respectively) were set to
prevent long delays between successive gradients.

Alginate bead and spheroid detection analysis. We used the
YOLOv4 object detector to localize both fluorescent beads and
spheroids, with image processing taking 0.2 s per image. We
assembled custom training datasets obtained from the high-
content screener. Three separate models were created for beads
and spheroid detection consisting of i) 10x fluorescence bead
images, ii) 4x fluorescence bead images and iii) 10x bright-field
spheroid images. A total of 85 images (with ~6,200 beads), 11 images
(with ~1,500 beads) and 24 images (with ~1,000 spheroids) were
labelled from 10x data for beads, 4x data for beads, and 10x data for
spheroids, respectively. Image datasets for training were pooled from
different experiments to increase model versatility and detection
accuracy. A stratified split was used to create the training set (70%)

and test set (30%). YOLOv4 training was conducted using Python
3.7 on a cloud virtual machine provided by Google Colaboratory.
The networks were then trained over a total of up to 5,000 iterations
and the best weights were picked (Supplementary Figure S3). A
custom MATLAB script was written to extract spheroid diameters
from the YOLO bounding boxes and associate a fluorescence
intensity value corresponding to the bead FITC-dextran content.

Scaling from fluorescence to gel concentration.We assumed a
requirement of minimum 10% Ca2+ or Zn2+ content in the droplets
to effectively cross-link alginate (corresponding to minimum
concentrations of ~20 mM). Beads with lower content in calcium
or zinc were assumed not cross-linked. We extracted the lowest and
highest fluorescence values from the beads, corresponding to the
lowest (0.7%) and highest (2.8%) alginate concentrations. This
allowed us to establish a linear calibration between fluorescence
and alginate concentration for the rest of the beads.

Rheological characterization. The viscoelastic behaviour of
alginate with concentrations ranging between 0.75% and 3% were
assessed using a dynamic shear rheometer (Kinexus DSR +
Rheometer, Malvern) with a parallel-plate geometry. The preload
force was about 0.3 N, the shear strain was 1% and the oscillatory
shear stress frequency was 1 Hz. For the alginate gelation, alginate
(dissolved in 200 mM CaCl2, 200 mM EDTA, 100 mM MOPS in
PBS, pH 8.5) was loaded on the bottom of the geometry stage. Gels
were prepared with a volume ratio of 1: 1 Ca-EDTA to Zn-EDDA
solutions and maintained constant for all measurements.
Immediately after the solution mixing on-stage, a 20 mm
diameter top plate was lowered to a final gap of 0.5 mm (parallel
plate set up). The evolution of the shear moduli, G′ (storage, elastic
component) and G″ (loss, viscous component), was recorded at
37 °C as a function of time for 5 min (10 s interval, n = 2) for every
alginate condition.

Results

We demonstrate the generation of deep learning-assisted
concentration gradients using a classical flow-focussing device in
which two hydrogels (final concentration of 0.75% and 3% w/w)

FIGURE 2
CNN architecture used for assessing microfluidic flows and state machine for gradient generation using CNN predictions. (i) A shallow CNN is
trained to recognize whether a laminar flow interface is close to the centre (Low Volume Fraction (Low VF)) or edges of amicrochannel (High VF). (ii) State
machine used to automate the gradient making: a target class (either low or high volume fraction) is set and images of the laminar flow are taken at 50 Hz
to estimate current CNN class and update the flow rates for both low and high alginate concentration solutions. When the target class is reached, an
overshoot mechanism enables screening of flow ratios beyond those of the trained classes. When overshoot is completed, flow rates are reversed to
progressively revert back towards the other class.
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mixed with HEK293FT cells co-flow before encapsulation into
monodisperse droplets as shown in Figure 1i. We acquired real-
time bright-field images of the laminar flow interface and trained a
convolutional neural network for the evaluation of instantaneous
volume fractions. Based on this feedback, the flow rates of the
syringe pumps were updated, and this closed-loop control system
led to the formation of controlled concentration gradients. We
validated the platform by studying the growth of HEK293FT cells
trapped into alginate microbeads (Figure 1ii) (Andersen et al., 2015).
Following the formation of the alginate concentration gradient,
corresponding to different gel stiffnesses, beads were
subsequently cultured in 24-well plates and regularly imaged by a
high-content screener to obtain a time-lapse evaluation of cellular
growth across all beads. We targeted an average of more than 1 cell
per droplet to maximize use of every bead formed.

The method we chose to generate alginate gel beads is the
competitive ligand exchange crosslinking (CLEX) method which
has been previously described (Håti et al., 2016). Briefly, calcium-
EDTA/Zinc-EDDA complexes are mixed with alginate in which the
calcium ions are released by intrinsic higher affinity of EDDA for
binding calcium. This triggers the exchanging of ions allowing for
the divalent calcium ions to bind to guluronate blocks of the alginate
chains (Lee and Mooney, 2012; Cao et al., 2020), resulting in the
gelation of the alginate. Using this method, we co-flowed a solution
of alginate with Ca-EDTA (pH 8.5) with another one containing
only Zn-EDDA (pH 8.5). The generated emulsion was incubated for
5 min, during which the divalent calcium ions coordinate guluronate
assembly into tight aggregates. The relatively high pH of the
solutions delays the gelation process by a few minutes,
preventing clogging of the microfluidic chip.

Fluorescence encoding. Long-term cell growth experiments in
varying stiffness require the ability to accurately quantify the
concentration of alginate in a per-drop basis. In our experiments,
this is hampered by the loss of spatial arrangement when collecting
beads into off-chip containers. To overcome this issue, we used a
fluorescent dye (FITC) attached to a highmolecular weight molecule
(dextran, 2 MDa) acting as concentration encoder stably trapped in
the alginate matrix during the whole duration of the experiments.
We used a low (125 nM) and high (625 nM) FITC-dextran
concentration added to the initial 0.75% and 3% alginate
solutions respectively.

Deep learning-assisted gradient formation. To implement
real-time feedback and dynamic adjustment of flow rates, we
continuously imaged an area of 80 × 80 μm2 (corresponding to
120 × 120 pixels images) at the junction where the two aqueous
solutions (containing 0.75% and 3% w/w alginate) meet as shown in
Figure 1i (inset). An interface can be seen as a laminar separation
between the co-flowing solutions due to their marked difference in
refractive index. We trained a shallow CNN to classify images as
belonging either to a high-volume fraction class where the solution
containing 3% alginate makes up at least 80% of the total width of
the channel and a low volume fraction class in which the same
solution makes up less than 20% of the width (Figure 2i).
Approximately 600 images were used for training, equally
distributed across both training classes. The initial training sets
were acquired by manually setting high (8 μL/min) and low (1 μL/
min) flow rates for either the 0.75% or 3% alginate solutions, both
containing cells at the same density (~6 × 106/mL).

Given the high reproducibility of the appearance of laminar
flows and cells, we opted to train a CNN model made up of only
3 main convolutional layers (Figure 2i). Model training took less
than 1 min using an Nvidia 1080Ti GPU. Following training, the
model was used for all subsequent experiments and drift correction
was rarely required. However, in such a case, approximately
600 additional images were acquired and added to the existing
training datasets used to build a new, updated model.

To compare the presented CNN approach to more standard
edge detection methods, we analysed the response of a Canny edge
detector, one of the most widely used edge detection algorithms. The
analysis confirms that laminar flow edges in sub-optimal lighting
conditions or obscured by cells would pose a significant challenge to
evaluate volume fraction (Supplementary Figure S4).

A custom-written software linked CNN predictions to syringe
pump flow rates such that a regular alternation between both CNN
classes, corresponding to the two different gel volume fractions was
achieved. In brief, the software acquired images at a rate of 50 per
second and computed the average CNN class for 50 images, resulting
in the flow rates being updated once per second. Flow rates were
increased or decreased in fixed steps of 1 μL/min (except for
reducing high viscosity flow where we used a step of 3 μL/min)
until a target class was reached with over 95% confidence (Figure 2ii,
‘if target class reached’). In order to maximize the dynamic range of
the concentration gradient, we implemented an overshoot function
whose goal was to continue increasing or decreasing the volume
fraction beyond the set classes for a small amount of time (the
smallest time between 10 s or when the standard deviation of the
predicted class exceeded a threshold of 40%, meaning the
appearance of the interface differed significantly from the
training dataset). Gel bead monodispersity was ensured by
keeping the disperse to continuous phase flow rate ratio smaller
than 1:2 at all times.

An example of 5 consecutive gradients showing the alternation
between low volume fraction and high volume fraction and the
corresponding CNN-based feedback controlling syringe pump flow
rates is displayed in Figure 3i,ii,iii and shows snapshots of the flow
interface as classes alternate. The usefulness of CNNs in adapting to
live experimental conditions is highlighted in Figure 3iv in which we
plot flow rate profiles for 9 successive gradients. An example movie
of a complete gradient is shown in Supplementary Movie S1.

Long-term mechanical integrity of
alginate beads

Alginate has been reported to gradually dissolve over time in
various buffers including PBS (Alessandri et al., 2013). We tested
possible dissolution (and therefore gradual decrease in stiffness over
time) in cell culture medium by generating a control concentration
gradient without cells. We passaged beads as in other experiments
and imaged them with HCS using fixed imaging conditions
(Supplementary Figure S5). The experiments revealed broadly
stable FITC-dextran concentration during 7 days with a slight
decrease after the first 24 h. Given we expected slight
inconsistencies in focus and differences in background
fluorescence for different days, we inferred gel concentration by
assigning known low (0.7%) and high (2.8%) gel percentage
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corresponding to the 5th and 95th percentile of a Gaussian-fitted
distribution of the fluorescence distribution histogram. We then
applied a linear fit to relate fluorescence intensity to gel percentage
for all beads.

Assessment of bead stiffness

We assessed the viscoelastic properties of alginate at 37 °C by
compression of thin hydrogel sheets using the same solutions as for
the microfluidics experiments such that they can be used to provide
accurate estimates of bead stiffnesses. The results show that the
storage (Young) modulus increased from 50 Pa to close to 1 kPa for
0.7% and 2.8% alginate gels respectively (Supplementary Figure S6).
The loss modulus was smaller than 5% the storage modulus,
indicating a very small fraction of unpolymerized gel. The
relationship between percentage of gel and storage modulus was
not linear and we used a quadratic fit to derive gel stiffness from gel
concentration.

Spheroid formation in FITC-dextran labelled
alginate beads

The average gel bead diameter was calculated to be 106 ± 24 μm.
We chose an average density of around 3 cells per droplet
(concentrating cells to a final density of 6 × 106 cells/mL) to
ensure maximum use of the gradient beads. Although we used a
cell strainer when preparing cell solutions, some cell aggregates did
form prior to encapsulation.

In a typical experiment, 8 concentration gradients were
generated in 5 min (~35 s per gradient) with bead formation
rate of about 200 Hz for a total of approximately 60,000 beads.
All beads were incubated for 5 min at room temperature for
gelation to proceed, demulsified and transferred into fresh
culture medium, distributed equally into at least 5 wells of

24 well plates, and placed into a cell incubator (Figure 1ii). We
acquired both fluorescent and bright-field images every 2–3 days
over timescales of up to 8 days after which most multicellular
spheroids were escaping the gels. In a typical experiment, we
imaged several thousands of beads. Representative images of
beads initially containing multiple single cells growing into
spheroids are displayed in Figure 4.

Evaluation of cellular growth in a range of
scaffold stiffness

The encoding of the beads’ alginate content with fluorescent
labels, as seen in Figure 5i, enabled us to assign gel concentration.
However, many beads had a low fluorescence signal-to-background
ratio, presumably because of partial leakage of the dye into culture
medium and incomplete alginate cross-linking. This limited the
accuracy of classical segmentation algorithms to detect such beads.
To tackle this issue, we implemented an efficient deep learning
object detector (YOLOv4) to identify fluorescent beads even with
small signal-to-background ratio.

The distribution of the fluorescent dye within individual beads
was found to be mostly uniform except, notwithstanding the
presence of cells. We have further obtained confocal images of
the beads at different alginate concentrations to confirm uniform 3D
distribution of the dye following alginate cross-linking
(Supplementary Figure S7). This enabled us to quantify the mean
alginate concentration per bead with increased alginate
concentration corresponding to higher stiffness.

We trained a separate deep learning YOLOv4 model to
recognize spheroids from bright field images (Figure 5ii, iii). The
bounding boxes given by the YOLO model for identifying spheroids
allowed us to extract an approximate spheroid diameter. We
assigned a fluorescence intensity corresponding to every detected
spheroid, enabling us to plot estimated spheroid diameter against
fluorescence intensity (Figure 5iv). Although we expect axial

FIGURE 3
Deep learning-assisted microfluidic gradient generation during cell encapsulation. (i) An example of 5 consecutive gradients showing themeasured
CNN classes and (ii) corresponding evolution of flow rates for both low and high viscosity solutions. (iii) Example snapshots of the laminar flow junction at
different stages of the gradient formation. (iv) Overlay of flow rate profile for 9 successive gradients.
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rotational symmetry and approximately spherical growth for the 3D
cell cultures, obtaining high-resolution volumetric data would
provide better quantification for spheroid growth, which can be
done using confocal imaging. We have acquired example images of

stained spheroids to exemplify possible volume measurements
(Supplementary Figure S8). However, the long time necessary to
obtain such images (~1 min/image) precludes the rapid screening of
thousands of beads.

FIGURE 4
Representative bright-field and corresponding FITC-fluorescence images of individual beads containing HEK293FT cells forming multicellular
spheroids over 8 days across different hydrogel stiffnesses. The stiffness gradient is encoded by a trapped fluorescent dye that stably stain the beads. In
this example, imaging data for days 0–6 were acquired with a ×4 objective while day 8 was obtained with a ×10 objective. Scalebars: 50 µm.

FIGURE 5
Fluorescent beads and spheroid detection using YOLOv4. (i) Fluorescence image (FITC) of alginate beads after 8 days of cell growth. 377 beads were
detected in a single image. (ii) Corresponding bright-field image with HEK293FT spheroids grown in the different alginate concentrations. (iii) Close-up
overlay of fluorescence and bright-field channels with beads (red circles) and spheroids (black rectangles) detections. (iv) Spheroid estimated diameter
versus mean bead fluorescence intensity.
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We repeated this analysis for the different days at which the images
were acquired. To exclude spheroids with irregular shapes deviating
from circular (e.g., when multiple spheroids fuse to form a larger one),
we have only kept detections whose aspect ratio (length of detection
box/width of detection box) ranges from 0.7 to 1.3. The comparison
with and without filtering is displayed in Supplementary Figure S9.
Figure 6 shows a violin plot for the filtered spheroid diameters across the
estimated alginate stiffness gradient. We segmented the gradient into
8 separate bins for days 2 and 6. Each bin was made up of at least
65 spheroids. There were no statistically significant differences between
medians of projected spheroid areas across the different alginate
concentrations tested. A similar plot highlighting the growth of
spheroids from day 2 to day 8 is shown in Supplementary Figure
S10 with a larger number of spheroids exceeding diameters of
50 microns but similar medians for diameters across the gradient.

To further showcase the usefulness of the method for the
generation of complex hydrogel systems, we also demonstrated
the generation of hybrid agarose/alginate concentration gradients
(Supplementary Figure S11). To do this, we incorporated an
additional flow channel in the existing device to allow for
another hydrogel to be added to the alginate phase. Specifically,
we infused 1% agarose solution at decreasing flow rates for 5 alginate
gradients in a row. The agarose solution was labelled with a TRITC-
dextran dye, so that we could screen alginate/agarose combinations
using dual-color imaging. We observed a non-uniformity in the
distribution of both types of gels within individual beads creating
complex topological landscapes. In this hybrid format, the
assessment of local stiffness would be required to precisely map
stiffness to cellular responses over time.

Discussion

The proposed method for automated flow control in
microfluidic devices based on imaging feedback is applicable,
beyond hydrogels, to many sample pairs as long as the refractive
index differ sufficiently to result in a visible laminar flow boundary.

The key advantage of using a CNN lies in its ability to provide
automated and real-time feedback control without manual
intervention. Traditional edge detection methods can be time-
consuming and prone to errors, particularly in dynamic
environments where conditions change rapidly due to the
presence of cells, dust, air bubbles or pressure fluctuations. The
CNN model was robust to the presence of dust or cells located
directly on the laminar flow interface. Real-time adaptability is a
challenge well addressed by CNNs as flow rates must be adjusted
based on actual imaging feedback. Furthermore, the speed at which
we analysed images (<20 ms per image) would be difficult to achieve
with classical edge detection tools (Guo and Wu, 2023).

For mixing solutions made up with the same buffer, one could
artificially increase the refractive index for one solution with an
additive, e.g., sucrose (Zaca-Morán et al., 2018). The use of deep
learning will be especially useful when dealing with low contrast
interface between two solutions. In such cases, classical detection
methods such as edge detection (e.g., Canny, Sobel. . .) would
require extensive fine-tuning and the presence of cells in the gel
phases would further complicate the detection of the flow interface.

In this work, we have trained a shallow CNN with
3 convolutional layers as fewer layers did not result in good
models. Even though we chose to image the cross-junction where
the two aqueous phases meet, one could train a model using images
acquired at a different location of the chip, provided flow interface
and volume fraction are still visible. The evaluation of CNN class at a
rate of 50 Hz followed by averaging over 50 images was found to
ensure accurate results and rapid adjustment of the flow rates once
every second. In particular, this prevented sudden flow pulses to lead
to premature class change, resulting in a more robust operation.
Flow rate step increase and step decrease were chosen based on
empirical observations but could also be adjusted based on the speed
of transition between the two classes.

The average precision values achieved for the
YOLOv4 models—based on 10x fluorescence bead images, 4x
fluorescence bead images, and 10x bright-field spheroid
images—were 99%, 88%, and 51% respectively (Supplementary
Figure S2). While these scores indicate a high level of accuracy
for fluorescence detections, it is worth noting that a significant
proportion of spheroids were missed. This can be attributed to the
fact that the fluorescent beads have very distinctive features
(circularity, roughly uniform dye distribution). In contrast, the
appearance (e.g., shape, size, texture) of spheroids in brightfield
images showed higher variance and less distinct contrast, making
their detection more challenging and leading to a comparatively
lower average precision score. To address these limitations,
augmenting the training dataset with additional images or tuning
the network’s hyperparameters could improve detection accuracy.
Yet, the obtained average precision scores were sufficient to localize
the majority of spheroids and demonstrate the potential to establish
accurate stiffness-growth relationships.

We showcase the use of FITC-labelled dextran polymers to
encode alginate concentration and report on local gel stiffness.

The 2 MDa moiety is too large for direct cell permeation and
escape from the gel matrix. However, when the plasma membrane
becomes permeable, it can accumulate in the cells. For example,
FITC-Dextran with molecular weight 4,000 Da has been used to
identify apoptotic and necrotic cells by flow cytometry (Moumaris

FIGURE 6
Violin plots for the spheroid estimated diameters against the
stiffness of alginate at day 2 and day 6. Themedians of the distributions
are represented by horizontal lines of the corresponding color.
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et al., 2015). This staining is visible in some single cells in Figure 4
indicating early apoptosis.

In this study, we image large wells in which beads sediment to
increase data throughput at the cost of single-bead resolution. In this
study, micro-cultures are pooled in standard wells of a 24 well plate.
At adequate numbers (~1,000–2000), beads sediment as a
monolayer which can be conveniently imaged at the same focal
plane for all cultures (Supplementary Figure S2). Adapting the
method to single bead time-lapse imaging is possible but require
the addition of a trapping and perfusion module that complicate
implementation and reduce throughput (Kleine-Bruggeney et al.,
2019; Tomasi et al., 2020).

Decrease in the number of spheroids and beads over time.
We noted a steady decrease in bead number after each passage
and attributed it to three factors: the incomplete pelleting of
beads following centrifugation, the incomplete recovery from
the wells and spheroid escape from the gel beads, presumably
while being centrifuged. The rate of loss was found to be an
equivalent average of 3%–5% per resuspension in fresh
culture medium.

Relationship between gel concentration and stiffness. Several
factors can affect the mechanical properties of the beads over time.
Progressive degradation of the gels may occur although a study
found no change in mechanical stability in standard culture medium
until day 8 (Chui et al., 2019). In addition, stiffness may become
anisotropic during spheroid growth, as cells push the gels outwards.
Fluorescence anisotropies visible in Figure 4 were possibly triggered
by cell growth.

Overall, cells experienced similar growth rates in the stiffness
range tested. We assign the lack of statistical differences between
spheroid growth to two factors: the chosen range of alginate
stiffnesses below 1 kPa, considered ‘soft’ and the limited
timescale for spheroid growth of 8 days. A study examining
the growth of MCF-7 cells in alginate gels of similar stiffnesses
found no significant growth differences for the first 8 days but
observed differences from days 12–16 (Li et al., 2021). Although
we were able to grow cells up to 12 days, we observed significant
decrease in the number of spheroids due to escape from the gel
beads. This could be solved in the future by generating larger
hydrogel beads.

This is likely because the highest stiffness tested was too small to
affect growth for this cell line (Aung et al., 2023; Bruns et al., 2023; Li
and Kumacheva, 2018b). Our method will be therefore useful for
probing soft tissues, e.g., mammary tissues with an elastic modulus
between 160 and 200 Pa, adipose tissue (~1 kPa), as well as bone
marrow and lungs ECM (~1 kPa) (Martino et al., 2018). Higher
viscosity hydrogels or mixtures could be used to explore higher
stiffnesses such as polyethylene glycol diacrylate, gelatin
methacrylate, chitosan, gelatin (Baruffaldi et al., 2021).

The addition of natural or synthetic ECM components or
native cell adhesion ligands have been reported for alginate
microspheres (Lehnert and Sikorski, 2021). These methods
provide more physiologically relevant models for studying
gradient-dependent cellular responses in the context of
organoids research. By incorporating biophysical cues and
biochemical components, these developments are expected to
pave the way towards the creation of hydrogels that better
mimic in vivo cell environment.

Conclusions and future work

Overall, the presented method demonstrates deep learning-
assisted creation of on-demand, reproducible microfluidic
concentration gradients without the need for empirical searches of
optimum flow rate sequences and human supervision. The use of
shallow CNNs for assisted gradient formation enables
implementation of robust microfluidic functions and will be
especially useful when using multiple high-viscosity solutions. The
ability to obtain real-time feedback is crucial to ensure the success of
complex microfluidic experiments operating over long timescales and
will alleviate the need for constant supervision, eventually saving time
and resources. Beyond the screening of relationships between matrix
stiffness and 3D cell cultures, we foresee multiple applications of the
method where establishing controlled dose-responses are essential
such as forming gradient hydrogels, studying cell migration dynamics,
or monitoring bacterial biofilm formation in gels.
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