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Introduction: Surgical planning and custom prosthesis design for pelvic cancer
patients are challenging due to the unique clinical characteristics of each patient
and the significant amount of pelvic bone and hip musculature often removed.
Limb-sparing internal hemipelvectomy surgery with custom prosthesis
reconstruction has become a viable option for this patient population.
However, little is known about how post-surgery walking function and neural
control change from pre-surgery conditions.

Methods: This case study combined comprehensive walking data (video motion
capture, ground reaction, and electromyography) with personalized
neuromusculoskeletal computer models to provide a thorough assessment of
pre- to post-surgery changes in walking function (ground reactions, joint
motions, and joint moments) and neural control (muscle synergies) for a
single pelvic sarcoma patient who received internal hemipelvectomy surgery
with custom prosthesis reconstruction. Pre- and post-surgery walking function
and neural control were quantified using pre- and post-surgery
neuromusculoskeletal models, respectively, whose pelvic anatomy, joint
functional axes, muscle-tendon properties, and muscle synergy controls were
personalized using the participant’s pre-and post-surgery walking and imaging
data. For the post-surgery model, virtual surgery was performed to emulate the
implemented surgical decisions, including removal of hip muscles and
implantation of a custom prosthesis with total hip replacement.

Results: The participant’s post-surgery walking function was marked by a slower
self-selected walking speed coupled with several compensatory mechanisms
necessitated by lost or impaired hip muscle function, while the participant’s post-
surgery neural control demonstrated a dramatic change in coordination strategy
(as evidenced by modified time-invariant synergy vectors) with little change in
recruitment timing (as evidenced by conserved time-varying synergy activations).
Furthermore, the participant’s post-surgery muscle activations were fitted
accurately using his pre-surgery synergy activations but fitted poorly using his
pre-surgery synergy vectors.
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Discussion: These results provide valuable information about which aspects of
post-surgery walking function could potentially be improved through
modifications to surgical decisions, custom prosthesis design, or rehabilitation
protocol, as well as how computational simulations could be formulated to predict
post-surgery walking function reliably given a patient’s pre-surgery walking data
and the planned surgical decisions and custom prosthesis design.

KEYWORDS

pelvic sarcoma, custom implant, orthopedic oncology, instrumented gait analysis, walking
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1 Introduction

Pelvic sarcomas account for up to 20% of the approximately
2,500 primary bone tumor cases reported in the United States each
year, where most patients are 25 years of age or younger (Morris,
2010; Mayerson et al., 2014). The complex anatomy of the pelvic
region and the heterogeneity across patients in how tumors infiltrate
the pelvis make surgical treatment for pelvic sarcomas challenging.
Thanks to recent advances in medical imaging and multimodal
oncological treatments (Puchner et al., 2017), internal
hemipelvectomy surgery (Bickels and Malawer, 2001) has gained
wider use for removing bone and soft tissue infiltrated by the tumor
while sparing the limb. In pelvic sarcoma cases where the hip joint is
infiltrated, the acetabulum and femoral head must also be removed.
Initially, no reconstruction of the hip joint was the only surgical
option. For this surgery, the surgeon wires the residual proximal
femur into the residual pelvis, and during recovery, the limb is
immobilized for approximately 12 months while scar tissue forms a
flail hip joint. Following plateau in recovery, patients can walk well
without a hip joint, but their gait pattern is abnormal, recovery time
is long, and the risk of developing low back pain and scoliosis due to
a limb-length discrepancy is high (Lackman et al., 2009; Wedemeyer
and Kauther, 2011). More recently, custom prosthesis
reconstruction with a total hip replacement has become a viable
surgical option. For this surgery, the surgeon replaces the resected
pelvic bone with a custommetal prosthesis and the resected hip joint
with a total hip replacement, and during recovery, the limb is
immobilized for only 3 months while bone grows into the
metallic prosthetic components. Following plateau in recovery,
patients can walk with a more normal gait pattern, have fewer
functional limitations, and have no limb-length discrepancy,
reducing the risk of developing low back pain and scoliosis
(Lewis, 2014; Chao et al., 2015).

Unfortunately, few experimental studies have assessed how well
custom prosthesis reconstruction with a total hip replacement is able
to restore pre-surgery walking function and neural control. One
study reported peak vertical ground reaction forces post-surgery to
quantify the effects of an external hip stabilizing device on gait
symmetry (Akiyama et al., 2016). A second study measured joint
motion andmetabolic energy expenditure to assess walking function
following a two-year rehabilitation program (Wingrave and Jarvis,
2019). A third study collected comprehensive post-surgery gait data
including vertical ground reaction forces, joint motions, joint
moments, and electromyography (EMG) data to assess motor
performance and walking (Valente et al., 2022). In all three
studies, operated side biomechanical quantities were compared to

non-operated side quantities following surgery, since no pre-surgery
data were available from the same patients for comparison.
Furthermore, while two studies reported extensive side-to-side
comparisons of joint motion data, no study has presented ground
reaction data for all three force components or joint moment data
for all lower body joints. In addition, no study to date has quantified
how a patient’s neural control strategy changes in response to the
surgery. Since the surgery involves removal of multiple hip muscles,
one might expect that a significant change in neural control would
be required to allow a patient to walk following such extensive
surgery. Even if comprehensive experimental walking data were
available before and after surgery from the same patient to quantify
changes in walking function, such data alone would not provide an
objective means for improving surgical planning or custom pelvic
prosthesis design.

Coupling comprehensive humanmovement data collection with
personalized neuromusculoskeletal computer modeling provides an
objective approach for quantifying changes in walking function as
well as predicting how surgical decisions and custom prosthesis
design will affect post-surgery walking function. Several previous
studies have collected comprehensive human movement data sets
from individuals who were implanted with an instrumented total
knee replacement (Taylor et al., 2004; Fregly et al., 2012; Bergmann
et al., 2014) or who suffered a stroke (Meyer et al., 2016; 2017; Sauder
et al., 2019; Santos et al., 2021). These data sets include surface
marker motion, ground reaction, and EMG data collected for
walking and other functional tasks, and researchers have created
associated personalized neuromusculoskeletal models using such
data sets. Personalized models have been used to analyze joint
contact loads in knee osteoarthritis, muscle force generation in
cerebral palsy, and neural control capabilities in stroke (Fregly
et al., 2012; Meyer et al., 2016; Saxby et al., 2016; Pitto et al.,
2019; Kainz and Jonkers, 2023; Jing et al., 2023). They have also
been used to develop predictive simulations of walking that
investigate how an individual post-stroke would walk at his
fastest comfortable speed (Meyer et al., 2016), how an individual
post-stroke would walk while receiving functional electrical
stimulation of different leg muscles (Sauder et al., 2019; Santos
et al., 2021), and how a neurologically healthy individual would walk
following different pelvic cancer surgeries with different levels of
post-surgery rehabilitation (Vega et al., 2022). However, no study to
date has validated a predictive simulation of post-surgery walking
using post- and pre-surgery experimental walking data collected
from the same patient, where the post-surgery data are used to
validate the walking prediction and the pre-surgery data are used to
create the personalized neuromusculoskeletal model of the patient.
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While nearly all published three-dimensional predictive
simulations of walking have used individual muscle controls
(Anderson and Pandy, 2001; Fox et al., 2009; Koelewijn and van
den Bogert, 2016; Lin et al., 2018; Song and Geyer, 2018; Falisse et al.,
2019; Miller and Esposito, 2021; Santos et al., 2021; Cseke et al.,
2022; Hu et al., 2022; Bianco et al., 2023), several studies have
explored using muscle synergy controls as an alternative (Meyer
et al., 2016; Pitto et al., 2019; Sauder et al., 2019; Vega et al., 2022).
Muscle synergies (also called “motor modules” (Clark et al., 2010;
Oliveira et al., 2014)) are a low-dimensional representation of a
higher-dimensional control space (D’Avella et al., 2003; Tresch et al.,
2006; Chvatal and Ting, 2013) and have traditionally been used to
study how the healthy and impaired human central nervous system
reduces control complexity for functional tasks such as walking.
Muscle synergies are calculated by decomposing a large number
(typically between 8 and 32) of processed experimental EMG signals
(henceforth called “muscle excitations”) into a smaller number
(typically between 3 and 7) of independent control signals
(henceforth called “synergy excitations”) (Ivanenko et al., 2004;
Cappellini et al., 2006; Clark et al., 2010; Torres-Oviedo and
Ting, 2010), most commonly using a nonlinear optimization
method called non-negative matrix factorization (Tresch et al.,
2006; Rabbi et al., 2020). Each time-varying synergy excitation
(also called an “activation signal” (Gizzi et al., 2011), “activation
timing profile” (Clark et al., 2010), “activation profile” (Neptune
et al., 2009), or “module pattern” (McGowan et al., 2010)) possesses
a corresponding time-invariant synergy vector (also called a “muscle
weighting” (Clark et al., 2010) or “motor module” (Gizzi et al.,
2011)) containing weights that define how the synergy excitation
contributes to each muscle excitation. The combination of a single
synergy excitation and its associated synergy vector is termed a
muscle synergy (Meyer et al., 2016; Banks et al., 2017; Sauder et al.,
2019; Ao et al., 2020; Li et al., 2022; Vega et al., 2022). Because neural
control is easier to study in a low-dimensional space, muscle
synergies have been used to quantify differences in neural control
between healthy and impaired conditions, including stroke (Clark
et al., 2010; Gizzi et al., 2011; Kautz et al., 2011), cerebral palsy
(Steele et al., 2015; Tang et al., 2015), Parkinson’s disease (Rodriguez
et al., 2013), and knee osteoarthritis (Kubota et al., 2021; Taniguchi
et al., 2024), as well as to quantify changes in neural control between
pre- and post-treatment conditions for stroke (Routson et al., 2013)
and cerebral palsy (Patikas et al., 2007; Shuman et al., 2019; Pitto
et al., 2020). Furthermore, because neural control is also easier to
model in a low-dimensional space, muscle synergies may also be
useful as controls when developing predictive simulations of post-
surgery walking function, especially if a patient’s synergy excitations
or synergy vectors remain unchanged between pre- and post-
treatment conditions.

This case study presents the most comprehensive quantitative
assessment to date of walking function (ground reactions, joint
motions, joint moments) and neural control (muscle synergies)
changes produced by internal hemipelvectomy surgery with
custom prosthesis reconstruction. The study combines collection
of comprehensive pre- and post-surgery gait (video motion capture,
ground reaction, EMG) and imaging (CT) data from a single
participant with development of pre- and post-surgery
personalized neuromusculoskeletal computer models of the same
participant. The pelvic anatomy, joint functional axes, muscle-

tendon properties, and muscle synergy controls in each
personalized model were calibrated to the participant’s gait and
imaging data obtained at the associated time point, with the post-
surgery model accounting for the surgical decisions made by the
orthopedic oncologist, including removal of hip muscles and
implantation of a custom prosthesis with total hip replacement.
The personalized models made it possible to analyze not only
biomechanical changes, which provide valuable information
about which aspects of post-surgery walking function remain
abnormal and thus should be the targets for physical therapy, but
also neural control changes, which provide valuable information
about how muscle synergies could be used to develop predictive
simulations of post-surgery walking function given pre-surgery
walking data and the planned surgical decisions.

2 Methods

2.1 Experimental data collection

Experimental walking and CT scan data were collected pre- and
post-surgery from a single participant with a pelvic sarcoma who
received internal hemipelvectomy surgery with custom prosthesis
reconstruction. The participant (sex: male, age: 46 years at the time
of the surgery, height: 1.73 m and mass: 82.5 kg for both data
collection sessions) gave written informed consent, and all data
collection and subsequent computational analyses were approved by
the institutional review boards of MD Anderson Cancer Center, the
University of Texas Health Science Center Houston, and Rice
University. The surgery involved resection of the tumor, hip
joint, and surrounding muscles in the public and acetabular
regions of the right hemipelvis, and the custom prosthesis
included a total hip replacement. Pre-surgery data were collected
the day before surgery, while post-surgery data were collected
approximately 12 months after surgery once the participant had
reached a plateau in recovery and could walk well without any
assistive device.

Pre- and post-surgery walking and CT scan data were collected
using identical protocols. Experimental walking data, including
ground reaction, video motion capture, and EMG data, were
collected while the participant walked for 2 minutes on a treadmill
at his self-selected speed (1.0 m/s pre-surgery and 0.5 m/s post-
surgery). In addition, a static standing trial was performed to
facilitate a subsequent musculoskeletal model scaling operation
(see below). Ground reaction data were collected using a split-
belt instrumented treadmill (Bertec Corp., Columbus, OH, US) with
belts tied. Video motion capture data were collected using an optical
motion capture system (Qualisys AB, Gothenburg, Sweden). A total
of 36 retroreflective markers were placed on the feet, legs, pelvis,
torso, and arms consistent with a previous study (Meyer et al., 2016).
Ground reaction and video motion capture data were low-pass
filtered using a fourth-order zero-phase lag Butterworth filter
with variable cut-off frequency dependent on the gait period
(Hug, 2011). EMG data were collected from 15 lower extremity
muscles per leg (Table 1) using both surface and fine wire electrodes
(Cometa, Bareggio, Italy). EMG data processing was consistent with
a previous study (Meyer et al., 2017), including high-pass filtering at
40 Hz, demeaning, rectifying, and low-pass filtering using a variable
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TABLE 1 List of lower extremity muscles in the musculoskeletal model, the source from which the muscle excitations were acquired and the acquisition
method. The shaded muscles were surgically removed from the operated (right) leg during surgery.

Muscle names (Abbreviation) Muscle excitation source Muscle excitation acquisition method

Adductor brevis (ADB) Adductor longus Measured

Adductor longus (ADL)

Adductor magnus distal (ADM1)

Adductor magnus ischial (ADM2)

Adductor magnus middle (ADM3)

Adductor magnus proximal (ADM4)

Gracilis (GRAC)

Biceps femoris long head (BFLH) Biceps femoris long head

Biceps femoris short head (BFSH)

Gastrocnemius lateral (GL) Gastrocnemius lateral

Gastrocnemius medial (GM) Gastrocnemius medial

Gluteus maximus superior (GMA1) Gluteus maximus

Gluteus maximus middle (GMA2)

Gluteus maximus inferior (GMA3)

Gluteus medius anterior (GME1) Gluteus medius

Gluteus medius middle (GME2)

Gluteus medius posterior (GME3)

Gluteus minimus anterior (GMI1)

Gluteus minimus middle (GMI2)

Gluteus minimus posterior (GMI3)

Iliacus (IL) Iliopsoasa

Psoas major superior (PS1)

Psoas major middle (PS2)

Psoas major inferior (PS3)

Peroneus brevis (PB) Peroneus

Peroneus longus (PL)

Rectus femoris (RF) Rectus femoris

Pectineus (PECT)

Semimembranosus (SM) Semimembranosus

Semitendinosus (ST)

Vastus medialis (VM) Vastus medius

Vastus intermedius (VI)

Vastus lateralis (VL) Vastus lateralis

Soleus (SOL) Soleus

Tibialis anterior (TA) Tibialis anterior

Tibialis posterior (TP) Tibialis posterior

(Continued on following page)
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cut-off frequency dependent on the gait period (Hug, 2011). CT scan
data of the participant’s entire pelvis and both proximal femurs were
collected to facilitate the creation of pre- and post-surgery
musculoskeletal models with personalized geometry. In addition,
a geometric model of the participant’s custom pelvic prosthesis was
made available by the orthopedic implant manufacturer (Onkos
Surgical, Parsippany, NJ, US).

2.2 Neuromusculoskeletal model analyses

Personalized neuromusculoskeletal computer models of the
participant were constructed to represent pre- and post-surgery
conditions, where all geometric musculoskeletal modeling was
performed in OpenSim (Delp et al., 2007; Seth et al., 2018). The
model personalization process started with a generic OpenSim
model constructed by combining previously published lower
extremity models (Arnold et al., 2010; Rajagopal et al., 2016; Lai
et al., 2017) and lumbar-spine models (Christophy et al., 2012;
Bruno et al., 2015). This process was performed to produce a new
generic model that possessed all of the muscles required for the
present study. The resulting generic model possessed 45 muscles in
each leg to actuate the following rotational joints with their
associated number of degrees of freedom: hip (3), knee (1), ankle
(1), subtalar (1), and toes (1) on each leg.

Starting from this generic model, we constructed a pre-surgery
model of the participant using his pre-surgerywalking andCT scan data
as described in a previous study (Li et al., 2022). In brief, the body
segments in the generic model were scaled to match the participant
using static trial motion capture data and the OpenSim Model Scaling
Tool. The one exception was the pelvis, whose dimensions were scaled
separately in all three directions to match the participant’s pelvis
geometry as determined from pre-surgery CT scan data. The scaled
generic pelvis geometry was then replaced with personalized pelvis
geometry constructed from pre-surgery CT scan data. Pelvis muscle
attachment locations were adjusted to be on bony anatomy by following
a codified workflow (Modenese et al., 2018) using nmsBuilder (Valente
et al., 2017).

Starting from the pre-surgery model, we then constructed a
post-surgery model of the participant by modifying his pre-surgery

model to account for implantation of a custom pelvic prosthesis and
the surgical decisions made by the orthopedic oncologist. To
account for implantation of a custom pelvic prosthesis, we
developed a bone-prosthesis geometric model of the participant’s
pelvis and operated femur. For the pelvis with custom prosthesis, we
first used a two-step process of global registration and fine alignment
in Geomagic Wrap (3D Systems, Morrisville, NC, US) to align a
post-surgery geometric model of the pelvis plus custom prosthesis
with the pre-surgery geometric model of the pelvis. The pre-surgery
pelvis geometric model was subsequently replaced by the post-
surgery pelvis-prosthesis geometric model (Figure 1A). The hip
joint center on the operated side was updated with the center of a
sphere used to fit the inner surface of the acetabular component
(Figure 1B). For the post-surgery femur with femoral component,
we obtained the bone and implant geometry from post-surgery CT
scan data. The femoral geometry in the pre-surgery model on the
operated side was then re-scaled only in the superior-inferior
direction to account for the slight change in femur length due to
implantation of the femoral component. After the post-surgery
femur with femoral component geometry was aligned to the re-
scaled pre-surgery femoral geometry using Geomagic Wrap, the re-
scaled pre-surgery femur geometry was replaced with the post-
surgery femur with femoral component geometry. To account for
the surgical decisions made by the orthopedic oncologist, we set to
zero the peak isometric strength of 15 muscle heads surgically
removed from the operated leg (see Supplementary Table S1).
For muscles that were surgically detached and reattached, the
pre-surgery peak isometric strength and geometry were retained
in the post-surgery model.

A sequence of three standard OpenSim operations were
performed using the participant’s pre- and post-surgery
musculoskeletal models to quantify changes in gait biomechanics
and to generate the input data needed for EMG-driven model
calibration (Lloyd and Besier, 2003; Buchanan et al., 2004; Sartori
et al., 2014). The OpenSim Inverse Kinematics Tool was used to
compute joint kinematics using the participant’s motion capture
marker data. The OpenSim Inverse Dynamics Tool was used to
compute joint moments using the participant’s calculated joint
kinematics and experimental ground reaction data. The OpenSim
Muscle Analysis Tool was used to compute muscle-tendon lengths

TABLE 1 (Continued) List of lower extremity muscles in the musculoskeletal model, the source from which the muscle excitations were acquired and the
acquisition method. The shaded muscles were surgically removed from the operated (right) leg during surgery.

Muscle names (Abbreviation) Muscle excitation source Muscle excitation acquisition method

Extensor digitorum longus (EDL) Extensor digitorum longus Synergy extrapolation

Extensor hallucis longus (EHL)

Flexor digitorum longus (FDL) Flexor digitorum longus

Flexor hallucis longus (FHL)

Gemellus (GEM) Piriformis

Piriformis (PIRI)

Quadratus femoris (QF)

Sartorius (SART) Sartorius

Tensor fasciae latae (TFL) Tensor fasciae latae

aEMG measurement of the right iliopsoas was unavailable pre- and post-surgery.
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and muscle moment arms using the participant’s joint kinematics.
Ten pre- and post-surgery gait cycles were selected that possessed
the smallest root-mean-square error (RMSE) values for joint angle
and joint moment curves with respect to corresponding mean
curves. This selection process eliminated outlier gait cycles while
maintaining comparable levels of inter-cycle variability between the
two test sessions. Data from these gait cycles were used for all
subsequent analyses.

Using data from these ten pre- and post-surgery gait cycles, we
solved a multi-objective optimization problem to calibrate an EMG-
driven neuromusculoskeletal model for the hip, knee, ankle, and
subtalar joints of each leg before and after surgery (Meyer et al.,
2017). The design variables adjusted by the multi-objective
optimization were the following: 1. Activation dynamics model
parameters: EMG scale factors, electromechanical delays,
activation time constants, and activation non-linear shape factors
(He et al., 1991; Lloyd and Besier, 2003), 2. Hill-type muscle-tendon
model parameters: optimal fiber length and tendon slack length
(Zajac, 1989), and 3. Synergy vector weights for constructing
residual and predicted muscle excitations from experimental
synergy excitations. Residual excitations are small changes
applied to experimental muscle excitations that enable more
accurate estimation of predicted muscle excitations (Ao et al.,
2022). Peak isometric strength parameter values for all lower
extremity muscle-tendon models were calculated using published
regression relationships derived from MRI data (Handsfield et al.,
2014). The primary cost function term minimized the sum of
squares of differences between experimental joint moments
calculated via inverse dynamics and model joint moments
calculated using the patient’s personalized neuromusculoskeletal
model. Secondary cost function terms minimized the sum of
squares of residual and predicted muscle excitations.

Within the EMG-driven model calibration process, synergy
extrapolation (Bianco et al., 2018; Ao et al., 2020; Ao et al., 2022;
Ao et al., 2023) was utilized to estimate missing EMG signals.

Synergy extrapolation uses synergy excitations extracted from
muscles with experimental EMG data to predict muscle
excitations for muscles without experimental EMG data (Table 1)
(a detailed explanation of how synergy extrapolation works can be
found in Ao et al. (2022)). Synergy extrapolation was chosen over
static optimization since it has been shown to estimate missing EMG
signals more reliably than does static optimization (Ao and
Fregly, 2024).

The EMG-driven model calibration process was first performed
for each leg separately, and each calibrated model yielded activations
dynamics and muscle-tendon model parameter values along with
estimates of muscle excitations and activations, henceforth referred
to collectively as “muscle controls.” Muscle activations were
calculated by applying electromechanical delays and activation
dynamics to the muscle excitations after they were normalized as
part of the EMG-driven model calibration process. The entire model
personalization process required several months of effort, including
the time needed to learn new software tools and computational
methodologies.

2.3 Lower extremity muscle
synergy analyses

The pre- and post-surgery muscle controls for each leg were
decomposed into a lower dimensional space using muscle
synergy analysis (MSA). MSA was performed via non-negative
matrix factorization (NMF) (Tresch et al., 2006; Rabbi et al.,
2020) using the MATLAB ‘nnmf’ function (MathWorks, Natick,
MA) on both muscle excitations and muscle activations for each
pre- and post-surgery gait cycle using only muscles with
experimental EMG data (Table 1). Although MSA is typically
performed on only muscle excitations, this study performed MSA
on muscle activations as well since they possess different timings
(due to electromechanical delays) and shapes (due to activation

FIGURE 1
(A)Geometric model of the remaining pelvic bone, custom prosthesis, and total hip replacement. (B) Updated hip joint center on the operated side,
as determined from the center of the sphere used to fit the inner surface of the acetabular component. The coordinate system is consistent withOpenSim
coordinate system: +x points in anterior direction, +y points in the superior direction, and +z points in the lateral (right) direction.
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dynamics) compared to muscle excitations, potentially altering
MSA results. Each muscle synergy consisted of a time-varying
synergy control along with a corresponding time-invariant
synergy vector containing muscle-specific weights. Synergy
controls provided information about recruitment timing
(i.e., when groups of muscles were co-activated) while synergy
vectors provided information about coordination strategy
(i.e., how groups of muscles were co-activated). Synergy
controls extracted from muscle excitations were referred to as
synergy excitations, while those extracted from muscle
activations were referred as synergy activations . MSA was
performed assuming 4, 5, 6 and 7 synergies for each leg as
this range covers the typical number of synergies required to
adequately represent muscle activity during gait (Ivanenko et al.,
2004; Meyer et al., 2016). The variability accounted for (VAF)
metric was used to quantify how well the calculated muscle
synergies could represent the original muscle controls. Since
muscle synergies were calculated for each gait cycle separately
and the NMF algorithm does not output muscle synergies in any
particular order, muscle synergies were sorted based on cosine
similarity between synergy vectors across gait cycles (Banks
et al., 2017).

To account for how a difference between pre- and post-surgery
walking speed affected the magnitude of the synergy controls (Clark
et al., 2010), we introduced a new magnitude quantity into the
muscle synergy decomposition equation (Eq. 1):

C ��→NMF
∑
s

i�1
Csyni · wsyn normi � ∑

s

i�1
Csyn normi · wsyn normi ·Msyni (1)

where C are muscle controls, NMF indicates application of non-
negative matrix factorization, Csyn are the time-varying synergy
controls, and wsyn norm are the time-invariant normalized synergy
vectors. The dimensions of the muscle controls C, synergy controls
Csyn, and synergy vectors, wsyn norm are n× s, n× m, and s× m,
respectively, where n is the number of data points used in a
normalized gait cycle, m is the number of muscles, and s is the
number of muscle synergies. Synergy vectors are normalized
automatically to a magnitude of one by the Matlab ‘nnmf’ non-
negative matrix factorization algorithm, but synergy controls are not
normalized. Consequently, we normalized each synergy control to a
maximum value of one and added a new parameter Msyn to
represent the magnitude of the synergy. With this modification,
synergy controls provide information about only recruitment
timing, synergy vectors information about only coordination
strategy, and synergy magnitudes information about only synergy
magnitude, making it easier to quantify synergy changes produced
by changes in walking speed.

Since all muscle synergies were calculated using muscle
excitations and activations produced by a calibrated EMG-driven
lower extremity model, the resulting muscle synergies where
functional rather than merely descriptive. Standard MSA is
applied to muscle excitations normalized by one of several
common methods (e.g., maximum value from a maximum
voluntary contraction trial, maximum value over all trials, unit
variance). However, the way muscle excitations are normalized
affects MSA results (Banks et al., 2017) and the net joint
moments calculated from the normalized muscle excitations.

Because standard MSA only involves accurately reconstructing
experimental muscle excitations, it provides only descriptive
information about the participant’s neural control strategy. The
calculated muscle synergies will not produce the correct net joint
moments when input into a personalized neuromusculoskeletal
model of the participant. In contrast, MSA as performed in the
present study involves accurately reconstructing experimental
muscle excitations as well as accurately reproducing inverse
dynamic joint moments, providing functional information about
how the participant’s muscle synergies generate the experimentally
measured net joint moments.

2.4 Post-surgery muscle control
reconstruction

We explored three options for how post-surgery muscle
excitations and activations could be reconstructed using
corresponding pre-surgery muscle synergy information. For the
first option, termed the Fixed Synergy Vector method, the post-
surgery synergy vectors were assumed to be identical to the pre-
surgery synergy vectors, implying the coordination strategy was
conserved, and the corresponding post-surgery synergy controls
needed to reconstruct the post-surgery muscle controls were
calculated. For the second option, termed the Fixed Synergy
Control method, the post-surgery synergy controls were assumed
to be identical to the pre-surgery synergy controls, implying the
recruitment timing was conserved, and the corresponding post-
surgery synergy vectors required to reconstruct the post-surgery
muscle controls were calculated. For the third option, termed the
Shifted Synergy Control method, the post-surgery synergy controls
were assumed to be identical to the pre-surgery synergy controls
except with small time shifts, implying the recruitment timing was
conserved apart from small time shifts, and the corresponding post-
surgery synergy vectors required to reconstruct the post-surgery
muscle controls were calculated.

We implemented all three options for reconstructing post-
surgery muscle controls using the MSA results obtained for the
pre-surgery muscle controls. For the Fixed Synergy Vector method,
the mean synergy vectors across all pre-surgery gait cycles were
defined as the fixed synergy vectors, and the synergy controls
required to reconstruct the post-surgery muscle controls for each
gait cycle were found (Eq. 2). For the Fixed Synergy Control method,
the mean synergy controls across all pre-surgery gait cycles were
defined as the fixed synergy controls, and the synergy vectors
required to reconstruct the post-surgery muscle controls for each
gait cycle were found (Eq. 3). For the Shifted Synergy Control
method, each pre-surgery synergy control was shifted in time to
maximize its cosine similarity with the corresponding post-surgery
synergy control (Supplementary Figure S5). The shifted pre-surgery
synergy controls were then used as the fixed synergy controls in Eq.
3, and the synergy vectors required to reconstruct the post-surgery
muscle controls for each gait cycle were found. Synergy controls and
vectors were considered to be non-negative and therefore
nonnegative linear least-squares optimization problems were
solved using the MATLAB ‘lsqnonneg’ function. To calculate
synergy controls for the Fixed Synergy Vector method, we used
the following problem formulation:
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min
Csynfit

Csynfit · wsynpre − Cmuspost

�����
�����
2

subject to
Csynfit ≥ 0

(2)

where Csynfit are the synergy control design variables for each gait
cycle that produce the best fit of Cmuspost, the post-surgery muscle
controls for each gait cycle, using wsynpre, the mean pre-surgery
synergy vectors. Similarly, to calculate synergy vectors for the Fixed
or Shifted Synergy Control method, we solved:

min
wsynfit

Csynpre/shifted
· wsynfit − Cmuspost

������
������
2

subject to
wsynfit ≥ 0

(3)

where wsynfit are the synergy vector design variables for each gait
cycle that produce the best fit of Cmuspost, the post-surgery muscle
controls for each gait cycle, using Csynpre/shifted, the mean pre-surgery
synergy controls without or with time shifting.

To evaluate how well the post-surgery muscle controls were
reconstructed, we calculated the variability accounted for (VAF)
between reconstructed and experimental muscle controls for each
post-surgery gait cycle. The evaluation was performed for each
combination of the following three methodological choices: 1.
selected reconstruction method (Fixed Synergy Vector, Fixed
Synergy Control, or Shifted Synergy Control method), 2. type of
muscle controls to be reconstructed (excitations or activations), and
3. number of synergies used per leg (4, 5, 6, or 7).

2.5 Statistical analyses

Statistical analyses were used to compare time-varying pre- and
post-surgery biomechanical and neural control quantities and time-
invariant VAF values for reconstructing post-surgery muscle
controls from pre-surgery muscle synergies produced by different
combinations of methodological choices (selected reconstruction
methods, types of muscle controls reconstructed, and number of
synergies used for reconstruction). For all statistical tests, the
significance level was set at p < 0.05 prior to any correction for
multiple comparisons, where the null hypothesis was that the
quantities being compared were not statistically different.

To compare time-varying quantities (ground reaction forces,
joint angles, joint moments, and synergy controls) before and after
surgery, we used statistical parametric mapping (SPM) (Penny et al.,
2011) employing random field theory to correct for multiple
comparisons across time (Pataky, 2008). SPM presents statistical
results in the same temporal space as the original data, making
interpretation of results straightforward (Pataky, 2012). SPM used
two-tailed two sample t-tests (p < 0.05) to compare pre- and post-
surgery time-varying quantities across the gait cycle. SPM analyses
were implemented using the ‘ttest2’ function from the opensource
SPM code ‘spm1d’ in MATLAB (Pataky, 2012).

To compare time-invariant VAF values produced by different
methodological choices for reconstructing post-surgery muscle
controls from pre-surgery muscle synergies, we used paired
sample t-tests implemented using the MATLAB ‘ttest’ function.
Each sample consisted of ten VAF values, one for each post-surgery

gait cycle, calculated using a specified methodological choice (e.g.,
Fixed Synergy Vector method applied to muscle excitations using
4 synergies). The statistical analyses were performed for the
following three cases. Case 1: the two samples were obtained by
using different reconstruction methods but the same type of
reconstructed muscle controls and the same number of synergies.
Case 2: the two samples were obtained by using different types of
reconstructed muscle controls but the same reconstruction method
and the same number of synergies. Case 3: the two samples were
obtained by using different numbers of synergies but the same
reconstruction method and the same type of reconstructed muscle
controls. Since each case involved multiple comparisons
(i.e., between different reconstruction methods, types of
reconstructed muscle controls, and numbers of synergies),
Bonferroni correction was used to adjust the level of statistical
significance as appropriate for each case (see Supplementary
Table S4 for adjusted p-values).

3 Results

3.1 Walking function changes

Significant differences were observed between the pre- and post-
surgery ground reaction, joint motion, and joint moment data
obtained from the participant’s experimental walking data and
personalized neuromusculoskeletal models. For ground reaction
forces or GRF (Figure 2), the vertical GRF during the loading
phase and mid-stance were different for the operated and non-
operated legs between post and pre-surgery conditions, as was the
vertical GRF during the unloading phase for the operated leg (p <
0.001). The decrease in vertical GRF during operated leg unloading
and the increase in vertical GRF during non-operated leg loading
each started earlier in the gait cycle during post-surgery walking,
suggesting that the non-operated leg was compensating for the
operated leg. Propulsive force shortly before toe-off and braking
force following heel strike were also significantly lower post-surgery
than pre-surgery for both legs (p < 0.001), possibly related to the
decrease in self-selected walking speed post-surgery.

For joint motion data, all joint angle trajectories for both the
operated and non-operated leg showed significant changes between
pre- and post-surgery conditions (p < 0.001). For the operated leg
following surgery (Figure 3), the hip was more extended and externally
rotated over most of the gait cycle, the knee was less flexed over most of
the gait cycle, and the anklewas less dorsiflexed and the subtalar joint less
inverted during stance phase. In contrast, for the non-operated leg
following surgery (Figure 3), the hip was more extended only during the
first half of stance phase andmore internally rotated overmost of the gait
cycle, the knee was more flexed during stance phase but less flexed
during swing phase, the ankle was more dorsiflexed during the first half
of stance phase, and subtalar joint exhibited reduced inversion in the
middle of stance phase. For the pelvis and trunk (Figure 4), joint
rotations generally became more asymmetric following surgery, with
pelvis tilt losing its stereotypical double humped pattern, pelvis list
showing a drop toward the non-operated side, pelvis rotation exhibiting
an offset that moved the operated hip forward, lumbar extension
demonstrating an increase in forward tilt, and lumbar bending
increasing toward the operated side.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Li et al. 10.3389/fbioe.2024.1389031

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1389031


FIGURE 2
Pre- and post-surgery ground reaction forces (mean ±1 standard deviation across 10 gait cycles), along with SPM test results (grey shaded area
indicates significant difference between pre- and post-surgery data).

FIGURE 3
Pre- and post-surgery joint motions (mean ±1 standard deviation across 10 gait cycles) for all lower extremity joints, alongwith SPM test results (grey
shaded area indicates significant difference between pre- and post-surgery data).
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For joint moment data (Figure 5), more pronounced changes
(p < 0.001) over larger portions of the gait cycle) occurred in the
operated leg than in the non-operated leg following surgery. For the
operated leg during stance phase, the hip flexion and abduction
moments decreased, the knee extension moment turned into a
flexion moment, and the subtalar inversion moment increased.
Changes during swing phase were minimal. In contrast, for the
non-operated leg, joint moment changes were minimal following
surgery, with scattered statistically significant differences occurring
at various points throughout the gait cycle.

3.2 Muscle-tendon model
parameter changes

Optimal muscle fiber length and tendon slack length values found
by EMG-driven neuromusculoskeletal model calibration showed
relatively small differences on average between pre- and post-surgery
conditions (Figure 6). For optimal fiber length, the changes ranged
from −0.019 to 0.070 m (mean 0.018 m and median 0.013 m) for
the operated leg, and from −0.050 to 0.044 m (mean −0.003 m and
median −0.0005 m) for the non-operated leg. In terms of

FIGURE 4
Pre- and post-surgery joint motions (mean ±1 standard deviation across 10 gait cycles) for pelvis and lumbosacral orientations, along with SPM test
results (grey shaded area indicates significant difference between pre- and post-surgery data).

FIGURE 5
Pre- and post-surgery jointmoments (mean± standard deviation across 10 gait cycles) for all lower extremity joints, alongwith SPM test results (grey
shaded area indicates significant difference between pre- and post-surgery data).
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percentages with respect to pre-surgery values, these changes ranged
from −24% to 40% (mean 14% and median 13%) for the operated leg,
and from −28% to 132% (mean 2% and median −1%) for the non-
operated leg. For tendon slack length, the changes ranged
from −0.051 to 0.013 m (mean −0.011 m and median −0.008 m) for

the operated leg, and from −0.082 to 0.027 m (mean −0.013 m and
median −0.005 m) for the non-operated leg. In terms of percentages
with respect to pre-surgery values, the changes ranged from −40% to 5%
(mean −9% and median −3%) for the operated leg, and from −70% to
43% (mean −11% and median −5%) for the non-operated leg.

FIGURE 6
Optimal muscle fiber length and tendon slack length values for lower extremity muscles in the personalized pre-surgery (red) and post-surgery
(blue) neuromusculoskeletal models.

TABLE 2Mean ± standard deviation of cosine similarity between pre- and post-surgerymuscle synergy quantities across synergies. For each pair of pre- and
post-surgerymuscle synergies identified after sorting and pairing, we calculated cosine similarity between (1) meanmuscle synergy control curves without
shifting, (2) mean muscle synergy control curves with shifting, and (3) mean synergy vectors. Mean synergy controls and synergy vectors were calculated
from all ten pre- or post-surgery gait cycles analyzed. For (2), the mean pre-surgery synergy controls were shifted to maximize similarity to the mean post-
surgery synergy controls. MSA was performed using both muscle excitations and muscle activations to determine potential differences caused by the type
of muscle control analyzed.

Number of
synergies

Muscle
control

Cosine similarity

Non-operated leg Operated leg

(1) Synergy
controls

(2) Shifted
controls

(3) Synergy
vectors

(1) Synergy
controls

(2) Shifted
controls

(3) Synergy
vectors

4 Excitation 0.77 ± 0.18 0.95 ± 0.03 0.71 ± 0.11 0.90 ± 0.08 0.95 ± 0.03 0.75 ± 0.15

Activation 0.84 ± 0.11 0.94 ± 0.02 0.78 ± 0.05 0.74 ± 0.25 0.98 ± 0.01 0.68 ± 0.20

5 Excitation 0.90 ± 0.05 0.95 ± 0.05 0.83 ± 0.09 0.86 ± 0.12 0.96 ± 0.05 0.73 ± 0.10

Activation 0.89 ± 0.05 0.95 ± 0.02 0.75 ± 0.09 0.84 ± 0.19 0.98 ± 0.02 0.72 ± 0.14

6 Excitation 0.94 ± 0.03 0.97 ± 0.02 0.79 ± 0.05 0.87 ± 0.05 0.95 ± 0.05 0.76 ± 0.08

Activation 0.93 ± 0.06 0.98 ± 0.01 0.71 ± 0.10 0.90 ± 0.13 0.97 ± 0.02 0.77 ± 0.10

7 Excitation 0.76 ± 0.18 0.96 ± 0.02 0.78 ± 0.04 0.91 ± 0.12 0.97 ± 0.02 0.77 ± 0.09

Activation 0.94 ± 0.07 0.98 ± 0.01 0.81 ± 0.08 0.95 ± 0.03 0.97 ± 0.03 0.82 ± 0.05
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3.3 Neural control changes

When post-surgery muscle synergies were compared to pre-
surgery muscle synergies, stronger similarities were found between

synergy excitations or activations than between synergy vectors
(Table 2). The cosine similarity values between the pre- and
post-surgery synergy controls were generally higher than those
between the synergy vectors for both the operated and non-

FIGURE 7
Example plot of pre- and post-surgery muscle synergies (mean ±1 standard deviation across 10 gait cycles) for (A) Operated Leg and (B) Non-
operated Leg. Cosine similarity was calculated using the mean values for each pair of synergy activations or synergy vectors.
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operated leg. When the pre-surgery synergy controls were shifted to
maximize cosine similarity (Supplementary Figure S5), the cosine
similarity values between the optimally shifted pre-surgery and post-
surgery synergy controls were close to one (Table 2), indicating
extremely strong similarity. The shifts required to achieve maximum
cosine similarity (Supplementary Table S3) appeared to decrease
with an increasing number of synergies. Figure 7 illustrates the
comparison between paired pre- and post-surgery muscle synergy
quantities and how cosine similarity values were calculated between
paired synergy activations and synergy vectors.

3.4 Post-surgery muscle control predictions

When pre-surgery muscle synergy quantities were used to fit
post-surgery muscle controls, better fits were obtained using pre-
surgery synergy controls rather than pre-surgery synergy vectors
(Figure 8). Both the Fixed Synergy Control and Shifted Synergy
Control method achieved higher VAF than did the Fixed Synergy
Vector method for fitting post-surgery muscle excitations and
activations with any number of synergies between 4 and 7 (p <
0.003125). The Shifted Synergy Control method applied to muscle
activations achieved higher VAF than did the corresponding Fixed
Synergy Control method using 5 or 6 synergies for the non-operated
leg (p < 0.00625) and 4, 5, or 6 synergies for the operated leg (p <

0.00625). The Fixed Synergy Control method performed
significantly better when applied to muscle activations rather
than muscle excitations (p < 0.00625) except for the operated leg
with 7 synergies (p = 0.0591). The performance of both the Fixed
Synergy Control and Shifted Synergy Controls methods applied to
muscle activations generally improved with increasing number of
synergies (p < 0.0125), except when the number of synergies
increased from 6 to 7 for the operated leg (p = 0.1065).

4 Discussion

This study analyzed changes in walking function and neural control
for a single pelvic sarcoma patient after internal hemipelvectomy
surgery with custom prosthesis reconstruction. Personalized
neuromusculoskeletal computational models representing the
participant before and after surgery were developed to quantify
changes in biomechanical quantities, neuromusculoskeletal model
parameter values, and neural control quantities due to the surgery.
Muscle synergy analyses were performed on the experimental muscle
excitations and associated muscle activations for lower extremity
muscles with experimental EMG data to quantify changes in neural
control. Three methods for predicting post-surgery muscle controls
using pre-surgery muscle synergy information were evaluated. Our
findings suggest that for the participant analyzed in this study, post-

FIGURE 8
Variability accounted for (VAF) by reconstructed post-surgery muscle controls using each method: FixedSynVec (Fixed Synergy Vector, red),
FixedSynCtl (Fixed Synergy Control, blue), and ShiftedSynCtl (Shifted Synergy Control, green). Each marker with error bars indicates mean ±1 standard
deviation for VAF values from 10 gait cycles. Open markers indicate reconstruction of muscle excitations while filled markers indicate reconstruction of
muscle activations.
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surgery walking function differs substantially from pre-surgery walking
function despite a post-surgery gait pattern that does not appear visually
to be highly abnormal. These quantified differences could provide
targets for personalized rehabilitation efforts for this participant.
Furthermore, our findings suggest that the Fixed and Shifted
Synergy Control methods reconstructed post-surgery muscle controls
better than did the Fixed Synergy Vector method. The total VAF for
reconstructed post-surgery muscle activations reached 95% using only
five synergies for the Shifted Synergy Control method and six synergies
for the Fixed Synergy Control method. Consequently, future studies
that seek to use personalized computational neuromusculoskeletal
models to predict post-surgery walking function from pre-surgery
walking data and the planned surgical decisions should explore
using the Fixed or Shifted Synergy Control method to model the
participant’s post-surgery neural control strategy.

Compared to previous studies, the present study collected more
extensive walking data, with the data being available both before and
after surgery. In part because custom prosthesis reconstruction has
become a viable option only recently, few studies have performed
instrumented gait analyses of this patient population (Akiyama et al.,
2016; Wingrave and Jarvis, 2019; Valente et al., 2022). As the emphasis
of these previous studies was on evaluating post-surgery walking
function, pre-surgery walking data were not available from the same
patients. No previous study reported ground reaction data for all three
force components or joint moment data for all lower body joints. Only
one study reported EMGdata collected from sixmuscles in the operated
leg. Thus, while limited to a single participant, the experimental walking
data collected for the present study will be a valuable resource that other
researchers can use to perform their own investigations of how internal
hemipelvectomy surgery with custom prosthesis reconstruction affects
post-surgery walking function.

While the extensive walking data collected for this study allowed for
a detailed analysis of walking function and neural control changes
between pre- and post-surgery conditions after plateau in recovery, the
ultimate goal for these data is to facilitate the development of
personalized neuromusculoskeletal modeling methods that can
predict a patients’s post-surgery walking function reliably given the
patients’s pre-surgery walking data and the surgical decisions being
planned by the orthopedic oncologist. Calibration of personalized
neuromusculoskeletal models currently requires extensive walking
data, including motion capture, ground reaction, and EMG data.
Furthermore, these data must be available before and after surgery
so that the ability of the patient’s pre-surgery model to predict post-
surgery walking function can be evaluated. One of the key challenges in
predicting post-surgery walking function is that the patient’s post-
surgery neural control strategy must be predicted at the same time.
Thus, the availability of extensive pre- and post-surgery walking data
from the same participant provides a unique opportunity to develop a
hypothesis for how to model a patient’s post-surgery neural control
strategy starting from the patient’s pre-surgery walking data.

The fact that assumed neural control strategy (e.g., minimize
sum of squares of muscle activations) significantly impacts predicted
walking motion (Ackermann and van den Bogert, 2010; Meyer et al.,
2016) begs the question of which neural control assumption should
be used for generating predictive walking simulations for some new
situation (e.g., following surgery). At a high-level, two different
neural control assumptions representing two different philosophies
have been used in published studies. The first neural control

assumption, which is used in most published studies (Fox et al.,
2009; Koelewijn and van den Bogert, 2016; Lin et al., 2018; Song and
Geyer, 2018; Falisse et al., 2019; Pitto et al., 2019; Miller and
Esposito, 2021; Santos et al., 2021; Cseke et al., 2022; Hu et al.,
2022; Bianco et al., 2023), will be termed “absolute control.”
Absolute control involves minimizing one or more quantities in
an absolute sense (i.e., relative to zero), such as minimizing the sum
of squares of predicted muscle activations regardless of the walking
situation or treatment. The second neural control assumption,
which has only been used in publications by the corresponding
author’s research group (Meyer et al., 2016; Sauder et al., 2019; Vega
et al., 2022), will be termed “relative control.” Relative control
involves minimizing one or more quantities relative to some
non-zero baseline condition, such as minimizing the sum of
squares of differences between predicted post-surgery synergy
activations and calculated pre-surgery synergy activations. To the
corresponding author’s knowledge, Meyer et al. (2016) (which
minimized changes in synergy activations away from a baseline
walking condition) is the only predictive walking simulation
published to date that has been validated experimentally using
walking data collected from the same participant under some
new condition.

Because relative control requires a baseline neural control
strategy, it is consistent with the concepts of neural adaptation
and motor exploration. Neural adaptation implies that a patient
possesses a baseline neural control strategy and then the CNS moves
the patient’s neural control strategy away from this baseline in
response to some new situation (e.g., split-belt treadmill training -
Reisman et al., 2009). Motor exploration says that the CNS finds a
neural control strategy for some new situation (e.g., post-surgery) by
searching locally in the neighborhood of a baseline neural control
strategy (e.g., pre-surgery) (Uehara et al., 2019). In contrast, absolute
control is inconsistent with neural adaptation and motor
exploration, plus researchers have yet to identify the absolute
quantities that the CNS is minimizing (or maximizing) to
produce walking under a wide variety of conditions by
individuals without and with neurological impairment. For
example, even if minimizing the sum of squares of muscle
activations were optimal for healthy individuals without
neurological impairment, it is unlikely to be optimal for
individuals with cerebral palsy or stroke who possess neurological
impairment. Thus, by applying the concept of relative control to
muscle synergies, one can transform the hard problem of predicting
post-surgery muscle activations for a large number of muscles (as
required to generate reliable post-surgery predictive walking
simulations) into the easier problem of predicting post-surgery
muscle synergy changes in a lower dimensional space.

Despite a post-surgery gait pattern that visually appeared to be
only mildly abnormal, the participant’s gait pattern was substantially
altered by the surgery. First and foremost, the participant decreased
his self-selected walking speed from 1.0 m/s pre-surgery to 0.5 m/s
post-surgery. Since self-selected walking speed was cut in half, it is
not surprising that the participant exerted less propulsive and
braking force following surgery (Figure 2). Second, the
participant exhibited a shortened swing phase for the non-
operated leg post-surgery, likely a compensatory mechanism to
reduce operated leg single-limb support time. Third, the
participant exhibited post-surgery compensatory gait changes
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consistent with a Trendelenburg-Duchenne gait pattern (Kiernan
et al., 2018). These changes included pelvis drop to the non-operated
side coupled with lumber bending to the operated side during
operated side single leg support (Figure 4), which is consistent
with impaired hip abductor function (Supplementary Table S1) and
a significantly reduced hip abduction moment in the operated leg
following surgery (Figure 5). Fourth, the participant also exhibited
post-surgery compensatory gait changes consistent with stiff knee
gait (Fujita et al., 2022). The participant exhibited a hyperextended
knee from mid to late stance phase (Figure 3A), producing a knee
flexion moment rather than the expected knee extension moment.
This atypical knee moment counteracted the external moment
caused by the ground reaction force vector passing in front of
rather than behind the knee, which in turn was caused by
significant forward trunk lean following surgery (Figure 4).
Though knee hyperextension and greater anterior trunk lean
have been observed in individuals with quadriceps muscle
weakness (Siegel et al., 2007; Sato and Maitland, 2008), the
participant’s vastii muscles were not touched by the surgery,
while his rectus femoris muscle was detached at its origin but
later re-attached. Thus, while quadriceps muscle weakness seems
unlikely, the participant’s post-surgery EMG data suggests that
quadriceps muscle activation impairment may have occurred
(Supplementary Figure S3A) for reasons that remain unclear.

To support our ultimate goal of developing a computational
methodology that can predict a patient’s post-surgery walking
function from his pre-surgery walking data and the planned surgical
decisions, we calculated muscle synergies that were not only
electromyographically consistent but also kinetically consistent. In
nearly all published studies, muscle synergies are calculated from
experimental EMG data alone, making them only
electromyographically consistent. If the calculated muscle synergies
were input into a neuromusculoskeletal model of the participant,
along with experimental joint kinematic data, the model would not
produce the participant’s experimental joint moments and thus would
be kinetically inconsistent. In contrast, muscle synergies in our study
were calculated from experimental EMG, joint kinematic, and joint
moment data via calibrated EMG-driven musculoskeletal models,
making them not only electromyographically consistent but also
kinetically consistent. Thus, our calculated muscle synergies should
provide an excellent starting point for future predictive simulations of
post-surgery walking function.

Two observations support the conclusion that the Fixed or
Shifted Synergy Control method is a better choice than the Fixed
Synergy Vector method for predicting post-surgery muscle controls
within a predictive simulation of post-surgery walking function.
First, the largest pre-to post-surgery changes in neural control, as
quantified using muscle synergies, occurred in the participant’s
synergy vectors rather than his synergy excitations or activations.
The cosine similarity metric showed that there was higher similarity
between pre- and post-surgery synergy controls than between pre-
and post-surgery synergy vectors (Table 2). The fact that the
participant’s synergy vectors exhibited substantial pre- to post-
surgery changes for both legs may be the first published evidence
that an individual with healthy neural control is able to change his
coordination strategy in both legs in response to the loss of a
significant number of muscles in one leg. Second, the Fixed and
Shifted Synergy Control methods worked much better than did the

Fixed Synergy Vector method for reconstructing post-surgery
muscle controls using pre-surgery synergy information
(Figure 8). The Fixed Synergy Vector method assumes that the
coordination strategy for lower extremity muscles stays more or less
the same follow surgery. However, this method was incapable of
accurately reconstructing post-surgery muscle controls, whereas the
Fixed and Shifted Synergy Control methods achieved highly
accurate post-surgery reconstructions.

Another important question for predicting post-surgery changes
in neural control is whether the neural control model should
represent muscle excitations or muscle activations. When post-
surgery muscle controls were reconstructed using the Fixed or
Shifted Synergy Control method, the highest reconstruction
accuracy for both legs was achieved when the reconstruction
process was applied to muscle activations rather than muscle
excitations (Figure 8). This difference may be related to the fact
that muscle activations are “closer” to biomechanical function than
are muscle excitations, which must be time delayed and passed
through activation dynamics to be transformed into muscle
activations. Electromechanical delay, which was roughly constant
for all muscles, would equate to different percentages of the gait cycle
for different walking speeds. The average calibrated
electromechanical delay for all muscles was 83.7 milliseconds.
This delay equated to an average 7.6% of the pre-surgery gait
cycle (1.0 m/s) but only 5.6% of the post-surgery gait cycle
(0.5 m/s). Thus, from the standpoint of a normalized gait cycle,
one might expect pre- and post-surgery muscle activations to be
better synchronized than pre- and post-surgery muscle excitations.

While reconstruction of post-surgery muscle controls using the
Fixed or Shifted Synergy Control method generally improved with
an increased number of muscle synergies, it is important to consider
how many synergies should be used. Given our ultimate goal of
generating predictive simulations of post-surgery walking function,
the lowest number of synergies should be chosen that can
reconstruct post-surgery muscle controls accurately. An accurate
reconstruction capable of controlling a predictive walking
simulation requires a VAF value higher than 95% overall and
85% for individual muscles (Meyer et al., 2016). For the Fixed
Synergy Control method with five synergies, the mean overall VAF
value for muscle activation reconstruction was 95.2% for the non-
operated leg and 95.6% for the operated leg, though overall VAF
values for several gait cycles failed to reach the 95% threshold
(Figure 8). Using six synergies, the overall and individual muscle
VAF values for reconstructed muscle activations both exceeded the
previous requirements. When seven synergies were used, the VAF
improvements started to diminish, especially for the operated leg
(p = 0.1065). For the Shifted Synergy Control method, only five
synergies were needed to achieve the desired overall and individual
muscle VAF criteria for both the non-operated and operated leg,
representing a less expensive computational option for predictive
simulations. Thus, for future predictive simulation studies of post-
surgery walking function, it would be difficult to justify using more
than five or six synergies per leg.

In addition to quantifying changes in neural control,
quantifying changes in muscle-tendon model parameters
values is helpful for future studies that perform predictive
simulations of post-surgery walking function. These
parameter values, namely, optimal muscle fiber length and
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tendon slack length, are crucial for modeling the force-
generating characteristics of the patient’s lower extremity
muscles. Based on a comparison of the participant’s pre- and
post-surgery calibrated neuromusculoskeletal models, changes
in these parameter values were generally small apart from some
outliers (Figure 6). These outliers generally occurred for two
types of muscles. The first type included muscles without
experimental EMG data (Table 1). For example, flexor
hallucis longus (FHL) in the non-operated leg had its optimal
muscle fiber length increased by 0.045 m or 132%. Since the
excitation of such muscles had to be estimated using synergy
extrapolation, associated muscle-tendon model parameter
values tended to be less accurate than for muscles with
experimental EMG data. The second type included muscles
that were somehow affected by the surgery. For example,
vastus lateralis (VL) in the operated leg had its optimal fiber
length increase by 0.070 m or 40%. As noted previously, the
participant avoided using this muscle following surgery for
reasons that remain unclear. Parameter tuning for such
muscles during model calibration was possibly more
aggressive to overcome the deficits in activation. When
outlier muscles were excluded, changes in these model
parameter values were much smaller. The median change in
optimal muscle fiber length was 0.013 and −0.0005 m for the
operated and non-operated leg, respectively. The median change
in tendon slack length was −0.008 and −0.005 m for the two legs.
The median values of percent change were also small
(13%, −1%, −3%, and −5%, respectively). Thus, for future
studies that seek to predict post-surgery walking function
starting from a pre-surgery walking model, pre-surgery
muscle-tendon model parameter values should provide a
reasonable approximation.

This study possesses several limitations related to data
generalizability and computational methodology. First, this
study analyzed data collected from a single pelvic sarcoma
patient. Given the significant heterogeneity between patients
with this pathology, it is unknown whether the conclusions
drawn from the present study can be generalized to other
patients with a pelvic sarcoma. More data collected from
more patients are needed to determine generalizability of
these results. The number of patients with a pelvic sarcoma is
limited, plus it is challenging to find patients who are willing to
come in for gait testing prior to surgery and after plateau in
recovery. However, the findings of this study can still be used as
the foundation for the first predictive simulations of post-
surgery walking for this patient population. Second, during
calibration of post-surgery EMG-driven models, the peak
isometric force values of the remaining hip muscles in the
operated leg were set at 100% of their pre-surgery values and
were not modified despite the possibility that some muscles may
have been weakened by the surgery. Use of pre-surgery peak
isometric force values could lead to underestimation of
activations for certain hip muscles, especially those that were
detached and later reattached. Third, although measured
excitations were available for the majority of lower extremity
muscles (Table 1), excitations of multiple unmeasured muscles
still needed to be estimated using synergy extrapolation (Bianco
et al., 2018; Ao et al., 2020; Ao et al., 2022). While this method of

estimating unmeasured muscle excitations has been shown to be
reliable for a small number of muscles, its effectiveness when
extended to multiple muscles has yet to be verified. Fourth, the
methods investigated for reconstructing post-surgery muscle
controls from pre-surgery muscle synergy information were
evaluated using only experimental muscle excitations and
activations. The reliability of these methods for predicting the
activations of muscles without experimental EMG data
is unknown.

In conclusion, this study performed extensive analyses of
walking function and neural control changes for a single pelvic
sarcoma patient following internal hemipelvectomy surgery with
custom pelvic prosthesis reconstruction. The participant
exhibited substantial changes in his post-surgery walking
function when quantified using experimental data, despite
only minor abnormalities being observed visually. The
observed changes could potentially provide valuable
information for designing a personalized rehabilitation
protocol for this participant. The participant also exhibited
substantial changes in the coordination of his lower extremity
muscles in both legs, as evidenced by pre-to post-surgery changes
in his synergy vectors. Consequently, when pre-surgery muscle
synergy information was used to reconstruct post-surgery muscle
activations, the Fixed and Shifted Synergy Control methods that
used pre-surgery synergy activations but found new synergy
vectors produced the most accurate reconstructions (>95%
VAF) and required only five or six synergies. Consequently,
we recommend that future computational studies that seek to
predict post-surgery walking function for this patient population
start by using the patient’s pre-surgery synergy activations,
thereby greatly simplifying the process of predicting the
patient’s post-surgery neural control strategy.
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