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Codon optimization has evolved to enhance protein expression efficiency by
exploiting the genetic code’s redundancy, allowing formultiple codon options for
a single amino acid. Initially observed in E. coli, optimal codon usage correlates
with high gene expression, which has propelled applications expanding from
basic research to biopharmaceuticals and vaccine development. The method is
especially valuable for adjusting immune responses in gene therapies and has the
potenial to create tissue-specific therapies. However, challenges persist, such as
the risk of unintended effects on protein function and the complexity of
evaluating optimization effectiveness. Despite these issues, codon
optimization is crucial in advancing gene therapeutics. This study provides a
comprehensive review of the current metrics for codon-optimization, and its
practical usage in research and clinical applications, in the context of
gene therapy.
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1 Introduction

Codon optimization first appeared due to the search for an approach to increase the
efficiency of expression of target proteins in bacterial cultures. The known property of
degeneracy of the genetic code allows mRNA to encode the same proteins in different ways
since 20 proteinogenic amino acids can be encoded by 61 codons (Welch et al., 2009). This
property formed the basis of the codon optimization method, when, with the advent of
genetic sequencing, it became evident that the usage of codons is non-random. Bias in
codon usage occurs between different organisms, tissues, and sometimes even between parts
of the same gene (Athey et al., 2017; Pouyet et al., 2017). Thus, it became clear that the
selection of the most common codons deemed suitable for an organism or cell line during
genetic engineering research allows significantly changing approaches to conducting
experiments.

Escherichia coli was the first organism with an analyzed codon usage system. Knowing
the sequences of anticodons and the abundance of various tRNAs in the cell, the authors
identified criteria for codon optimality (Ikemura, 1981). The first criterion was high codon
recognition, the second was the highest abundance of tRNA. Highly expressed genes had a
bias in frequency of use towards optimal codons, while genes with low expression were
characterized by high randomness in the choice of codons (Gouy and Gautier, 1982).
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Currently, codon optimization has found application in a wide
range of topics. In addition to fundamental research, control of the
efficiency of protein expression through the selection of
synonymous codons is also used for the development and
production of biotherapies (Ayyar et al., 2017), most of which
are based on the expression of recombinant proteins. The
method has become indispensable for molecular pharming on
plants, where the problem of low expression efficiency is most
pressing (Perlak et al., 1991; Desai et al., 2010; Thomas and
Walmsley, 2014).

Differentiated cells determine the formation of tissues of various
types. This complicated process can be modulated at the cellular and
molecular level (Simon et al., 2018). At the molecular level, this
diversity is reflected in particular in differences in protein expression
- proteins that are abundant in one tissue may be absent in another
(Thul and Lindskog, 2018). Differences in protein abundance are, in
turn, caused by differences in RNA expression. One of the possible
factors affecting such patterns is the different frequency of use of
synonymous codons encoding the same amino acid during
translation (Kames et al., 2020) (Figure 1). Indeed, either the
rarity of codon usage (Plotkin et al., 2004) or the frequency of
tRNA variants (Dittmar et al., 2006; Gao et al., 2022) both vary
between tissues. This can potentially be exploited for the
construction of tissue-specific gene therapy. At the same time, to
our knowledge, there is currently only one paper in peer-reviewed
journals that has experimentally tested this hypothesis (Hernandez-

Alias et al., 2023). This study is evidence that tissue-specific codon
usage can potentially be used to design tissue-specific transgenes. At
the same time, this metric is only one additional tool in the gene
design toolbox whose implementation needs to be further explored
and cannot be considered in isolation from several other indicators
discussed below (Hernandez-Alias et al., 2023).

One of the most relevant and important areas of codon
optimization application is the development of vaccines. The
current way to create non-live vaccines is the use of attenuated
viruses. Several research groups have experimented with attenuating
poliovirus by changing codon bias in the gene encoding the
poliovirus capsid protein, which involved replacing more
frequent codons with less frequent ones (Burns et al., 2006;
Mueller et al., 2006). Moreover, increasing transgene expression
in vaccines may improve the effectiveness of immunization and can
be achieved through codon optimization (Chen et al., 2008; Bell
et al., 2016). In addition, a new class of vaccines—mRNA
vaccines—has recently been introduced into clinical practice in
the context of the COVID-19 pandemic (Oliver et al., 2020).
Currently, the possibility of a similar approach for the prevention
of infectious diseases such as rabies (Wan et al., 2023), influenza
virus (Lee et al., 2023), Zika virus (Bollman et al., 2023), Lassa virus
(Ronk et al., 2023) is the subject of active research and development.
Remarkably, codon optimization of mRNA vaccines can
significantly improve their stability and immunogenicity (Zhang
et al., 2023). Despite the benefits of codon optimization, it is

FIGURE 1
tRNA recognition depends on the abundance of the tRNA variant in the cell. For example, in organism (A), tRNAs interacting with synonymous
codons encoding alanine are represented in equal proportions (left panel). At the same time, it is possible that in organism (B), tRNA species with different
anticodons are present in a different ratio (right panel). Then, when implementing an mRNA construct with an equal frequency of use of synonymous
codons encoding alanine, the rate of tRNA recognition will be higher in organism (A) than in organism (B). In other words, the translation rate of the
same mRNA construct may differ in different organisms depending on the presence of different tRNA variants.
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important to maintain a balance in the use of these techniques.
Excessive interest in codon optimization can possibly lead to the
accumulation of substances that are poorly excreted from the body,
such as, for example, modified mRNA and the corresponding
antigen (Bansal et al., 2021; Röltgen et al., 2022).

Currently, various approaches could be used for the
development of gene therapeutics. Control of the
immunogenicity of the administered drug is one of the most vital
tasks not only in the preparation of vaccines but also for gene
therapies. For the drug to work effectively, it is necessary to reduce
the viral vector’s immunogenicity. It has been shown that by varying
synonymous codons in the transgene and vector, it is possible to
increase the effectiveness of therapy by lowering immunogenicity
(Athanasopoulos et al., 2011; Bell et al., 2016), which provides
optimism for simplifying vector selection and expanding the
application of this type of therapy.

Regrettably, codon optimization techniques, while widely
employed in the development of gene therapies, are far from
perfect and are fraught with several challenges. One prominent
issue lies in the incomplete synonymy of substitutions. This
drawback carries the potential to disrupt natural post-
transcriptional modification sites or, alternatively, give rise to
novel sites, leading to critical alterations in the final protein’s
structure, properties, and functions (Godfried Sie et al., 2012;
Irimia et al., 2012). Furthermore, overlooking the existence of
alternative translation initiation sites (Malarkannan et al., 1999;
Matsuda andMauro, 2010)can lead to the unintended production of
new proteins, adding another layer of complexity to the process.
Beyond these intrinsic challenges, the selection of an appropriate
numerical method for evaluating the effectiveness of codon
optimization poses an additional obstacle. The abundance of
metrics available complicates the task, requiring careful
consideration to ensure a meaningful assessment. Despite the
above difficulties, codon optimization approaches are actively
used in clinical trials around the world and, furthermore,
COVID-19 mRNA vaccines Pfizer/BioNTech and Moderna
employ codon optimization.

Codon optimization can be carried out in many different ways
today. It is often not clear which of these approaches is best suited to
fulfill a particular task. The purpose of this review is to cover the
current state of this problem and future directions for codon
optimization approaches for gene therapies.

2 The quantitative assessment of codon
usage and optimization

2.1 Measures of codon usage

The codon usage bias (CUB), also known as codon usage
preferences (CUP), is influenced by a combination of factors
that vary among species. Such factors include mutation
frequency (Pizzo et al., 2015), selection for translation efficiency
(Navon and Pilpel, 2011), and the presence of transfer RNA
(tRNA) molecules that recognize specific codons (Buchan, 2006;
Wei et al., 2019), ribosome binding efficiency (Shi et al., 2020), and
translation speed and co-translational protein folding (Mitarai
et al., 2008; Liu, 2020).

Based on the non-random usage of codons in the genomes of
different species and the previously demonstrated positive
correlation between codon bias and gene expression efficiency,
Sharp and Li developed the relative synonymous codon usage
(RSCU) scale (Sharp and Li, 1986). The RSCU value was
calculated for a set of genes as the ratio of the observed codon
frequency to the expected frequency, assuming equal usage of
synonymous codons. This research has made a substantial
contribution to the creation of various metrics, including but not
limited to codon adaptation index (CAI) (Sharp and Li, 1987),
average ratio of RSCU (ARSCU) (Chamani Mohasses et al., 2020),
and genetic tRNA adaptation index (gtAI) (Anwar et al., 2023). CAI
continues to be a widely employed metric in both commercial and
academic applications. CAI reflects the level of species-specific
codon adaptation and is calculated as the geometric mean of
RCSU values for each codon in the gene relative to the value of
the most frequently used triplet encoding a single amino acid.

To date, numerous metrics for quantitative assessment of the
level sequence optimization have been developed. Table 1 offers
concise descriptions of commonly used metrics. To give the readers
an idea of the frequency of metric usage, we added the citation rate of
the original sources. However, it is important to emphasize that this
approach does not reflect the level of usage of optimization tools
based on the mentioned metrics.

Numerous metrics can be easily calculated with a reference set of
genes to obtain the codon usage frequency. For example, Fop is
calculated as the ratio of optimal codons to the total number of
codons, excluding stop codons and codons without alternatives for
amino acids (methionine, tryptophan) (Ikemura, 1981; 1982). The
index aids in gauging the prevalence of synonymous codon usage.
Other metrics are grounded in the assumption that the usage of
codons is non-random. The metrics quantify the difference in codon
usage frequency from a uniform distribution within the coding
sequence. When all codon variants for a specific amino acid are
utilized with equal frequency, such difference is minimal.
Conversely, the maximum is achieved when only one codon out
of the possible ones is utilized. Examples of such indices include
ENC, CDC, SCUO, and others.

2.2 Codon adaptation metrics for assessing
mRNA properties

Codon optimization is a strategy aimed at increasing the
efficiency of mRNA translation and overcoming protein
expression limitations. The use of synonymous codons affects the
stability of mRNA in human cells (Narula et al., 2019; Wu et al.,
2019). The thermodynamic stability of mRNA within a cell
significantly influences translation efficiency (Hanson and Coller,
2018; Diez et al., 2022). mRNA is inherently unstable and can
undergo transient states and adopt multiple stable structures. One
approach to selecting synonymous amino acids for the purpose of
thermodynamic stabilization is aimed at minimizing the free energy
ΔG (MFE) released during RNA folding (Zuker and Stiegler, 1981;
Zuker, 1994). Ringner and Krogh demonstrated in Saccharomyces
cerevisiae that the folding free energy in the vicinity of the 5′-UTR
correlates positively with transcription efficiency and mRNA half-
life (Ringnér and Krogh, 2005).
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TABLE 1 Metrics for codon optimization with formal definition and description. The number of citations was retrieved from the Scopus database.

Index Mathematical formula Principle Interpretation Original
source

Citation
count

Frequency of
optimal
codons (Fop)

Fop = Nopt/Ntotal, where Nopt denotes number of optimal
codons in a gene, Ntotal indicates number of total codons in

sequence

The rationale behind
Fop is that genes with
a higher expression
level tend to
preferentially use
certain codons, and
this bias can be
quantified using this
ratio

Representing the
occurrence of the optimal
codon within a gene
sequence. Values close to
1 indicate a strong bias
toward optimal codons,
while values closer to
0 suggest a more even or
random usage of
synonymous codons

Ikemura, 1981
(1982)

1724 and 768

Relative
synonymous
codon usage
(RSCU)

RSCU � Xij
1
ni ∑ni

j�1 (Xij) where xij denotes the number of

occurrences of the j-th codon for the i-th amino acid, ni
represents the degeneracy for the i-th amino acid

Calculated as the ratio
of the observed codon
frequency to the
expected frequency
assuming equal usage
of synonymous
codons

The codon with RSCU of
1 value indicates average
(random or equally)
synonymous codon usage;
RSCU value greater than
1 indicates positive codon
usage bias
(overrepresented); RSCU
value less than 1 indicates
negative codon usage bias
(underrepresented)

Sharp and Li
(1986)

653

Codon
adaptation
index (CAI)

CAI � exp(1L∑L

l�1 lnWk), where L is the length of a gene

measured in codons. Wk is the relative adaptiveness value for
the k-th codon in the gene

Quantifies the
geometric mean of the
RSCU for each codon
with respect to the
codon usage of a
reference set of highly
expressed genes.
Genes that possess
higher scores are
anticipated to
demonstrate
enhanced efficiency in
translation and
elevated levels of
protein expression

A higher CAI score implies
that the gene’s codon usage
is better aligned with the
preferred codons identified
in a highly expressed
reference set. A CAI value
of 1 suggests that the codon
usage in the gene is
perfectly adapted to the
preferred codons observed
in a highly expressed
reference set; value of
0 indicates that the codon
usage in the gene is not
adapted

Sharp and Li
(1987)

4091

Codon pair
adaptation
index (CPAI)

CPAI � ∏N−1

i�1
w1/(N−1)

i,i+1 , where N − 1 is the number of codon pairs

in gene g and w-i, j is the relative adaptiveness of the codon pair
(i, j). wi,j(G) � fi,j(G)

fmax(i,j)(G), where fi, j is the frequency of codon
pair (i, j) and f(max(i,j)) is the frequency of the codon pair most
often used to code for the amino acid pair (aa(i),aa(j)) in a set of

highly expressed genes G

The advantage of the
index is the automatic
weight selection
algorithm Carbone
et al., 2003. Combined
use of CPAI and CAI
have been shown to
better predict gene
expression

Similar to CAI. Carbone et al.
(2003), Friberg
et al. (2004)

43 and 402

Codon bias
index (CBI)

CBI � (Nopt−Nrand))
(Ntot−Nrand) , where Nopt represents the number of

preferred optimal codons, Ntot is the total number of codons in
the gene, and Nrand denotes the expected number of preferred
codons if random codon assignments were made for each amino

acid

Codon bias refers to
the unequal usage of
synonymous codons
encoding the same
amino acid in a DNA
sequence. The codon
bias index is a measure
that quantifies the
extent of this bias

Values range from 0 to 1:
0 indicates random
selection of codons, and
1 indicates a significant bias
towards preferred codons

Bennetzen and
Hall (1982)

1955

Effective
number of
codons (ENc
or Nc)

ENc � 1
Faa, where Faa � n∑k

i�1
p2
i −1
n−1 , n> 1, where k is the

degeneracy of the amino acid (number of synonymous codons),
pi is the fraction of each synonymous codon (i) out of the total

codons (n) for that amino acid, p � ni/n

The ENc is a measure
designed to assess
codon usage bias by
evaluating how far the
observed usage of
synonymous codons
deviates from an
anticipated equal
distribution

The ENc values range from
20 (maximum codon bias,
only one codon used for
each amino acid) to 61 (no
bias, all synonymous
codons used equally). If the
ENc value is less than 35, it
indicates a pronounced bias

Wright (1990) 2306

(Continued on following page)
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TABLE 1 (Continued) Metrics for codon optimization with formal definition and description. The number of citations was retrieved from the Scopus
database.

Index Mathematical formula Principle Interpretation Original
source

Citation
count

Effective
number of
codon-pair
(ENcp)

ENcp �
��������∑m(kmFm

)
√

, where Fm is the average degeneracy of all

amino acid pairs with m synonymous codon pairs, and km is the
number of amino acid pairs with m synonymous

representations

ENcp is a metric
designed to assess the
bias in the usage of
codon pairs, defined
analogously to ENc,
with the addition of a
square root

Similar to ENc Alexaki et al.
(2019b)

100

Codon usage
similarity index
(COUSIN)

COUSINa
18 � 1

N × ∑cϵka Wque
c,a∑cϵka Wref
c,a

COUSIN evaluates the
codon CUB of a given
query in comparison
to a reference, and it
standardizes the
results by applying a
Null Hypothesis that
assumes random
codon usage. In
COUSIN18, all
18 families of
synonymous codons
contribute equally to
the overall index,
whereas in
COUSIN59, each
family contributes
proportionally based
on the frequency of
the corresponding
amino acid in the
query

A COUSIN score of
1 signifies that the CUB in
the query closely resemble
those in the reference
dataset. A COUSIN score of
0 indicates that the CUB in
the query align with those
in the Null Hypothesis. For
scores exceeding 1, the CUB
in the query share
similarities with those in the
reference but on a larger
scale. Scores falling between
0 and 1 suggest that the
CUPrefs in the query are
akin to those in the
reference but with a smaller
magnitude. A score below
0 implies that the CUPrefs
in the query are opposite to
those in the reference

Bourret et al.
(2019)

51

COUSINa
59 � fq

a ×
∑cϵka Wque

c,a∑cϵka Wref
c,a

, where N is the number of amino

acids present in both the query and the reference and ka is the
set of synonymous codons coding amino acid a. weight for each
codon (Wc,a) in reference and test set fq

a is the frequency of the
amino acid a in the query

Average ratio of
RSCU (ARSCU)

ARSCU � (∑aa18

aa: 1
a
b

18 ), where aa is amino acid, a is RSCU of GC

end codons and b is RSCU of AT end codons (any a and b with a
value of zero is arbitrarily assigned a value of 0.1)

Measures the ratio of
RSCUs with GC-
ending codons to the
AT-ending codons for
all amino acids in a
gene

Genes exhibiting ARSCU
values surpassing 13 (a
subjective threshold) are
anticipated to showcase
heightened expression
levels. Genes with ARSCU
values within the range of
9–13 are predicted to have
either high or intermediate
expression, while genes
possessing ARSCU values
below 9 are expected to
demonstrate low or
intermediate expression

Chamani
Mohasses et al.

(2020)

21

Relative codon
bias strength
(RCBS)

RCBS � (∏L
l�1
(1 + dixyz)) 1

L − 1, dxyz � f(x,y,z)−f1(x)f2(y)f3(z)
f1(x)f2(y)f3(z) ,

where L is the length, in codons, of the gene, f (x,y,z) the
observed frequency of codon xyz and f1(x), f2(y) and f3(z) the
observed frequencies of bases x, y and z at, respectively, codon

positions 1, 2 and 3

It calculates the
observed frequency of
specific codons
relative to the
expected frequency,
considering biases in
base composition at
three codon sites,
providing a reliable
measure of codon
preferences while
accounting for
sequence-specific
features like GC
content

An RCBS value near
0 implies an absence of
codon usage bias, while a
value exceeding
0.5 indicates a notable
preference for specific
codon usage

Roymondal
et al. (2009)

109

Directional
codon bias score
(DCBS)

DCBS � ∑L

i�1dxyz
L , dxyz � max( f(x,y,z)

f1(x)f2(y)f3(z),
f1(x)f2(y)f3(z)

f(x,y,z) ), DCBS is based on
RCBS and allows the
measurement of both
positive and negative
codon usage bias

Similar to RCBS. Sabi and Tuller
(2014)

116

(Continued on following page)
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TABLE 1 (Continued) Metrics for codon optimization with formal definition and description. The number of citations was retrieved from the Scopus
database.

Index Mathematical formula Principle Interpretation Original
source

Citation
count

Modified
relative codon
bias strength
(MRCBS)

MRCBS � ∏N
i�1

(MRCBSxyz) 1
N MRCBSxyz � RCBSxyz

RCBSaa,max
, where

fxyz is the normalized codon frequency of a codon xyz and
fn(m) is the normalized frequency of base m at codon position n
in a gene. RCBSaa, max is the maximum value of RCBS of codon
encoding the same amino acid aa in the same reference set, and

N is the codon length of the query sequence

Ribosomal protein is
used as a reference set
of genes and the
dependence on gene
length is overcome

The score of the modified
relative codon bias ranges
from 0 to 1

Das (2017) 1

Relative codon
adaptation
(RCA)

RCAxyz � f(x,y,z)
f1(x)f2(y)f3(z), RCA � (∏L

i�1RSAxyz(i))1/L , where
fxyz is the observed relative frequency of codon xyz in any
reference gene set, fi(m) is the observed relative frequency of
base m at codon position i in the same reference set and L is the
length of the query sequence

The RCA index
calculates the
anticipated frequency
of a codon within a
provided reference set
by considering the
positional base
frequencies. Then, it
assesses codon
adaptation by
comparing the
observed codon
frequency with the
anticipated frequency

The score of the RCA
ranges from 0 to 2

Fox and Erill
(2010)

107

Codon
deviation
coefficient
(CDC)

The calculation of the metric can be found in the original source The index takes into
account the nucleotide
composition of the
sequence, GC content,
and purine content.
CUB is estimated
using the cosine
distance between the
expected and observed
codon usage vectors.
Assessing the
statistical significance
of results using
bootstrap resampling

Values range between 0 and
1: value 0 - no bias, 1 -
maximum bias

Zhang et al.
(2012)

62

Index of
Translation
Elongation
(ITE)

ITE � ∑Ns

ei�1 Fi ln wi∑Ns

i�1Fi

, wi � Si
Max(Si ), where Fi is the frequency of

codon i, Ns is the number of sense codons (excluding those in
single-codon families)

CAI-like index, but it
involves determining a
weight for each codon
by considering its
frequency within the
NNR and NNY codon
subfamilies in the
reference set.
Subfamilies are
distinguished due to
different translation
by different tRNAs
and susceptibility to
different mutational
errors

ITE values range between
0 and 1. A greater score is
assigned to genes
containing codons that are
more commonly found in
highly expressed genes

[25] 136

Synonymous
codon usage
order (SCUO)

SCUO � ∑ni
i�1
( ∑ni

j�1xij∑18

i�1∑ni
j�1xij

)SCUOi, SCUOi � Hmax
i −Hi

Hmax
i

where j is the

codon i-th amino acid. SCUOi is the SCUO for i-th amino acid
in each sequence and Hi and Hmaxi are the entropy and

maximum for an i-th amino acid in a sequence

The SCUO index
assesses how much a
sequence deviates
from a uniform
distribution, using
Shannon entropy as a
basis. It involves the
normalized difference
between the
maximum entropy
and the observed
entropy

SCUO the value varies
between 0 and 1, and higher
values indicate a stronger
codon usage bias

Wan et al.
(2006)

21
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An alternative approach suggests that the optimal structure will
possess the maximum number of chemical bonds (Wayment-Steele
et al., 2021). The AUP (Average Unpaired Probability) and SUP
(Sum of Unpaired Probabilities) metrics, employed to assess RNA
stability against hydrolytic degradation, operate under the premise
that structures formed by paired bases exhibit lower susceptibility to
hydrolysis.

Cluster analysis discovered that different mRNAs preferentially
use different types of codons. Some mRNAs predominantly use
optimal codons, while others prefer non-optimal codons.
Furthermore, they observed that mRNAs with a higher
proportion of optimal codons tend to be more stable, while those
with a lower proportion of optimal codons are more unstable. Based
on conducted experimental research, a metric called the codon
stability coefficient (CSC) has been proposed. It is calculated as

the Pearson correlation coefficient between the frequency of each
codon and mRNA half-lives (Presnyak et al., 2015).

In the standard genetic code, the first two positions of a codon
play a decisive role in coding an amino acid, while the third position
is variable for one amino acid. Collection of metrics developed GC1,
GC2, and GC3 represents the frequency of G + C usage at the first,
second, and third positions, respectively (Stenico et al., 1994).
Another evaluation derived from RSCU is the Average RSCU
Ratio (ARSCU) (Chamani Mohasses et al., 2020). Its noteworthy
feature involves considering the base at the third position of the
codon. The optimization of protein expression often involves the
frequent usage of GC content. The model of post-transcriptional
mRNA regulation involving P-bodies, 5′-3′ exonuclease XRN1,
RNA helicase DDX6, and enhancer of decapping PAT1B shows
that GC-rich coding sequences (CDS) result in higher protein
production compared to AU-rich ones, and are controlled by a
mechanism involving degradation factors DDX6 and XRN1 (Courel
et al., 2019). On the contrary, reducing the GC content in the 5′-
UTR leads to an increase in free energy and also enhances protein
yield, presumably due to mRNA destabilization in the translation
initiation region and greater accessibility of the ribosome binding
site (Dewi and Fuad, 2020). The GC3 content varies depending on
the type of tissue but is not an exhaustive characteristic for tissue-
specific gene separation (Plotkin et al., 2004). GC3 codons are also
associated with a longer half-life of mRNA (Kudla et al., 2006; Hia
et al., 2019).

2.3 Metrics for adaptation to tRNA pool

Codon usage bias is closely linked to translational selection,
which is the process of selecting codons that match abundant
tRNAs, the molecules responsible for carrying amino acids
during protein synthesis. Highly expressed genes tend to use
such preferred codons, resulting in enhanced translation rates
and accuracy. Dittmar et al., 2006 showed that the expression
levels of nuclear and mitochondrial tRNAs vary between human
tissues, indicating tissue-specific translational selection. However,
minor differences in mouse mitochondrial RNA have only been
detected for cardiac tissue, while significant differences between the
central nervous system and other tissues have been demonstrated at
the level of tRNA isodecoders, i.e., transcripts with the same
anticodon but encoded by numerous different genes (Pinkard
et al., 2020). It is important to note that the strength of
translational selection varies across different organisms based on
their genome sizes and genomic tRNA content (Reis, 2004).

To account for the role of intracellular tRNA content in
translation efficiency, the following indices have been developed:
P2index (Gouy and Gautier, 1982) and tRNA adaptation index (tAI)
(dos Reis, 2003).

Initially, tAI was only applicable to S. cerevisiae, but its
subsequent modifications, stAI (Sabi et al., 2017) and gtAI
(Anwar et al., 2023)—overcome this limitation by incorporating
species-specific weights through algorithmic approaches to find
extrema. gtAI demonstrated greater efficiency by employing a
genetic algorithm to identify the optimal set of weights. In its
calculation, indices ENc and RSCU are also incorporated. gtAI

TABLE 2 Example representation of the 4-letter amino acid sequence ADGY
(alanine-aspartic acid-glycine-tyrosine) via synonymous codons.
Nucleotide sequence of wild-type GCC-GAT-GGT-TAT. There are 4 codon
variants for the first and third amino acids, and 2 variants for the second and
fourth amino acids. Total 64 possible variants of nucleotide presentation of
this sequence.

Synonymous codon variants 1st 2nd 3rd 4th

Amino acid

A GCT GCC GCA GCG

D GAT GAC

G GGT GGC GGA GGG

Y TAT TAC

TABLE 3 An example of how the LCO method works to optimize the four
codons of the mRNA encoding ADGY (see Table 2). A probability is
calculated for all possible codons for a particular amino acid at a particular
position. Themost probable codons aremarked in bold. Accordingly: GCC-
GAT-GGT-TAT (wild-type nucleotide sequence)—would be optimized to
GCT-GAT-GGA-TAC (final LCO-optimised sequence).

Probability of finding a codon at a given position

codon Position 1 Position 2 Position 3 Position
4

GCT 0.4

GCC 0.17

GCA 0.24

GCG 0.19

GAT 0.68

GAC 0.32

GGT 0.26

GGC 0.22

GGA 0.36

GGG 0.16

TAT 0.39

TAC 0.61
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ranges from 0 to 1, where a higher value implies better adaptation of
the codon to the tRNA pool.

The P2 Index is a metric used for the quantitative assessment of the
efficiency of interactions between codons and their corresponding
anticodons during the translation process. Based on the frequency of
specific types of codons, values exceeding 0.5 indicate the presence of
translational selection influencing the coding sequence.

2.4 Algorithmic approaches and tools for
codon optimization

Currently, various optimization algorithms are utilized, such as
the genetic algorithm (Błażej et al., 2018), multi-objective artificial
bee colony (Gonzalez-Sanchez et al., 2019), Ribotree Monte Carlo
(Leppek et al., 2022), and dynamic programming (Pham et al., 2004;
Taneda and Asai, 2020), to identify codon combinations with
desired characteristics. In several studies, the use of recurrent
neural networks for codon optimization in heterologous protein
expression has been presented in Chinese hamster (Gricetulus
griseus) ovary cells (Goulet et al., 2023) and E. coli (Jain et al.,
2023). The Bidirectional Long Short-Term Memory (LSTM) deep
learning model has also been trained for E. coli (Fu et al., 2020).

Other studies applied machine learning methods for mRNA
stabilization, such as integrated deep learning-based mRNA
optimization (iDRO) (Jain et al., 2023), which provides a two-
step optimization for the open reading frame and the
untranslated regions. S. Castillo-Hair and G. Seelig trained a
model on the 5′UTR polysome profile dataset to predict
ribosome loading and protein expression (Castillo-Hair and
Seelig, 2022). The predictive power of such models strongly
depends on the quantity and quality of the training datasets. At
the same time, the accumulation of experimentally verified data sets
is often not as fast as the development of machine learning methods.
For example, to date (February 2024) only 6,142, of which 1,416 are
human, experimentally validated RNA structures have been
deposited in the Protein Data Bank (Berman, 2000). This
indicates that the high-precision prediction of RNA 3D structures
using machine learning methods may be accurate for training data,
but not for new data (Sato and Hamada, 2023).

Several software tools that utilize statistical and algorithmic
solutions are available for commercial and free use. Here, we
present some current tools that can be used for various tasks,
including those related to gene therapy: ATGme (Daniel et al.,
2015), OPTIMIZER (Puigbo et al., 2007), CHARMING (Wright
et al., 2022), %MinMax (Rodriguez et al., 2018), JCat (Grote et al.,
2005), Optipyzer (LeRoy and Roleck, 2023), IDT (Owczarzy et al.,
2008), gtAI (Anwar et al., 2023).

3 Codon optimization for gene
therapy vectors

Above, the elucidation of metrics and principles related to codon
optimization has been expounded. At the same time, it should be
noted that the resources required to test the functionality of in silico
predicted RNA variants significantly exceed the cost of the
prediction itself. For this reason, studies often mainly present

unconfirmed hypotheses in in vitro or in vivo experiments.
Nevertheless, we present below some examples where codon
optimization has been successfully applied in vitro. Proceeding to
in vitro studies, it should be noted that gene therapeutics consist of a
delivery vector and a therapeutic gene. Currently many types of
vectors are used as a transgene vehicle (e.g., lipoplexes (Chen et al.,
2016), polyplexes (Hayat et al., 2019), virus-like particles (Pitoiset
et al., 2017)).

Some of these vectors are a cassette with the selected viral genes,
others do not contain nucleic acids. In some cases, wild-type viral
genes in the gene therapy vector are not optimized for efficient
application (Bainbridge et al., 2008). At the same time, codon-
optimized variants of these sequences increase the efficacy of gene
therapy, although they may lead to unfavorable results such as
undesirable conformational changes and subsequently alterations in
protein activity and function. Examples of codon optimization of
adenoviral (Coughlan, 2020), retroviral and lentiviral vectors
(Breckpot et al., 2010) are discussed below.

Since adeno-associated vectors have recently become the most
widely used platform for gene transfer (Mendell et al., 2021) and
adenoviruses have long been successfully used to deliver genes
(Bulcha et al., 2021), we will consider the application of
optimizations on their example.

It has been shown that in adenoviruses, the genes responsible for
highly abundant late structural proteins tend to use codons
frequently used in humans (optimal codons), while early
regulatory use less optimal codons (Villanueva et al., 2016).
However, the adenoviral fiber protein specifically uses suboptimal
codons for efficient viral replication. Surprisingly, analysis of
transgenes expressed in oncolytic adenoviruses, that are used for
the oncoselective expression of a wide range of therapeutic
molecules (de Sostoa et al., 2019; Huang et al., 2019) shows that
most transgenes also use suboptimal codons. This contradicts the
recommendation to use optimal host codons in transgenes to
maximize gene expression. The study investigates the impact of
transgene codon usage on viral fitness and finds that transgenes with
higher GC3 content (optimal codon usage) have higher gene
expression and viral replication, while those with lower
GC3 content have lower expression and replication (Núñez-
Manchón et al., 2021). By tuning the codon usage of transgenes,
it is possible to achieve better transgene expression without
compromising viral replication, thus optimizing the
therapeutic outcome.

In the development of gene therapies, the problem arises of
achieving high titers and a high ratio of empty to full capsids in viral
vectors. One of the solutions to this obstacle is codon optimization of
viral genomes encoding capsid proteins and assembly proteins.
Thus, not only transgenes but also the coding sequences of the
viral vector itself are subjected to codon optimization. For AAV-
based (adeno-associated virus) vectors a novel codon optimization
method was presented (Localized Codon-Optimization or LCO)
(Cabanes-Creus et al., 2019).

This method aims to preserve functional elements of the capsid
genes and improve capsid shuffling efficiency for AAV engineering.
The LCO algorithm performs localized optimization of codons at
each position independently, based on the usage frequency of
codons observed in the input variants of AAV sequences. A
codon usage frequency table is generated for each amino acid
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position, and this table is used to optimize individual sequences
(Table 3). The LCO-modified capsid genes showed increased
sequence identity between parental AAV capsids and novel AAV
capsid variants.

Functionality tests demonstrated that the optimized capsids
retained their function, and transduction efficiency was similar to
unoptimized counterparts. The LCO method also improved the
efficiency of capsid shuffling, resulting in a highly shuffled library
with increased complexity and reduced size of donor sequence
segments. The shuffled clones generated using LCO-encoded
capsids demonstrated successful transduction, indicating the
effectiveness of LCO in generating novel AAV variants.

Ironically, the extensive use of codon optimization occurred
simultaneously with abundant research findings that revealed the
impact of synonymous mutations on protein function. This has been
shown on a variety of proteins (Buhr et al., 2016; Kirchner et al., 2017).

The mechanism being discussed involves the comparison between
codon-optimized (CO) andwild-type (WT) variants of a protein named
FIX (coagulation factor IX). The results highlight that the CO and WT
FIX variants exhibit distinct conformations, suggesting that the codon
optimization process has influenced the protein’s structure. Ribosome
profiling analyses uncover altered ribosomal distribution patterns and
local translational kinetics in the CO variant when compared to theWT

variant. Notably, these differences are unique to the CO FIX variant, as
control genes demonstrate comparable ribosome distribution profiles
(Alexaki et al., 2019a).

Despite the observed differences in translational kinetics, the overall
efficiency of protein synthesis between the CO and WT variants
remained similar. This finding is consistent with previous studies
conducted in vitro (outside of a living organism) and suggests that
the rate of protein synthesis is comparable between the two variants.
The researchers propose that differences in translational kinetics within
these domains may contribute to the observed conformational
differences between the CO and WT FIX variants.

Codon optimization can be approached not only by a global
view of codon usage in general, but also by a local optimization for
each individual position in a particular amino acid. Moreover, it is
also important to check that the functions of the essential elements
and the optimized protein of interest remain unchanged.

4 The effect of codon optimization on
immunogenicity

The immune response to an administered foreign substance or
molecule can be defined as immunogenicity. It should be noted that

FIGURE 2
To develop effective gene therapies, a delicate balance must be maintained in terms of increasing or decreasing immunogenicity. On the one hand,
excessive immunogenicity reduces the efficacy of a gene therapy product because less protein is produced in the corresponding tissues. Therefore, there
are approaches to reduce excessive immunogenicity (upper panel). On the other hand, for certain classes of gene therapy products that target the
development of an immune response (e.g., mRNA vaccines), methods are used to increase immunogenicity (lower panel).
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higher immunogenicity increases the efficacy of the drug in some
cases, but decreases it in others (Figure 2). For example, the purpose
of immunization is to generate an immune response against a
pathogen. In this case, methods should be used to increase the
immunogenicity of the drug. It should be noted that in the
development of mRNA vaccines, an excessive overreaction of the
immune system is undesirable due to possible damage to the human
organism (Igyártó and Qin, 2024) and should be taken into account
during codon optimization. On the other hand, if a transgene
introduced into the organism is intended to lead to the
production of the corresponding protein, any degree of
immunogenicity will reduce the effectiveness of the therapy. The
innate and adaptive immune response to gene therapy may vary
depending on the source of immunogenicity. These may be factors
related to the capsid of the virion or to the viral genome. In relation
to the capsid, binding of TLR2 or TLR9 can potentially activate the
innate immune response and initiate the MyD88 signaling cascade,
which in turn stimulates the production of proinflammatory
cytokines such as TNF-alpha or induces the synthesis of IFN-
gamma (Yang et al., 2022). Depending on the composition of the
viral vector, the innate immune response can lead to enhanced
adaptive immune responses. For example, AAVs, which are often
used as gene therapy vectors, circulate naturally between humans.
As a result, most people develop antibodies against natural AAV
serotypes due to previous exposure. These antibodies are even
known to cross-react with engineered vectors (Boutin et al.,
2010). As a result, these antibodies can lead to either
complement activation or neutralization of the capsid. The
adaptive immune response is characterized by the degradation of
the capsid protein by the proteasome and peptide presentation on
MHC class I molecules. CD8+ cytotoxic T-cell lymphocytes can bind
to the MHC, which leads to cell death (Martino et al., 2013). Peptide
presentation on MHC class II molecules after phagocytosis and
proteolysis can be recognized by CD4+ T lymphocytes, which can
then stimulate the proliferation of B cells and the production of
capsid-specific antibodies (Li et al., 2013). Studies have shown that
plasmacytoid dendritic cells (pDCs) and conventional dendritic cells
(cDCs) co-operate to achieve cross-priming of CD8+ T cells (Rogers
et al., 2017). pDCs recognize the AAV genome via TLR9, while cDCs
present the antigen on MHC I. The binding of cytokine-produced
IFN to its receptor on cDCs is necessary for this process, indicating a
direct relationship between pDC-produced cytokines and the
activation of cDCs. Cross-priming of CD8+ T cells against AAV
capsids requires CD40−CD40L co-stimulation, which is performed
in addition to T1 IFN from CD4+ Th cells (Shirley et al., 2020b).

After viral uncoating, TLR9 receptors can recognize
unmethylated CpG motifs in the released single-stranded DNA,
which also leads to activation of the innate immune system and
stimulates cytokine production. The humoral and cellular innate
immune responses described above for AAV capsids also occur for
the transgene protein. The adaptive immune response can depend
on various factors such as the target tissue, vector design and dose.
Depending on the specificity of the promoter, there is a potential risk
of immunogenicity (Shirley et al., 2020a). For example, a ubiquitous
promoter can increase the risk of an adaptive cellular immune
response of target and non-target cells (Sun et al., 2005).

It should be noted that the appearance of a foreign protein in the
human organism is associated with the development of autoimmune

diseases due to the similarity of individual epitopes of foreign and
self proteins (Rojas et al., 2018). For example, it was recently shown
that the same antibodies cross-react with the Epstein-Barr virus
protein and the human alpha-crystallin B protein (Thomas et al.,
2023). This phenomenon of molecular mimicry could be associated
with the development of multiple sclerosis. The possibility of
molecular mimicry of proteins resulting from the translation of
the nucleic acids used must therefore be taken into account in the
development of gene therapeutics. As already mentioned, codon
optimization of the RNA can influence the structure of the translated
protein (Alexaki et al., 2019a). As a result, depending on the different
variants of the synonymous substitutions, the presentation of
different epitopes of the same protein is possible.

It is of interest to reduce these CpG motifs to circumvent the
possible human immune response, which can be achieved by
codon optimization. For example, various elements of an AAV
vector such as the CMV enhancer and promoter, ITR regions, UTR
regions and the therapeutic transgene itself may contain CpG
motifs. The CpGs within the promoter sequence can be removed,
but with unpredictable effects on the activity and specificity of the
promoter. For example, the authors have shown that the removal
of CpGs within the CMV promoter gene significantly reduces its
activity (Yew and Cheng, 2004). Although CpGs can be removed
from the expression cassette, as in the case of human coagulation
factor IX (hFIX) (Bertolini et al., 2021), this does not always
increase efficiency—CpG elimination had only reduced antibody
formation against the transgene and not against the capsid itself.
There are several studies in which this strategy was used, but
mostly with a modification of the transgene. They have shown that
the elimination of CpG motifs may lead to a significant reduction
in the CD8+ T cell response (Yew and Cheng, 2004; Faust et al.,
2013; Herzog et al., 2019; Wright, 2020; Bertolini et al., 2021;
Konkle et al., 2021).

Several codon optimization strategies, including the chemical
modification of nucleosides (Karikó et al., 2005) and the
incorporation of pseudouridine (Karikó et al., 2008; Anderson
et al., 2010; Thess et al., 2015), have been shown to improve
translation and reduce the immune response to mRNAs. pDCs
exposed to such modified RNA exhibit a significant reduction in
cytokines and activation markers. Nucleoside modification at a
single position in a chemically synthesized oligoribonucleotide
(ORN) is sufficient to abrogate TLR activation. In addition, the
incorporation of pseudouridine in particular has been shown to
facilitate evasion of recognition by Toll-like receptors (Karikó et al.,
2005), although the molecular differences contributing to this
mechanism has not yet been elucidated. Although the
implementation of pseudouridine increases the stability of the
mRNA and its translational capacity, it is important to note the
disadvantages of replacing uridine with pseudouridine (Xia, 2021;
Mueller, 2023). A recent study has shown that the presence of
pseudouridine in IVT mRNA increases ribosomal + 1 frameshifting
during mRNA translation. In addition, new peptides were generated
that triggered an immune response (Mulroney et al., 2024). The
presence of pseudouridine in the stop codon region suppresses
translation termination and allows non-canonical base pairing,
which is particularly detrimental for in vitro transcribed mRNAs
(Loomis et al., 2016). The negative effects of pseudouridine
synthases have been associated with various cancers (Xue et al.,
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2022) and autoimmune diseases (Festen et al., 2011). This strongly
suggests that the influence of codon optimization and pseudouridine
incorporation onmRNA expression needs to be further investigated.
A limitation of the present review is that it does not focus on a
detailed description of the specific effects of codon optimization on
the mRNA vaccines against COVID-19 per se that have been
introduced into clinical practice (reviewed in Xia, 2021), but aims
to discuss the advantages and disadvantages of the different options
for the use of codon optimization in gene therapy in general.

To summarize, a common strategy to avoid immunogenicity
is to eliminate redundant CpG motifs, implement chemical
modifications of ORNs and replace uridine with
pseudouridine. However, it should be noted that the
implementation of codon optimization to eliminate CpG
motifs and pseudouridine modification must be performed
strategically to avoid the negative consequences of both
approaches. Given the various unresolved factors leading to
potential immunogenicity as a consequence of gene therapy,
developing metrics for prediction is a complicated task.
Nevertheless, a recent report (Wright, 2020) proposed a
metric for prediction focusing exclusively on CpG motifs and
their potential immunogenicity. Three formulas were developed
that take into account the amount of unmethylated CpGmotifs in
the vector sequence. Known immunostimulatory sequences
commonly used in DNA vaccines were also considered in the
development of the formulae (Bode et al., 2011). Although these
formulae still need to be improved for full validation and accurate
prediction, they reflect the beginning of a deeper understanding
of how codon optimization can contribute to the reduction of
immunogenicity.

5 Experimental testing of codon
optimized sequences

There are numerous strategies for optimizing codons in nucleic
acids. The methods mentioned above enable the creation of
numerous optimized sequence variants. However, experimental
verification of properties such as mRNA stability and protein
expression levels is necessary before further experimentation can
be conducted. Depending on the goals and available resources, it
may be possible to select the best candidates based on chosen criteria
from the range of design variants. These candidates can then be
examined using routine laboratory methods. Alternatively, a pool of
hundreds of sequences can be studied, in which case high-
throughput protocols must be developed (Figure 3).

When studying a small number of variants, it is possible to
determine the expression level separately for each construct after
transfecting the cells. To quantify transgene expression in this case,
the most common method is to use target-specific primers with
cDNA obtained from RNA by reverse transcription as a matrix and
perform qPCR (Leppek et al., 2022). Expression can be quantified at
both the transcriptional and translational levels. The latter involves
the analysis of synthesized proteins and can be performed using
antibodies specific to the target protein. For instance, Zhang (Zhang
et al., 2023) described the properties of the optimized structure of the
SARS-CoV-2 virus S protein using flow cytometry. A possible
alternative method for determining protein concentrations is to
use SDS-PAGE gels for Western blot analysis, along with specific
antibodies (Raab et al., 2010; Fath et al., 2011).

Although codon optimization of the target sequence can provide
certain benefits, it may also result in reduced mRNA stability in

FIGURE 3
Methods for the analysis of codon-optimized sequences. It should be noted that when studying the properties of a small number of variants of
mRNA constructs, certain methods of analysis are used, while when comparing a large number of variants of mRNA constructs at the same time, others
are used.
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solution, which impairs its functionality. Therefore, it is necessary to
experimentally confirm the stability of the structure of optimized
nucleic acids. The stability of mRNA molecules is inversely
proportional to their degradation rate in solution. To determine
the degradation rate, mRNAs are incubated in PBS buffer containing
Mg2+ ions. Samples are collected at various time intervals of 1–2 h,
and the number of fragments produced is estimated using capillary
electrophoresis (Zhang et al., 2023) or polyacrylamide gel
electrophoresis with urea. Therefore, the RNA is less stable if it
degrades more quickly after being incubated in solution.

However, the laboratory approaches described above are time-
consuming when testing multiple variants of codon-optimized
sequences. In light of this, there is a great need to create high-
throughput methods for studying many sequences simultaneously.

Most methods that allow mass screening of sequences follow a
general principle: a unique barcode, a sequence of several
nucleotides, is inserted into each variant. All the sequences to be
tested can then be pooled and processed in a multiplex format. The
presence of the barcode makes it possible to identify a variant using
high-throughput sequencing platforms after all the necessary
protocol steps have been completed.

Massively parallel variant analysis requires the synthesis of a
library of DNA templates. The next steps in the study can be
performed in two ways. The first involves transcription and
modification (3′ polyA tail and 5′ m7G capping) in vitro,
followed by transfection of the resulting mRNA pool into cells
for further experiments. The “PERSIST-seq”method was developed
based on this approach. It enables the simultaneous evaluation of
stability and translation efficiency of over 200 mRNA molecules,
making it a convenient tool for messenger RNA development
(Leppek et al., 2022). In this case, the design of the DNA must
take into account the presence of a promoter in the initial sequence.
The second approach involves creating a vector library with cassettes
that contain the sequence under study and regions of homology. The
cells are then transfected with the library, and the sequences are
integrated into the genome using CRISPR/Cas. This process enables
the direct synthesis of mRNA within the cells. A study of the motifs
that cause ribosome slowdown in a yeast model system describes a
similar approach (Chen et al., 2023). The next steps for experimental
validation in both cases involve isolating RNA from cell culture,
analyzing it through high-throughput sequencing, and quantifying
the results. To identify inserts in the pool of isolated nucleic acids,
unique barcodes are introduced into the library construct, which is a
common aspect of the described strategies.

The presence of unique barcodes in the original DNA matrices
allows quantitative assessment of the expression level for each
individual variant using high-throughput RNA sequencing.

Translation of sequence variants has been demonstrated to be a
crucial determinant in mammalian gene expression (Burke et al.,
2022). However, genomic expression profiling alone cannot reveal
the precise regulation provided by post-transcriptional mechanisms,
such as 5′ capping, splicing, polyadenylation, nuclear export,
translation, and decay. To overcome this limitation, a polysome
profilingmethod can be used to isolate ribosome-free and polysome-
associated RNAs for further independent analysis (Pereira et al.,
2018) This method involves separating mRNA in a sucrose gradient
into two fractions: polysome-bound and polysome-free. The mRNA

is then isolated from both fractions and sequenced using one of the
available high-throughput platforms.

When studying multiple variants, stability assessment is also
important. To identify full-length molecules that have not degraded,
it is necessary to amplify the cDNA that was reverse transcribed
from the RNA and then sequence it to quantify the amount of intact
mRNA at each time point. This method can evaluate mRNA stability
in both solution and cells. The solution replicates the conditions in
which the molecules may be present during therapy, typically high
pH and positively charged media. It is important to note that the
outcomes obtained after incubation in solution differ significantly
from those obtained after isolation from cells. This is likely due to
cellular mechanisms of RNA degradation (Leppek et al., 2022).

Therefore, there are approaches that allow for the evaluation of
the efficiency and stability of nucleic acid sequences obtained during
codon optimization. The choice of a particular method depends on
the number of variants to be analyzed. If there are only a few
variants, it is possible to describe the properties of each variant
separately, providing a fairly accurate understanding of its
characteristics. When dealing with hundreds or thousands of
variants, high-throughput methods are necessary. This allows for
a pool of samples to be tested instead of individual samples, greatly
increasing the productivity of experimental work. It is important to
note that massively parallel sequencing methods provide high
accuracy analysis, while polysome profiling can offer additional
insights into the impact of codon optimization on the final
product’s quality.

6 Future directions

Currently, there are some gene therapies that use different codon
optimization metrics and are approved by the FDA (FDA, 2024). To
analyse other therapies that are in clinical trials and where codon
optimization has been used, we conducted a thorough examination
of the data available on ClinicalTrials.gov (ClinicalTrials.gov, 2024)
until December 2023. A systematic search strategy was devised using
the keyword “gene therapy” in the Condition/disease field. In
addition to the specified search criteria, it is important to note
that the term “vector” was included in the “Other terms” considered
in the search. The algorithm did not include any specified values for
the “Intervention/treatment” and “Location” categories in the search
process. After searching, the algorithm automatically incorporated
synonyms for the given query: gene: “Genes,” gene therapy: “Gene
transfer”; “Gene Transfer Procedure,”, therapy: “treatment”;
“Therapeutic”; “therapeutics”.

Furthermore, a comprehensive search was conducted using the
specific only Condition/disease of “codon optimized” and excluded
any specified values for the “Other terms,” “Intervention/treatment”
and “Location” categories in the search process. However, it is
crucial to mention that studies explicitly referring to monoclonal
antibodies and enzymes as drugs in the Study URL and Brief
Summary columns were manually excluded from the sample.
This careful exclusion strategy ensured that the selected studies
focused specifically on codon optimization. The search was
conducted over a period of 20 years to capture an extensive
range of relevant clinical studies.
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Of the 395 clinical studies analyzed, only 12 contained
information on codon optimization (Figure 4).

Prior to experimental testing of codon-optimized sequences
using any of the aforementioned methods, it is essential to
synthesize these sequences, often in large quantities. The most
widely used method currently is phosphoramidite synthesis,
which involves the interaction of nucleotide phosphoramidite
monomers protected by acid-labile groups with an activating
agent, binding to the growing oligonucleotide (Sinyakov et al.,
2021). There are two main types of implementation for this
approach, depending on the equipment used: synthesis on
columns or on microarrays. The former option allows for the
synthesis of oligonucleotides at a relatively low cost and with an
error rate of 1 per 600 base pairs or less on average. However, it does
not provide sufficient throughput for mass synthesis of
oligonucleotides (Ma et al., 2012). Furthermore, if the sequence
of interest exceeds 200 base pairs (some estimates suggest 300
(Palluk et al., 2018)), an additional assembly step via molecular

cloning is required (Casini et al., 2015). These factors significantly
limit the speed of testing and represent the primary bottleneck in
experimental design.

This problem can be solved by integrating higher-throughput
oligonucleotide microarray synthesisers into laboratory practice
(Song et al., 2021). Commercially available technologies are also
based on phosphoramidite synthesis, albeit with slight
modifications. Although microarray-based nucleotide synthesis is
more error-prone due to heterogeneity and edge effects, it enables
the synthesis of oligonucleotide pools and also reduces the cost per
nucleotide by 2–4 orders of magnitude compared to column
synthesis (Kosuri and Church, 2014). This suggests that advances
in de novo DNA synthesis and experimental verification of codon-
optimized sequences are likely to be associated with the
microarray approach.

Since 2020, a trend towards an increase in the proportion of
codon-optimized studies has been observed. In 2020, 1 in 34 (2.9%)
clinical trials used codon optimization, compared to 4 in 42 (9.5%)

FIGURE 4
Dynamics of the number of studies reported on clinicaltrails.gov testing gene therapeutics with and without codon optimization by year (2014-
2023). Since 2020, a trend towards an increase in the proportion of studies with codon optimization can be observed.

FIGURE 5
The secondary structure of RNA reduces the efficiency of translation. The process of translation initiation is completed by the recognition of the start
codon by the 43S preinitiation complex and the assembly of the ribosome. If the region of the start codon is hidden in the secondary structure of the RNA
(A), translation is likely to be less efficient. At the same time, if there are no pronounced secondary RNA structures in the region of the start codon (B), the
probability of translation initiation increases.
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in the first 11 months of 2023 (Figure 4). The main aim of codon
optimization was to increase the level of transgene expression and
the stability of the mRNA. In addition, a study using codon
optimization to reduce immunogenicity was reported in 2021.

To effectively achieve the goals of codon optimization in
research, it is important to follow established metrics. However,
today there is no single generally accepted standard for codon
optimization. Therefore, it is possible to use a large number of
combinations of the methods described above to create optimal
RNA variants. Some of these approaches significantly increase the
efficacy of gene therapeutics. Therefore, several drug options have
been registered in clinical trials, for example.

Codon optimization has played an important role in the
development of RNA-based COVID-19 vaccines. Current
research efforts are focused on further advancing the field of
codon optimization for COVID-19 vaccines to address new
strains of the coronavirus (Wu et al., 2023). Unfortunately, it was
not possible to provide here the specific metrics used for codon
optimization in the above-mentioned studies for commercial
product development. This limitation results from the intellectual
property of the original codon-optimized constructs. In this article,
we have explored various metrics for assessing codon usage, based
on both the composition of the coding sequence and the
composition of a reference set of genes. One widely used metric
is the Codon Adaptation Index (CAI). Although these measures
provide useful information about adaptation to the host organism,
they do not necessarily indicate an increase in translational
efficiency due to selection pressure (Rahman et al., 2018; Feng
et al., 2022). Furthermore, CAI is also interpreted as an indicator
of the speed of translational elongation (Kudla et al., 2009). In turn,
an increase in translation speed may not necessarily result in the
production of a protein with similar properties in greater quantities.

Apparently, during translation, the most important regions
for codon optimization are the areas around the start codon. This
is supported by work demonstrating the contribution of the CDS
position near the start codon (Höllerer and Jeschek, 2023;
Nieuwkoop et al., 2023) and the 5′UTR sequence region
(Capell et al., 2014). The efficiency of translation is
significantly dependent on the energy of mRNA folding,
particularly in the vicinity of the start codon (Gu et al., 2010).
This is associated with the fact that unfolding more stable RNA
secondary structures require greater energy before the initiation
of translation (Figure 5). Additionally, the presence of hairpin,
stem-loop, and pseudoknot structures in mRNA can hinder
ribosome translocation and tRNA binding, thus impeding
translation elongation (Kozak, 2005; Bao et al., 2020).

Thus, advancements in gene therapy could be directed towards a
more comprehensive exploration of the impact of codon
optimization on the characteristics and secondary structure of

mRNA.Also, it is possible to apply optimization metrics locally to
the start region, but there are limitations since many of them are
based on codon usage frequency without taking into account the
features of untranslated regions.

In addition, consideration of local codon optimization is a
critical aspect that must be taken into account during codon
optimization for a particular protein of interest. Furthermore,
essential protein functions may change due to the possible
influence of codon optimization on the conformation of the
resulting protein, which should also be taken into account.
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