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ground reaction forces, tibial
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This study presents a comprehensive review of the correlation between tibial
acceleration (TA), ground reaction forces (GRF), and tibial bone loading,
emphasizing the critical role of wearable sensor technology in accurately
measuring these biomechanical forces in the context of running. This
systematic review and meta-analysis searched various electronic databases
(PubMed, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect) to identify
relevant studies. It critically evaluates existing research on GRF and tibial
acceleration (TA) as indicators of running-related injuries, revealing mixed
findings. Intriguingly, recent empirical data indicate only a marginal link
between GRF, TA, and tibial bone stress, thus challenging the conventional
understanding in this field. The study also highlights the limitations of current
biomechanical models and methodologies, proposing a paradigm shift towards
more holistic and integrated approaches. The study underscores wearable
sensors’ potential, enhanced by machine learning, in transforming the
monitoring, prevention, and rehabilitation of running-related injuries.

KEYWORDS

impact load, tibial acceleration, inertial measurement unit (IMU) sensor, machine
learning, running

1 Introduction

The external loading generated during locomotion is essential for generating
momentum necessary for movements such as propelling, braking, and changing
direction. Metrics of ground reaction forces (GRF) are crucial in understanding the
biomechanical mechanisms during running (Johnson C. D. et al, 2020). This
understanding plays a pivotal role in preventing musculoskeletal injuries and in
evaluating rehabilitation processes (Van der Worp et al., 2016; Willwacher et al., 2022;
Pan etal,, 2023; Yang et al., 2023). Proper analysis and interpretation of these reaction forces
can provide invaluable insights into the efficiency and safety of movement, thus informing
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strategies for injury prevention and the effectiveness of
rehabilitation techniques (Zadpoor and Nikooyan, 2011; Johnson
C. D. et al,, 2020).

The piezoelectric force plate is a widely recognized and direct
method for assessing external loading in biomechanical contexts
(Novacheck, 1998). This technology operates on the principle that
an applied force results in sensor distortion on the plate, leading to
measurable voltage changes proportional to the force’s intensity
(Bobbert and Schamhardt, 1990).

instrumental in capturing three-dimensional force and moment

These force plates are

data, which are essential for conducting inverse dynamics
analyses (Delp et al, 2007). Inverse dynamics is a standard
process in motion analysis where the net moment at body joints
is calculated based on their acceleration and velocity. This approach
is crucial for understanding the mechanics of movement and the
forces acting upon the body’s joints (Delp et al., 2007). In addition,
the assessment of static loads is also considered a non-negligible
issue in postural control rehabilitation and athletic training. A
previous study (Martelli et al, 2011) underscores the critical
influence of sub-optimal neuromotor control strategies on the
internal load dynamics of the hip joint during regular walking
activities, suggesting a potential for significantly elevated fracture
risks beyond what is estimable through external loading
measurements alone.

Gait lab-based kinetic measurements have been used as
indictors to assess tibial acceleration (TA), which is utilized for
quantifying shock attenuation (Hennig and Lafortune, 1991;
Lafortune et al., 1995; Xiang et al., 2022¢). The impact shock
has been discussed linked with the incidence of chronic overuse
injuries (Hennig et al., 1993). Given the advances of wearable
technology in the past twenty decades, trial-axis acceleration and
angular velocity could be measured from accelerometer and
gyroscope in a single inertial sensor (Afaq et al., 2020; Xiang
et al., 2022d; Xiang et al., 2022¢; Mason et al., 2023; Xiang et al,,
2024; Yamane et al, 2024). This made segment acceleration
measurements easier and more convenient, shifting the question
to: Can we use portable and affordable inertial sensors to evaluate
external loading rather than the force plate, which is
conventionally embedded in the floor in a gait lab and is cost-
prohibitive (Sheerin et al., 2019; Hutabarat et al., 2021; Xiang
et al., 2022e)?

10.3389/fbioe.2024.1377383

Many studies have been conducted attempting to address this
question. Johnson et al. (2023) demonstrated a moderate correlation
between vertical loading rates and peak vertical TA during walking
with load carriage. Tenforde et al. (2020) found that vertical TA
could seers as a reliable indicator of load rates in runners with
injuries, regardless of their varying foot strike patterns, based on the
correlation of coefficient. The findings from Johnson et al. (2021)
showed a strong correlation between TA and instantaneous loading
rates in the medal-lateral axis while running on a treadmill with
rearfoot strike style. Van den Berghe et al. (2019) demonstrated axial
and resultant peak TA are highly correlated to peak vertical impact
loading rate across different overground running speeds.

Contrarily, recent empirical studies, such as the one by
Zandbergen et al. (2023), show no correlation between peak TA
and tibial compressive forces. Similarly, Matijevich et al. (2019)
demonstrated that metrics of GRF are not strongly correlated with
tibial bone load. Therefore, linking GRF metrics with tibial forces or
the risk of overuse injuries during running may be misleading
(Matijevich et al., 2019).

This leads to a paradox: if TA is an index of running injuries,
associated with impact loading rate, then why is there no correlation
between TA and tibial bone loading, which is a crucial parameter for
tibial stress fractures during running? In other words, while external
acceleration is associated with generated external force, it does not
correlate with internal force on tibial bone loading (Matijevich et al.,
2019; Sheerin et al., 2019; Zandbergen et al., 2023). Therefore, the
biomechanics or sports medicine community may need to
reconsider whether external acceleration should be an indicator
for running injuries, or if internal adaptation is more significant in
causing injuries (Matijevich et al., 2019) (Figure 1).

One of the most significant advancements in biomechanics
facilitated by wearable sensors is their capability to enable data-
driven approaches, offering portable and innovative solution
(Halilaj et al., 2018; Gholami et al., 2020; Hernandez et al., 2021;
Xiang et al., 2022e; Mason et al., 2023; Xiang et al., 2023). Notably,
the prediction of GRF metrics from inertial sensors using deep
learning algorithms has shown high accuracy, as evidenced in
studies (Ngoh et al., 2018; Johnson W. R. et al., 2020; Tan et al.,
2020). Similarly, projections of inner tibial bone load have been
successfully explored through machine learning (Matijevich et al.,
2020). Understanding the role of external TA in both external
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An illustration depicting (A) vertical tibial acceleration, (B) vertical ground reaction force, and (C) tibial force during running.
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impact loading and internal tibial bone loading, therefore, becomes
crucial (Matijevich et al., 2019). Enhancing the evaluation of these
factors through machine learning not only presents an intriguing
area of research but also holds substantial potential implications for
future applications in sports medicine, injury prevention, and
rehabilitation strategies (Zadpoor and Nikooyan, 2011; Johnson
C. D. et al, 2020; Xiang et al., 2022a; Xiang et al., 2022b; Gao
etal,, 2023; Lloyd et al., 2023; Uhlrich et al., 2023; Xiang et al., 2023).

This systematic review aims to bridge a critical gap in our
understanding of the relationship among GRF, TA, tibial bone
loading, and running-related injuries, a topic of significant
importance to both athletes and recreational runners. By focusing
on the burgeoning role of wearable technology in this domain, we
seek to analyze and synthesize recent advancements in this field,
considering their increased accessibility and application in both
research and practical settings. Our review will methodically
examine existing literature, employing rigorous criteria to
evaluate the validity and reliability of various measurement
techniques. Ultimately, this review endeavors to provide valuable
insights into running mechanics and injury prevention, potentially
informing future research directions, training methodologies, and
rehabilitative practices, thereby leveraging the latest advancements
in technology and data analysis.

2 Methods

The protocol of this systematic review was designed in
alignment with the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al.,
2010). Additionally, the protocol was officially registered with
PROSPERO (Registration Number: CRD42023483210).

2.1 Search strategy

PubMed, Scopus, SPORTDiscus, and IEEE Xplore electronic
databases were searched for the period from 2000 to November
2023, using the specified terms combined with the Boolean
operators outlined in Table 1. Additionally, relevant studies were
identified by reviewing bibliographies in academic articles. The
titles, abstracts, and full texts of the retrieved documents were
meticulously evaluated to determine their relevance. Only papers
published in English that specifically measured TA/tibial loading

TABLE 1 Electronic databases retrieve strategy.

Search items

10.3389/fbioe.2024.1377383

and GRF in the context of running were considered. Exclusion
criteria included papers that exclusively assessed GRF signals, those
with sensor placements other than the tibial region, and studies
involving participants using any form of aid or equipment
during running.

2.2 Eligibility criteria

In accordance with the Participants, Intervention, Comparisons,
and Outcomes (PICO) criteria, information was extracted from
thirteen included studies. This extraction focused on participant
details, correlation variables, and data-driven approaches. The
participant information encompassed the number of participants,
their gender, age, height, weight, and running speed during data
collection. The Pearson correlation coefficient was used for the
correlation evaluation in included studies. The correlation variable
included data calculated by the acceleration sensor and/or the force
plate, as well as running conditions (speeds and surfaces) for data
collection. Machine learning including deep learning were extracted
from the included studies. The calculation of the Vertical Average
Loading Rate (VALR) is based on the gradient of the initial impact
transient, specifically over its linear section, typically spanning from
20% to 80% of the vertical impact peak. In contrast, the Vertical
Instantaneous Loading Rate (VILR) is determined by identifying the
maximum slope between any two consecutive data points within the
same region of interest (Davis et al., 2015).

Two independent reviewers (Z.G. and L.X.) conducted the selection
process. Disagreements between these authors regarding article
inclusion were resolved through further discussion. In cases where
consensus was unattainable, a third reviewer (J.F.) was consulted for
resolution. Studies were excluded if they met the following criteria: 1)
Participants exhibiting physical injuries during testing; 2) TA measured
from the proximal tibia or medial aspect of the distal tibia; 3) Absence of
correlation or data-driven approaches; 4) Studies that scored below 75%
in the quality assessment. The collation of articles and the removal of
duplicates were carried out using EndNote X9 (Thomson Reuters,
Carlsbad, California, United States).

2.3 Quality assessment

The assessment protocol for appraising the quality of the
included articles was based on a modified version of established

Limit conditions

PubMed, Scopus, SPORTDiscus and IEEE Xplore (“wearable sensor” OR “inertial
sensor” OR “accelerometer” OR “acceleration” OR “IMU”) AND (“tibia*” OR “tibial
load*” OR “tibial force*” OR “tibial bone load*” OR “tibial bone force*” OR “tibial
compression force”) AND (“ground reaction force*” OR “reaction force*” OR “external
load*” OR “GRF” OR “loading rate” OR “impact loading” OR “impact peak” OR “active
peak” OR “braking force” OR “propulsive force”) AND (“running” OR “runner*” OR
“jog” OR “jogging”)

ScienceDirect (“wearable sensor” OR “inertial sensor” OR “accelerometer” OR “IMU”)
AND (“tibia” or “Tibial”) and “reaction force” OR “GRF”) and (“running” OR “runner”
OR “jogging”)

Bold values are electronic databases.
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scales in the fields of sports science, healthcare, and rehabilitation.
This approach, commonly used in analyzing studies in an exercise-
based training context, adopted the study quality scoring system
developed by Black et al. (2016). Two assessors, Z.G. and L.X,
independently employed this scoring system to evaluate the quality
of the graded articles. The results were then reviewed and confirmed
by a third reviewer (J.F.). The evaluation included nine distinct
criteria, each contributing to a cumulative score (range: 0-18). The
criteria were as follows: (1) inclusion criteria stated (score: 0-2); (2)
appropriate assignment of subjects (random/equal baseline); (3)
description of intervention; (4) definition of dependent variables;
(5) practicality of assessments; (6) practicality of training duration
(acute vs. long term); (7) appropriateness of statistics (variability,
repeated measures); (8) detailed results (mean, standard deviation,
percent change, effect size); (9) insightful conclusions (clear, concise,
future directions), with each criterion graded from 0 (no) to 1
(maybe) or 2 (yes). To maintain impartiality in the quality
assessment of the included studies, the scores were converted to
a percentage scale, ranging from 0% to 100%.

2.4 Data synthesis

2.4.1 Data processing and subgroup analysis
Fisher’s Z transformation is utilized in meta-analysis to
synthesize correlation coefficients from diverse studies. This
of the
coefficients, effectively converting them to a scale where they

transformation stabilizes the variance correlation
approximate a normal distribution. Consequently, this method
facilitates a more precise and dependable estimation of the overall
correlation across the compiled studies. In meta-analysis,
moderator analysis was performed to analyze the factors of
running surface (overground and treadmill running) and foot
strike patterns (RFS: rearfoot strike pattern, MFS: midfoot strike
pattern, and FFS: forefoot strike pattern). That might influence the
size or direction of the effect between vertical peak TA and GRF,
i.e., VALR and VILR.

The I’ statistic quantifies the percentage of total variation
across studies attributable to heterogeneity rather than random
chance. Conventionally, I* values of 25%, 50%, and 75% are
and high

heterogeneity, respectively (Higgins et al., 2003). Tau-squared

interpreted as indicative of low, moderate,
(%) serves as an estimate of the variance between studies within
the framework of a random-effects model, with larger > values
signaling increased heterogeneity. For all tests conducted, an alpha
level of 0.05 was established to determine statistical significance.
The meta-analysis was conducted using the Meta statistical
analysis package in R (version 4.3.2, R Foundation for

Statistical Computing, Vienna, Austria).

2.4.2 Sensitivity analysis

Sensitivity analyses were performed to identify potential factors
contributing to the observed high heterogeneity and to assess the
robustness of the synthesized results. This involved conducting the
analysis multiple times, each time sequentially excluding the study
with the lowest weight, and then the two studies with the lowest
weights, and so on, until the n-1 studies with the lowest weights were
excluded (where n equals the total number of included studies).

Frontiers in Bioengineering and Biotechnology
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Considering the diversity in the studies included in this review and
the variation in effect sizes from one study to another, random
effects models were employed in the meta-analysis to accommodate
these discrepancies.

3 Results
3.1 Search results

A total of 503 articles were identified via electronic databases
retrieve (PubMed = 81, SPORTDiscus = 149, Scopus = 120, IEEE
Xplore = 2, ScienceDirect = 151). Of these, 182 duplicate records
were removed, and a further 294 articles were excluded based on
the title and the abstract screening. Twenty-seven full-text articles
were then evaluated, with seven being excluded. Reasons for
exclusion included four articles not applying a correlation or
data-driven approach, two focusing on jumping and walking
studies, and one not addressing vertical direction. Five articles
were not included in the quantitative synthesis due to data
ineligibility for meta-analysis. The details of the search strategy
are presented in Figure 2.

3.2 Quality assessment

The quality appraisal ratings for each article are presented in
Table 2. Overall, the risk of bias was moderate. Methodological
quality scores ranged from 14 to 17 out of a possible 18. The average
quality assessment rate for the selected articles in this systematic
review was 86.75%. The highest average quality assessment among
the quality scores was 1.92 (Q2, Q4, and Q9), and the lowest was 1.38
(Q7). Additionally, seven articles were included in the meta-analysis
(Laughton et al.,, 2003; Greenhalgh et al., 2012; Zhang et al., 2016;
Cheung et al., 2019; Van den Berghe et al., 2019; Tenforde et al.,
2020; Bradach et al., 2023).

3.3 Study characteristics of data synthesis

As indicated in Table 3, seven studies included in this review
assessed the relationship between TA and GRF metrics (Laughton
etal., 2003; Greenhalgh et al., 2012; Zhang et al., 2016; Cheung et al.,
2019; Van den Berghe et al., 2019; Tenforde et al., 2020; Bradach
et al., 2023). Four studies (Zhang et al., 2016; Cheung et al., 2019;
Tenforde et al., 2020; Bradach et al., 2023) were conducted on a
treadmill, while three studies (Laughton et al., 2003; Greenhalgh
et al, 2012; Van den Berghe et al, 2019) involved overground
running. Two studies employed tri-axial accelerometers
(Greenhalgh et al,, 2012; Van den Berghe et al., 2019), one used
a bi-axial accelerometer (Cheung et al., 2019), and one used a
uniaxial accelerometer (Laughton et al,, 2003), while two other
studies utilized IMU sensors (Tenforde et al, 2020; Bradach
et al,, 2023). The frequency of IMU sensors was 1000 Hz in four
studies (Greenhalgh et al., 2012; Cheung et al., 2019; Tenforde et al.,
2020; Bradach et al., 2023), followed by 960 Hz in one (Laughton
et al.,, 2003), 400 Hz in one (Zhang et al, 2016), and 100 Hz in
another (Van den Berghe et al, 2019). Furthermore, the variable
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The Preferred Reporting ltems for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram illustrating the search strategy used in this review.

TABLE 2 Quality assessment scoring of 13 included studies.

Study Q1 ey (@K Q4 Q5 Q6 Q7 Q8 Q9 Total % Mata
Tenforde et al. (2020) +2 +2 +1 +2 +2 +2 +1 +2 +2 16 88.89 Yes
Cheung et al. (2019) +2 +2 +2 +2 +1 +2 +2 +2 +2 17 94.44 Yes
Laughton et al. (2003) +2 +2 +1 +2 +2 +1 +1 +2 +2 15 83.33 Yes
Van den Berghe et al. (2019) +1 +2 +2 +2 +2 +2 +2 +2 +2 17 94.44 Yes
Zhang et al. (2016) +1 +2 +1 +2 +1 +2 +2 +1 +2 14 77.78 Yes
Bradach et al. (2023) +1 +2 +1 +2 +2 +1 +2 +2 +2 15 83.33 Yes
Greenhalgh et al. (2012) +2 +1 +2 +2 +2 +2 +2 +2 +1 18 88.89 Yes
Matijevich et al. (2019) +1 +2 +2 +2 +2 +1 +2 +2 +2 16 88.89 No
Zandbergen et al. (2023) +2 +2 +1 +1 +2 +1 +1 +2 +2 14 77.78 No
Derie et al. (2020) +2 +2 +2 +2 +2 +2 +2 +1 +2 17 94.44 No
Komaris et al. (2019) +2 +2 +1 +2 +2 +2 +1 +2 +2 16 88.89 No
Tan et al. (2020) +2 +2 +2 +2 +2 +1 N/A +2 +2 15 83.33 No
Matijevich et al. (2020) +1 +2 +2 +2 +2 +2 N/A +2 +2 15 83.33 No
Average 1.62 1.92 1.54 1.92 1.85 1.62 1.38 1.85 1.92 15.62 86.75 \

Note: Mata = Inclusion in meta-analysis.

from IMU sensors was peak TA (in 7 studies), and the most
common GRF variables were VILR (in 6 studies) (Greenhalgh
et al, 2012; Zhang et al, 2016; Cheung et al., 2019; Van den

Berghe et al., 2019; Tenforde et al., 2020; Bradach et al., 2023)
and VALR (in 4 studies) (Laughton et al., 2003; Zhang et al., 2016;
Cheung et al, 2019; Tenforde et al, 2020). Extremely strong
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TABLE 3 Details of studies information of the relationship of tibial acceleration and GRF.

10.3389/fbioe.2024.1377383

Sample Running Foot Sensor type  Senor Variables Correlation
size (M/F) | surface| strike and placement independent |  coefficient
age, speed | pattern  frequency dependent
height, condition (Hz)
mass
Tenforde 169 (95/74) | age:  Treadmill | 2.52 + FFS, MFS, IMU sensor The distal medial PTA, RPTA | VALR, PTA & VALR (r =
et al. (2020) 39 + 13 years, 0.25 m/s | Self- and RFS (IMeasureU), portion of the tibia VILR 0.66-0.82), PTA & VILR
height 1.72 + selected running 1,000 above the medial (r = 0.66-0.73), RPTA &
0.09 cm, mass: shoes malleolus VALR (r = 0.47-0.67),
70.4 + 12.03 kg RPTA & VILR (r =
0.37-0.67)
Cheung et al. | 14 (7/7) | age: Treadmill | 2.78 m/ = RFS Bi-axial Anteromedial aspect = PTA | VALR, VILR PTA & VALR (r = 0.90),
(2019) 264 + 11.2 yrs, s | Self-selected accelerometer of the tibia and PTA & VILR (r = 0.91)
height 1.66 + running shoes (ADXL278), 1,000 | aligned with the
0.09 cm, mass: vertical axis of the
58.8 + 9.7 kg tibia
Laughton 15 (NS) | age: Overground| 3.7 m/ ~ FFSand RFS = Uniaxial Distal anteromedial ~ PTA | VALR FFS group (r = 0.70), RFS
et al. (2003) 22.46 + 4 years, | s+ 5%| Nike Air accelerometer aspect of the leg group (r = 0.47)
height 1.79 + Pegasus (model
0.06 cm, mass: 353B17), 960
66.41 + 8.58 kg
Van den 13 (NS) | NS, Overground| 2.55,  RFS MEMS tri-axial Lower leg alongside ~ PTA, RPTA | VILR PTA & VILR (r =
Berghe et al. | height: 1.75 + 3.20, and 5.10 + accelerometers the distal 0.64-0.84), RPTA &
(2019) 0.08 m, mass: 0.2 m/s | Li Ning (model anteromedial aspect, VILR (r = 0.57-0.61)
70.6 + 10.8 kg Magne, ARHF041 LIS331), 100 8 cm above the
medial malleolus
Zhang et al. 10 (8/2) | age: Treadmill (flat NS Accelerometers Anteromedial aspect | PTA | VALR, VILR PTA & VALR (r =
(2016) 23.6 + 3.8 years, = and +10% (Model of distal tibia 0.49-0.91), PTA & VILR
height: 1.73 + inclination) | + 15% 7523A5) 400 (r = 0.53-0.90)
0.08 m, mass: of preferred speed |
66.1 + 12.7 kg Adidas Adios Boost
Bradach etal. | 28 (13/15) | age: = Treadmill | Self- NS IMU sensor Distal medial tibia, PTA | VILR r =0.31-0.80
(2023) 39 + 13 years, selected speed (IMeasureU, Blue 1 cm above the
height: 1.72 + (2.81 + 0.39 m/s) | Thunder), 1,000 medial malleolus
0.09 m, mass: Nike p-6000
68.5 + 10.7 kg
Greenhalgh 13 (10/3) | age: Overground | 4m/ NS Tri-axial The distal anterior- = PTA | VALR, VILR PTA & VALR (r = 0.27),
et al. (2012) 30.0 £ 9.4 years, s+ 5% | Not accelerometer medial aspect of the PTA & VILR (r = 0.47)
height 1.74 + mentioned (Biometrics tibia and 8 cm above
0.06 m, mass: ACL300), 1,000 the medial-malleolus
70.6 + 8.1 kg

Note: FFS, forefoot strikers; MES, midfoot strikers; RES, rearfoot strikers; IMU, inertial measurement unit; PTA, peak tibial acceleration; RPTA, resultant peak tibial acceleration; VALR, vertical
average load rates; VILR, vertical instantaneous load rates; NS, not specified; Extremely strong (0.8-1.0), strong correlation (0.6-0.8), medium correlation (0.4-0.6), weak correlation (0.2-0.4),

extremely weak correlation (0-0.2).

(3 occurrences), strong (3 occurrences), medium (4 occurrences),
weak (1 occurrence), and extremely weak (1 occurrence)
correlations between peak TA and GRF metrics were reported in
the seven collected literatures.

3.4 Meta-analysis

3.4.1 The correlation between overground and
treadmill running

Figure 3 presents a forest plot comparing the Pearson correlation
coefficients between peak vertical TA and GREF, specifically VALR and
VILR. The sensitivity analysis results were shown in Supplementary
Material A (Supplementary Table SA1). For subgroup analysis, the
moderating variable of running surfaces was considered, with the
overground group comprising 3 studies (5 items) and the treadmill
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group consisting of 4 studies (7 items). In the overground and treadmill
groups, the correlations were 0.62 and 0.73, respectively, with 95%
confidence intervals (CI) of 0.42-0.76 for the overground group and
0.68 to 0.77 for the treadmill group. The I* values were 0% for the
overground group (p = 0.69) and 30% for the treadmill group (p = 0.3),
indicating heterogeneity levels. The overall correlation between peak
vertical acceleration and both VALR and VILR is 0.72, with a 95% CI of
0.67-0.76, and an I* heterogeneity of 15% (p = 0.3).

3.4.2 The correlation among different foot
strike patterns

Figure 4 displays a forest plot comparing the Pearson correlation
coefficients between peak vertical TA and both VALR and VILR across
various foot strike patterns. The sensitivity analysis results were shown in
Supplementary Material A (Supplementary Table SA2). For the
subgroup analysis, the foot strike pattern was used as a moderating
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Study Total Correlation COR 95%-Cl Weight
Laughtonetal. -VALR 15 —°—— 0.59 [0.11;0.85] 2.7%
Greenhalghetal. -VALR 13 - 0.44 [-0.15;0.80] 2.2%
Laughtonetal. -VILR 15 —F— 0.72 [0.33;090] 2.7%
VandenBergheetal. -VILR 13 —— 076 [0.36;0.92] 2.2%
Greenhalghetal. -VILR 13 - 047 [-0.11;0.81] 2.2%
O:
Cheung etal. -VALR 14 —'— 0.90 [0.71;0.97] 2.5%
Tenforde etal. -VALR 169 L 0.72 [0.64;0.79] 37.1%
Zhang etal. -VALR 10 ——— 066 [0.05091] 16%
Cheungetal. -VILR 14 — 091 [0.73;097] 25%
Bradachetal. -VILR 28 —— 062 [0.32;081] 5.6%
Tenforde etal. -VILR 169 L 0.72 [0.64;0.79] 37.1%
Zhang etal. -VILR 10 ———— 066 [0.05091] 1.6%
<
Random effects model 483 & 0.72 [0.67; 0.76] 100.0%
T 1
-0.5 0 0.5

Heterogeneity: I*= 15%, 12 <0.0001, p =0.30

Test for subgroup differences: X? =203,df=1(p =0.15)

FIGURE 3

Meta-analysis compares the Pearson correlation coefficient between peak vertical acceleration and both VALR and VILR between overground and
treadmill running. Note: VALR represents vertical average load rate, and VILR denotes for vertical instantaneous load rate.

variable. The RES group included 4 studies (comprising 7 items), the FFS
group encompassed 2 studies (4 items), and the MFS group consisted of
1 study (2 items). The correlations in the RFS, FES, and MFS groups were
0.73, 0.75, and 0.74, respectively, with 95% confidence intervals (CI) of
0.61-0.82 for RES, 0.62-0.83 for FES, and 0.51-0.86 for MFS. The P
values indicated heterogeneity levels of 49% for the RES group, and 0%
for both the FFS and MFS groups. Collectively, the correlation coefficient
across all groups was 0.71 with a 95% CI of 0.65-0.76, and an I value of
14% (p = 03).

3.5 The relationship between TA/GRF, and
tibial bone load

As shown in Table 4, two studies included in this review assessed
the relationship between TA/GRF and tibial bone load (Matijevich
etal,, 2019; Zandbergen et al., 2023). Both studies were conducted on
treadmills with participants wearing self-selected running shoes.
Only one study reported the foot strike pattern as RFS (Zandbergen
et al., 2023). In this study (Zandbergen et al., 2023), an IMU sensor,
specifically the Xsens model with a sampling frequency of 240 Hz,
was used to measure peak TA. Moreover, both studies utilized the
Pearson correlation coefficient for correlation analysis. These studies
explored correlations between GRF variables (weak correlations)
and peak TA (extremely weak correlations) in relation to tibial load.
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3.6 Data-driving approaches

As presented in Table 5, three studies employed data-driven
approaches to predict GRF metrics using acceleration data
(Komaris et al.,, 2019; Derie et al.,, 2020; Tan et al., 2020),
and one study used this approach to predict tibial loading
force using IMU signals (Komaris et al., 2019). Additionally,
three studies were conducted on treadmills (Komaris et al.,
2019; Matijevich et al., 2020; Tan et al., 2020), and one was
conducted overground (Derie et al., 2020). One study utilized
IMU sensors (Tan et al., 2020), one used tri-axial accelerometers
(Komaris et al., 2019), and two used virtual accelerometers
(Derie et al., 2020; Matijevich et al, 2020), where the
acceleration data were derived from kinematic measurements.
Various data-driven methods were applied: gradient boosted
regression trees (XGB) (Derie et al., 2020), artificial neural
networks (ANN) (Komaris et al., 2019), convolutional neural
networks (CNN) (Tan et al,, 2020), and LASSO regression
(Matijevich et al., 2020). The studies consistently showed
high predictive accuracy: mean absolute percentage error
(MAPE) was below 10% in two studies (Derie et al., 2020;
Matijevich et al., 2020), normalized root mean square error
(NRMSE) was under 10% in one study (Tan et al., 2020), and
RMSE remained less than 0.2 BW across all
et al., 2019).

(Komaris
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Study Total Correlation COR 95%-Cl Weight
Foot_strike_patterns = RFS ;

Tenforde etal. -VALR 127 ) 0.66 [0.55;0.75] 26.9%
Laughtonetal. -VALR 15 0.47 [-0.06;0.79] 3.7%
Cheung etal. -VALR 14 — 090 [0.71;097] 3.4%
Tenforde etal. -VILR 127 . ) 0.66 [0.55;0.75] 26.9%
Laughtonetal. -VILR 15 —+— 0.70 [0.29;0.89] 3.7%
VandenBergheetal. -VILR 13 —*— 0.76 [0.36;0.92] 3.1%
Cheungetal. -VILR 14 —* 0.91 [0.73;0.97] 3.4%
Random effects model 325 <> 0.73 [0.61; 0.82] 71.0%
Heterogeneity: /° = 49%, t° = 0.0395, p = 0.07 ’

Foot_strike_patterns = FFS

Tenforde etal. -VALR 25 —#— 0.82 [0.63;092] 6.5%
Laughtonetal. -VALR 15 —+— 0.70 [0.29;0.89] 3.7%
Tenforde etal. -VILR 25 —— 069 [041;085] 6.5%
Laughtonetal. -VILR 15 —+— 073 [0.35090] 3.7%
Random effects model 80 <> 0.75 [0.62; 0.83] 20.4%

Heterogeneity: 1= 0%, 1> = 0, p=0.74

Foot_strike_patterns = MFS :
Tenforde etal. -VALR 17 —— 0.74 [040;0.90] 4.3%

Tenforde etal. -VILR 17 —1— 0.73 [0.38;0.90] 4.3%

Random effects model 34 @ 0.74 [0.51; 0.86] 8.5%

Heterogeneity: 1?= 0%, 1> =0, p=0.95

Random effects model 439 < 0.71 [ 0.65; 0.76] 100.0%
1 1

-0.5 0 0.5
Heterogeneity: 1 = 14%, t* = 0.039, p = 0.30
Test for subgroup differences: y; = 0.06, df = 2 (p = 0.97)

FIGURE 4
Meta-analysis compares the Pearson correlation coefficient between peak vertical acceleration and both VALR and VILR among different strike

patterns. Note: VALR represents vertical average load rate, VILR denotes for vertical instantaneous load rate, RFS is rearfoot strike pattern, MFS is midfoot
strike pattern, and FFS is forefoot strike pattern.

TABLE 4 Details of studies information of the relationship between tibial acceleration/GRF, and tibial bone load.

Sample size  Running Foot Sensor type Senor Variables Correlation
(M/F) (kg) surface | strike and placement independent | coefficient
speed | pattern  frequency dependent
condition
Matijevich 10 (5/5) | age: 24+ Treadmill (level, NS None None Impact peak, VALR | Impact peak and peak
et al. (2019) 2.5 years, height uphill, and downhill) peak tibial force tibial force (-0.29 +
1.7 £ 0.1 m, mass: | 2.6-4.0 m/s | self- 0.37); VALR & peak
66.7 + 6.4 selected running tibial force (—-0.20 + 0.35)
shoes
Zandbergen 13 (8/4) | age: Treadmill | 10, 12, RFS IMU sensor Medial surface of =~ PTA | maximum tibial = 0.04 + 0.14
et al. (2023) 36.7 + 12.2 years, and 14 km/h | self- (Xsens), 240 Hz the proximal tibia = compression force
height 178.7 + selected running
9.6 cm, mass: shoes
742 £ 17.7

Note: GRF, ground reaction force; IMU, inertial measurement unit; PTA, peak tibial acceleration; VALR, vertical average load rates; RFS, rearfoot striker; NS, not specified; Extremely strong
(0.8-1.0), strong correlation (0.6-0.8), medium correlation (0.4-0.6), weak correlation (0.2-0.4), extremely weak correlation (0-0.2).

4 Discussion between these biomechanical factors and tibial bone stress. The

discussion also underscores the pivotal role of wearable sensor

This review critically evaluates the correlation between tibial  technology in measuring these forces, and its potential when

acceleration, ground reaction forces, and tibial bone loading in  combined with machine learning techniques, in redefining our

running. It highlights the mixed results obtained from existing  approach to monitoring, preventing, and rehabilitating running-
research in this domain and emphasizes the marginal link found  related injuries.
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TABLE 5 Details of studies information of data-driving approaches.

Running
surface |

speed |
condition

Foot
strike
pattern

Sensor type
and
frequency

10.3389/fbioe.2024.1377383

Machine
learning
algorithm

Variables
predictor |
response

Senor
placement

Accuracy

Derie et al. 93 (55/38) | Overground | NS Tri-axial Antero-medial PTA | VILR XGB MAPE: 6.08%
(2020) age: 353 + 2.55 m/s, 3.20 m/s accelerometers side of the tibia
10.0 years, and 5.10 m/s | Li (LIS331),
height: 1.73 + | Ning Magne, 1,000 Hz
0.07 m, mass: ARHF041
68.6 + 8.8
Komaris 28 (27/1) | age: | Treadmill | 2.5, NS Virtual Shank Tri-axial tibial ANN RMSE: vertical
etal. (2019) 348 + 3.5 and 4.5 m/s | accelerometer acceleration | GRF=0.13BW,
6.6 years, Not mentioned (deriving vertical GRF, anteroposterior
height: 176 + acceleration from anteroposterior GRF =004 BW,
6.7 cm, mass: kinematics) GREF, and mediolateral
69.6 £7.6 mediolateral GRF GRF = 0.04 BW
Tan et al. 15 (8/7) | age: | Treadmill | 24 and = FFS, MFS, IMU sensor One-third of the Tri-axial linear CNN NRMSE =
(2020) 239 + 2.8 m/s | standard = and RFS (Xsens), 200 Hz distance between | acceleration and 9.7 + 3.6%
1.1 years, and minimalist keen and ankle angular velocity |
height: 1.68 + | running shoes joints VALR
0.08 m, mass:
619 +77
Matijevich 10 (5/5) | age: | Treadmill NS Virtual Shank Sagittal joint angle = LASSO MAPE =8.0+£2.9%
etal. (2020) = 24 + 2.5 years, | (+9 inclination) | accelerometer at midstance | peak = regression
height: 1.70 + | 2.6-4.0 m/s | self- (deriving tibial force
0.1 m, mass: selected shoes acceleration from
67 £ 6 kinematics)

Note: LASSO, least absolute shrinkage and selection operator; XGB, gradient boosted regression trees; ANN, artificial neural network; CNN, convolutional neural networks; MAPE, mean
absolute percent error; NRMSE: normalized root mean square error; MAE, mean absolute error; Adam = adaptive moment estimation; IMU, inertial measurement unit; PTA, peak tibial
acceleration; VILR, vertical instantaneous loading rate; FFS, forefoot strikers; MFS, midfoot strikers; RFS, rearfoot striker; NS, not specified.

4.1 Peak tibial acceleration and impact
loading rate

The body segment acceleration is shaped by GRF and
dampening from bodily shock absorbers. Capturing peak
positive acceleration at distal locations allows measurement
before attenuation as the shock wave propagates proximally.
Notably, vertical acceleration correlates directly with vertical
GREF: higher vertical GRF load rate leads to increased vertical
axial acceleration prior to attenuation (Lafortune et al., 1995).
This findings from the data synthesis analysis showed only
moderate correlation of coefficient between peak TA and GRF
loading rate, which does not support with the general
hypothesis under many studies that peak TA is an indicator
of impact loading rate (Bigelow et al., 2013; Lucas-Cuevas et al.,
2017; Raper et al,, 2018; Cheung et al., 2019; Van den Berghe
etal., 2019; Johnson et al.,, 2021; Ryu et al.,, 2021; Bradach et al.,,
2023; Johnson et al., 2023; van Middelaar et al., 2023;
Zandbergen et al,, 2023). This aligns with findings from
the this
overground running.

meta-analysis  in study, particularly for

The prevailing hypothesis in gait retraining research posits a
robust positive correlation between the vertical GRF load rate and
TA (Cheung et al., 2019; Tirosh et al., 2019; Sheerin et al., 2020;
Van den Berghe et al., 2020; Derie et al., 2022). This assumption
underpins studies suggesting that mitigating peak TA could be
instrumental in reducing overuse injury risks by concurrently

diminishing the load rate (Milner et al, 2006; Huang et al,
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2019; Tavares et al., 2020; Warden et al., 2021). However,
reliance on this correlation as a foundation for gait retraining
strategies may result in oversimplified approaches that overlook
the complexities of individual gait patterns and the multifaceted
nature of injury risk factors (Pohl et al, 2008; van Gelder
et al., 2023).

4.2 The correlation between GRF or
acceleration and tibial bone load

TA is often used as a proxy for impact forces during running
because it’s relatively easy to measure, especially with the advent of
wearable technology (Ryu et al., 2021; Xiang et al., 2022¢; Xiang
et al,, 2022d; Bradach et al., 2023; van Middelaar et al., 2023; Xiang
etal,, 2023). However, the relationship between external forces (such
as GRF and TA) and internal stresses (such as bone loading) is not
always straightforward (Matijevich et al., 2020). Several factors can
influence this relationship. Individual biomechanics, such as gait
patterns, muscle strength, and joint stability, can significantly alter
how external forces are translated into internal stresses (Baggaley
et al., 2022). Moreover, the body’s adaptive responses to running,
such as increased bone density or changes in soft tissue properties,
can also affect this relationship. These adaptations can provide a
buffering effect, reducing the impact of external forces on internal
structures. A more holistic approach that considers both external
forces and individual biomechanical factors could be more effective
in understanding and preventing running-related injuries.
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Concerning the relationship between GRF and internal bone loads, it
is pertinent to note that recent studies, including those by Zandbergen
et al. (2023); Matijevich et al. (2019), have provided compelling evidence
challenging the traditionally assumed strong correlation. Zandbergen
et al. (2023) found no significant correlation between acceleration and
internal bone loads in the tibia, nor between GRF features and tibial bone
load during running. Consistent with these findings, our meta-analysis
demonstrates that peak TA does not directly correlate with the external
loading rate. Further, Matijevich et al. (2019) substantiated that GRF
metrics are not consistently correlated with tibial bone load across varied
running speeds and slopes, thereby questioning the reliability of GRF as a
predictor of internal bone stress in different running conditions.
Considering that tibial compression forces encompass both external
and internal forces, internal biomechanical adaptations may impact
internal forces, even in the presence of external overload, thus
influencing the prevention of related injuries (Baggaley et al., 2022).
This is supported by recent studies (Milner et al., 2006; Van der Worp
et al, 2016; Milner et al, 2023). These insights necessitate a
reconsideration of existing biomechanical models and wearable
technology applications in running injury prevention. It also
highlights that the strategy of reducing peak TA or GRF to mitigate
tibial stress fracture risk may be misleading (Van der Worp et al,, 2016;
Zandbergen et al., 2023).

In the realm of running biomechanics, the interplay between
neuromotor control and muscle co-contraction presents a critical
of tibial
acceleration, GRF, and tibial bone loading. The coordinated muscle

avenue for understanding the complex dynamics
actions, steered by sophisticated neuromotor control, significantly
dictate the force distribution and magnitudes transmitted through
the musculoskeletal system during running (Kellis et al, 2011; Di
Nardo et al,, 2015). Insights from Martelli et al. (2011) shed light on
how sub-optimal neuromotor strategies can amplify joint loads,
potentially leading to increased tibial bone stress in runners.
Furthermore, while muscle co-contraction is crucial for joint
stabilization, it’s important to note that excessive co-contraction
might paradoxically decrease stability by increasing the mechanical
loads on the tibia, without proportionally enhancing stability (Benjuya
et al,, 2004; Cenciarini et al., 2009; Tassani et al., 2019). This highlights
the importance of identifying an optimal level of muscle co-contraction
that ensures joint stability without contributing to unnecessary stress,
aligning with the perspectives offered by Martelli et al. (2011).

The advent of wearable sensor technology, capable of capturing
these complex neuromotor and muscle dynamics in real-time, opens
up new vistas. By amalgamating this data with traditional measures
such as GRF and TA, wearable sensors can offer a more nuanced
understanding of running biomechanics. This comprehensive
approach not only challenges traditional paradigms but also
heralds a new era of integrated strategies in monitoring,
preventing, and  rehabilitating  running-related  injuries,
emphasizing the shift towards more holistic models in running
biomechanics studies.

4.3 Data-driven approach to external and
internal predictions

The ongoing progression in machine learning and wearable
technology has facilitated the innovative use of data from inertial

Frontiers in Bioengineering and Biotechnology

10

10.3389/fbioe.2024.1377383

sensors, particularly in the prediction of GRF metrics (Higgins
et al., 2003; Cheung et al., 2019; Hernandez et al., 2021). This
advancement is notable in its potential to offer a more
dependable methodology compared to approaches reliant on
the correlation between peak TA and impact loading rate. The
latter method’s assumption of a strong correlation may not
always hold true (Laughton et al, 2003; Greenhalgh et al,
2012; Zhang et al., 2016), underscoring the significance of
this application  of data
biomechanics studies.

novel inertial ~ sensor in

Nevertheless, caution is warranted when asserting that
reducing the impact loading rate could effectively mitigate
musculoskeletal injuries in running, such as tibial stress
fractures (Milner et al., 2006; Milner et al.,, 2007; Matijevich
et al., 2019; Milner et al., 2023). The data-driven approach has
also yielded favorable outcomes in projecting tibial bone force
using wearable sensor data (Matijevich et al., 2020; Elstub et al.,
2022). This approach incorporates the muscular forces acting on
the tibia,

understanding of musculoskeletal injuries (Matijevich et al,

potentially offering a more comprehensive
2019). By integrating this data with external impact loading
rates, a more holistic view of the biomechanical factors
contributing to injury risk can be achieved, enhancing the
precision and effectiveness of injury prediction and prevention
strategies. Although data-driven approaches using wearable
sensors show promise for predicting external loading (Derie
et al., 2020; Tan et al., 2020) and internal muscular force
(Matijevich et al., 2019; Matijevich et al., 2020), their opaque
“black-box” nature presents a challenge in terms of data
interpretability or explainable artificial intelligence (XAI)
(Halilaj et al., 2018; Uhlrich et al., 2023). This area warrants
further investigation to understand how wearable sensor signals
correlate with biomechanical forces (Kaji et al., 2019; Schlegel
et al,, 2019; Jeyakumar et al., 2020; Gandin et al., 2021; Xiang
et al., 2024). Therefore, personalized biomechanical adaptation
and

strategies, tailored for precise

rehabilitation monitoring, can be more effectively applied once

injury prevention

a deeper understanding of these correlations is achieved.

4.4 Implications for future studies

> The utility of peak TA as an indicator of GRF, particularly
VALR and VILR during running, is subject to skepticism in
the context of current literature, especially with respect to
overground running.

> A moderate to strong correlation exists between peak TA and
vertical loading rate, irrespective of the foot strike patterns.
However, it is important to note that the sample sizes for RFS
and MEFS are relatively limited, warranting caution in
generalization of these findings.

> Strategies for gait retraining that focus on diminishing loading
rates through the reduction of peak TA may not be adequately
supported by empirical evidence.

> While a correlation between peak TA and impact loading is
observed, this does not necessarily imply a direct linear
relationship between either GRF or TA and the internal
forces exerted on the tibial bone.

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1377383

Xiang et al.

> Data-driven models, which utilize acceleration data from

inertial wearable sensors, exhibit a proficient capability in

accurately predicting both external impact loading and

internal tibial bone loading.

Future studies should focus on enhancing XAI to augment

interpretability of data-driven biomechanical models. This

advancement is crucial for effectively correlating wearable

sensor data with biomechanical forces.

> Embracing multifactorial methodologies that integrate
insights from biomechanics, data science, kinesiology, and
clinical practice not only minimizes confounding factors but
also enriches the interpretation and applicability of research
outcomes in real-world settings.

5 Conclusion

In conclusion, this study critically assesses the relationship
between TA, GRF, and tibial bone loading in the context of
running. It highlights the limited correlation between these
biomechanical factors and tibial bone stress, challenging
traditional beliefs. The research underscores the significant
potential of wearable sensors and machine learning in
advancing our understanding of running biomechanics. These
technologies offer promising avenues for injury monitoring,
prevention, and rehabilitation, suggesting a need for a shift
towards more integrated and holistic approaches in running
biomechanics.
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