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Improvements in digital microscopy are critical for the development of a malaria
diagnosis method that is accurate at the cellular level and exhibits satisfactory
clinical performance. Digital microscopy can be enhanced by improving deep
learning algorithms and achieving consistent staining results. In this study, a novel
miLab™ device incorporating the solid hydrogel staining method was proposed
for consistent blood film preparation, eliminating the use of complex equipment
and liquid reagent maintenance. The miLab™ ensures consistent, high-quality,
and reproducible blood films across various hematocrits by leveraging
deformable staining patches. Embedded-deep-learning-enabled miLab™ was
utilized to detect and classify malarial parasites from autofocused images of
stained blood cells using an internal optical system. The results of this method
were consistent with manual microscopy images. This method not only
minimizes human error but also facilitates remote assistance and review by
experts through digital image transmission. This method can set a new
paradigm for on-site malaria diagnosis. The miLab™ algorithm for malaria
detection achieved a total accuracy of 98.86% for infected red blood cell
(RBC) classification. Clinical validation performed in Malawi demonstrated an
overall percent agreement of 92.21%. Based on these results, miLab™ can
become a reliable and efficient tool for decentralized malaria diagnosis.
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1 Introduction

With over 249 million reported cases and 608,000 casualties as of 2022, malaria is a
global public health concern (World Health Organization, 2023). Most malaria cases
(exceeding 99%) are concentrated in low- and middle-income nations, with sub-Saharan
Africa accounting for 95% of cases. Despite cost-effective rapid diagnostic tests (RDTs) and
precise polymerase chain reaction (PCR), manual microscopy coupled with visual
inspection by highly trained experts is widely used for malaria diagnosis because of its
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robustness and limited false positives and false negatives (Beck,
2022; Fitri et al., 2022). However, the smearing and staining quality,
as well as the expertise of microscopists who read smeared blood
slides, greatly affect the quality of microscopy-based diagnosis.
Malaria eradication in malaria-endemic countries is hindered by
the lack of adequate healthcare facilities, reagents, trained
professionals, vector control, and surveillance systems (Oduola
et al., 2018; Sori et al., 2018; Gaston and Ramroop, 2020).

To overcome the challenges of manual microscopic
examinations in malaria diagnosis, researchers have proposed
digital microscopy and computational image analysis algorithms
(Mody et al., 2006). Diagnosis based on digital images can reduce
human labor, aid local healthcare workers, and enable experienced
experts in remote locations to review microscopic results. Advances
in image analysis techniques based on deep learning (Krizhevsky
et al., 2012; Shen et al., 2017) have rendered this approach more
affordable because of its higher accuracy than that of traditional
machine learning algorithms (Liang et al., 2016; Gopakumar et al.,
2018; Rajaraman et al., 2019; Zhao et al., 2020; Li et al., 2021; Meng
et al., 2022; Madhu et al., 2023). However, these studies have only
performed cell-level evaluations on datasets without clinical tests
(Liang et al., 2016; Gopakumar et al., 2018; Rajaraman et al., 2019;
Molina et al., 2020; Zhao et al., 2020; Li et al., 2021; Meng et al., 2022;
Madhu et al., 2023). Although studies have reported patient-level
malaria diagnosis using image analysis in clinical settings, the
accuracy of these methods is limited (Yoon et al., 2019; Das
et al., 2022). Despite computer algorithms exhibiting greater
consistency than that of manual readers, slide quality
considerably affects the performance of these algorithms (Das
et al., 2022). Therefore, algorithms should be scaled up using

larger datasets to overcome their dependency on blood-film
preparation quality and ensure adaptability to the variability
of slides.

Traditional machine learning algorithms tend to saturate as the
amount of training data increases. By contrast, deep learning
algorithms can learn from larger datasets to train larger models
to attain improved accuracy. For example, in 2012, the best model
for image classification had 62 million trainable parameters
(Krizhevsky et al., 2012), whereas in 2022, the number of
parameters increased to 2.44 trillion (Wortsman et al., 2023).
The required computational resources should be increased to
accommodate larger models. Cloud computing or server-level
computing is utilized to run current state-of-the-art models.
However, in malaria-endemic countries, using large, extensive,
deep models that require powerful computing capabilities or a
consistently stable Internet connection is not feasible. By
contrast, embedding an efficient deep learning model into a
portable device can be prove useful in real clinical environments.
Furthermore, consistent blood film preparation is essential to
achieve high accuracy by reducing image variability.

In this study, we introduced miLab™, an embedded-deep-
learning-based sample-to-answer device capable of automated
blood film preparation and autofocused imaging using digital
microscopy for on-site malaria diagnostics (Figure 1A). We
provided a quick, inexpensive, and environment-friendly method
to stain smears with dye using deformable staining patches. The
automated preparation provided by miLab™ reduces differences in
staining methods between technicians and institutions, resulting in
consistent and high-quality preparation results for blood samples
over a broad range of hematocrits. (Choi et al., 2021; Bae et al., 2023).

FIGURE 1
Schematic of the embedded deep learning based on-site malaria diagnosis. (A) The miLab™ device not only automates the process (automated
blood staining without liquid handling and autofocused digital images) of malaria diagnosis through microscopic analysis but also incorporates deep
learning algorithm directly into the device for on-site review. (B) Aweb-based software allows experts to access the digital images for remotely reviewing
the result through the internet. (C) Photograph of the result page in miLab™ for Plasmodium falciparum (P. falciparum) positive patient specimens.
Users can review and confirm the results in the miLab™ for sample-to-answer, on-site malaria diagnosis. (D) Photograph of the screen shot of the result
page from the same patient specimens on the web-based software, accessing remotely digital images and raw data from miLab™. Other experts can
remotely review and confirm the same results from miLab™.
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The embedded deep learning algorithm was employed to analyze
malaria-suspected morphology from the blood cells stained in this
device, and the autofocused digital images were captured by the
optical system of the same device. The proposed miLab™ device can
perform continuous autofocus imaging, providing the same effect as
continuous field-of-view (FoV) readings applied when examined
under a microscope. Digital microscopy allows the scanning of more
than 200,000 RBCs within 7–10 min without errors, which is more
than the number of RBCs recommended by the Word Health
Organization (WHO) guidelines. Therefore, digital microscopy is
beneficial for samples from patients with low parasitemia (in cases of
low infection). This innovative device allows on-site users to
immediately analyze digital image data and obtain immediate
diagnostic results without high-performance computing.
Simultaneously, digital images can be sent to experts from
remote locations to assist with diagnosis (Figure 1B). On-site
users can immediately check the suspected morphology of
malaria-infected cells through the screen mounted on the device
(Figure 1C), and other experts can access the same digital images on
web-based software to review the suspected morphologies and
diagnostic results (Figure 1D). The embedded deep-learning-
based on-site malaria diagnostic platform not only provides
similar results as in-person microscopy examination in the
laboratory but also enables remote diagnosis.

2 Materials and methods

2.1 miLab™ platform

The miLab™ platform was designed to provide automated
microscopic analysis, which is the standard for malaria
diagnostics. Each cartridge [40 × 92 × 15 mm (width × length ×
height)] of the miLab™ device [212 × 390 × 244 mm (width ×
length × height)] prepares the blood film and three types of staining
patches, facilitating consistent RBC smearing and staining
(Supplementary Figure S1). The cells can be smeared and stained
by moving 5 μL of a blood-loaded cartridge without controlling the
aqueous solution. Thus, automated processes for blood films can be
designed to effectively and appropriately stain the morphology of
Plasmodium on-site. We utilized a solid staining method using
hydrogels to eliminate the need to control complex equipment or
maintain the liquid reagents (Choi et al., 2021). In this approach, the
hydrogel is brought into contact with appropriately smeared and
fixed cell surfaces, allowing the dye to efficiently stain the cells.
Depending on the type of dye used, the dye from the hydrogel was
applied to the smear in a short time, under 1 min (Bae et al., 2023).
Furthermore, hydrogels without dye can absorb any remaining dye
on the cell surface and attain suitable staining quality depending on
the pH of the buffer in the hydrogel, which is similar to the role of
the conventional buffer solution in blood cell staining (Oktiyani
et al., 2023). After automated blood-film preparation, the optical
system of the device captured the digital images of the stained blood
cells. At least 200,000 RBCs and up to 500,000 RBCs were scanned in
continuously obtained digital images from each blood film. The
optical system was designed to capture multifocal images from the
blood film by considering the size and location of the stained
parasites within the RBCs.

Subsequently, a machine learning algorithm was applied to
analyze the captured images and detect malarial parasites in the
blood. To incorporate the machine learning model into the
limited resources of the embedded hardware, all neural
network architectures were designed to reduce computational
complexity. We devised a two-step image analysis algorithm,
including RBC detection and subsequent classification, to
identify parasites that are rarely present in RBCs. The
subimages were extracted from the image to obtain one RBC
for each event (1st step: detection). Each of the cropped
subimages was tested for the presence of malarial parasites
(2nd step: classification). In the two-step algorithm, images
are divided into meaningful units, and each unit is
comprehensively analyzed instead of finding scarce malarial
parasites directly in numerous images.

In the detection module of miLab™, a semantic segmentation
algorithm is used to detect each RBC in the images. Because our
target images were full of RBCs, we adopted a semantic
segmentation algorithm inspired by the U-net instead of a
general object detector to achieve compactness and efficiency
(Ronneberger et al., 2015; Tran et al., 2019; Navya et al., 2022).
The model has three up-sampling and three down-sampling
layers to capture the visual features from the images in
different spatial scales. Specifically, the model was designed to
produce two outputs, namely, objectness and contours, as
segmentation mask images. After running the semantic
segmentation algorithm, the contour image is subtracted from
the objectness image to separate the aggregated cells. The cell
locations were determined by performing the connected
component analysis from the resulting mask (Supplementary
Figure S3A). The detected blood cells were cropped and
passed through the classification module.

In the classification module, we used the fact that uninfected
cells were the dominant component of many detected cells. Because
passing all cells through the entire classification procedure is
inefficient, we designed the classification module as two cascaded
classifiers to reduce the computational burden imposed by the
skewed ratio of parasite-positive to parasite-negative cells
(Supplementary Figure S3B). The first classifier consists of only
three convolutional layers for the maximum speed and screens for
apparent “clean” uninfected cells. If a cell was clearly classified as
uninfected, then it was not passed on to the second classifier. This
prior “screening” classifier considerably reduces the number of cells
delivered to the subsequent classifier. The second “main” classifier
performs an in-depth examination of only those cells deemed by the
first classifier to be possibly infected. The second classifier is based
on the ResNet (He et al., 2016) architecture and equipped with a
convolutional block attention scheme (Woo et al., 2018). We
carefully designed the main classifier to have 23 layers with
increasing numbers of channels along the depth for the balance
between speed and accuracy. Similar to our segmentation network,
the main classifier has a multi-task learning framework with two
output branches: one branch that predicts the presence of malaria
(infection branch) and the other branch that estimates its
developmental stage (stage branch). In our verification study,
only 17.8% of the RBCs passed the screening classifier and were
delivered to the main classifier, whereas the conventional monolithic
classifier examined all RBCs (Supplementary Figure S4). The
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classifier was trained to be robust to distracting elements, such as
white blood cells (WBCs), which are categorized as malaria-
negative. The current AI of miLab™ can detect malaria parasite-
infected RBCs in the operator-assigned number (default: 200,000) of
RBCs and classify developmental stages based on their morphology:
P. falciparum and P. vivax ring stage, P. falciparum late stage
(i.e., gametocyte), P. vivax trophozoite stage, and P. vivax late
stage (i.e., schizont and gametocyte).

The algorithm of the device provides flexibility in the tradeoff
between sensitivity and specificity. The output score of the infection
branch was thresholded to determine whether the cells were positive
or negative. Lowering the threshold yields higher sensitivity and
raising the threshold provides higher specificity. Furthermore,
patient-level recommendations are provided based on the
number of suspected cells on a slide. In this clinical evaluation,
we considered a slide with more than one positive RBC as
malaria-positive.

2.2 Analysis of the blood film in miLab™

Whole blood samples were collected for research purposes,
and the study was approved by the Institutional Review Boards
(P01-202003-31-007 and GCL-2020-1011-01) of the Korea
National Institute for Bioethics Policy (Seoul, Korea) and
GCLabs (Yongin, Korea). The hematocrit of the blood sample
was measured using a hematocrit-measuring instrument to
analyze the blood film (Boditech Med Inc., FPRR005). The
blood film was analyzed based on the number of RBCs and
color value of the prepared stained RBCs. Images of stained
RBCs prepared using the specimens were captured in the device,
and the field of views (FoVs), including stained RBCs, were
acquired. The number of RBCs was analyzed using a verified
image analysis tool. Color values (red, green, and blue (RGB))
were obtained from the pixels of the segmented RBCs using a
verified, self-made image analysis tool. To examine the
morphological features of Plasmodium, four types of typical
stages and species (rings of early trophozoites, late
trophozoites from P. vivax, and gametocytes from P.
falciparum and P. vivax) were collected. A manual Giemsa
slide was prepared with the same blood samples and observed
under a microscope (CX33 with a ×100 objective lens, Olympus)
to compare the staining quality of Plasmodium in miLab™. The
same morphology of Plasmodium in the blood film prepared from
miLab™ was observed using the same device and under a
microscope (CX33 with a ×50 objective lens, Olympus) to
compare the image quality of miLab™.

2.3 System verification of miLab™

To evaluate the reproducibility of blood films smeared using
miLab™, a verified, self-made image analysis tool was employed to
determine the number of segmented RBCs in each FoV. The mean
RBC counts from 50 FoVs of 20 replicate slides for seven specimens
were used to examine the precision of the blood smear. To evaluate
the reproducibility of blood film staining by miLab™, a verified, a
similar self-made image analysis tool was used to determine the

mean RGB value of segmented RBCs from 200 FoVs. Two hundred
FoVs per specimen were used to examine the color of the specimen
by calculating the mean, standard deviation, and coefficient
of variance.

A receiver operating characteristic (ROC) curve was drawn
using the binary classification result of 4,005 normal RBCs and
7,713 malaria positive cells. The classification performance at the
cellular level for Plasmodium (ring and gametocytes) was
represented using a confusion matrix (2 × 2), where the
maximum accuracy was obtained. The detection rate of
Plasmodium (ring and gametocyte) for the entire embedded
deep-learning algorithm was verified using the Plasmodium ratio
among the total number of RBCs per FoV obtained from the blood
film in miLab™. In total, 3,000 FoVs from 15 malaria-positive
clinical specimens (200 FoVs each) from the blood film in
miLab™ were labeled by an experienced microscopist. A total of
3,290 Plasmodium (ring, gametocyte) were confirmed in 1,751 FoVs.
The detection rate of Plasmodium, determined by the embedded
deep-learning algorithm in miLab™ (test group), was compared and
fitted to that observed by the human eye on the same images
(control group).

2.4 Clinical evaluation

Clinical samples (n = 555) analyzed using the two miLab™
devices were collected from April 2022 to November 2022 and
used in the clinical validation study approved by the Institutional
Review Board (IRB00003905) of the National Health Sciences
Research Committee (Ministry of Health, Malawi). After
explaining the purpose of the study, procedure, possible
benefits, risks, and rights of the participants, all participants
were first requested to sign informed consent forms. The results
obtained by miLab™ were compared to those of microscopic
examination by an experienced local microscopist in Malawi and
alongside with RDT (CareStart™ Malaria Pf (HRP2) Ag RDT,
AccessBio, NJ). Blood samples (~250 µL) were collected into
blood capillary tubes by a finger prick through a sterile lancet and
stored in an anticoagulant tube with ethylenediaminetetraacetic
acid (EDTA). Five microliters of collected blood was loaded onto
the miLab™ cartridge and 5 μL of the collected blood was used to
prepare a thick and a thin blood film each for microscopic
examination. The blood film was stained with a mixture of
eosin and methylene blue using Giemsa staining. Local
microscopists examined the Giemsa-stained slides using an
Olympus CX33 microscope based on the standard microscopy
methods of the WHO (World Health Organization, 2015).
Parasitemia determined using miLab™ (test group) was
compared and fitted linearly to that measured from the thick
film of the manual Giemsa slide under microscopic examination
by a local microscopist (control group).

2.5 Statistical analysis

GraphPad Prism (Ver.7, GraphPad Inc., San Diego, CA,
United States) was used to perform all statistical analyses. To
evaluate the linear correlation for the detection rate in the system
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verification and parasitemia in clinical evaluation, linear least
squares analysis was performed at the 95% confidence interval
(CI) of each variable, and the Pearson correlation coefficient (r)

was calculated. Differences between the test and control groups were
examined using Student’s unpaired t-test. A two-sided test, and the
results were considered statistically significant at p < 0.05.

FIGURE 2
Characterization of the blood film in the miLab™. (A) Photograph of the prepared blood films from the miLab™ using a patient specimen with low
hematocrit and high hematocrit fromMalawi. Low hematocrit samples to be read in Zone B instead of Zone A, where high hematocrit samples were read.
ThemiLab™ device automatically detects an appropriate area to observe RBCs in amonolayer. (B)Correlation of average RBC counts per FoV depending
on the hematocrit of the clinical specimens (n = 37) was shown with open dots (Zone A) and close dots (Zone B). (C) Schematic of blood staining
using three distinct staining patches in the cartridge and pictures of stained blood cells with Plasmodium-infected RBCs (black arrow) from each step of
the staining procedure. The scale bars = 10 μm. (D) Comparison of microscopic cell image with the miLab™ blood film acquired from miLab™, 50x
olympus microscopy with miLab™ blood film, and 100x microscopy with conventional Giemsa slides. The scale bars = 5 μm.
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3 Results

3.1 Characterization of the blood film
in miLab™

To address the unique characteristics of malaria patients with lower
RBC counts, we implemented a two-speed smearing process on a
spreader with a consistent angle, screening an adequate number (at least
more than 200 RBCs per FoV) of RBCs in low hematocrit samples,
ranging from 20% to 35%. This method provided two zones for
detecting appropriate RBCs, depending on the hematocrit of the
samples (Figure 2A). When we investigated the correlation between
the average RBC counts per FoV and the hematocrit from the 37 clinical
specimens, Zones A and B revealed a linear correlation between RBC
counts and hematocrit (Figure 2B; Supplementary Figure S5). The RBC
counts of samples with low (<30%) andmiddle/high hematocrit (>30%)
were selected from Zones B and A, respectively. To increase the
efficiency of RBC screening, RBCs from low-hematocrit samples can
be screened in Zone B (average 200–400 RBC counts per FoV) rather
than in Zone A (average 100–300 RBC counts per FoV).

Depending on the types of staining patches that included various
types of Romanowsky stains, such as eosin, methylene blue, and
azure B, the color of RBCs and the morphology of parasites were
observed at each staining step (Figure 2C). The transparent patch
was used for absorbing the excess dye left on the slide and optimizing
the stained colors of the cells, whereas the dye-containing patches
were used to deliver dyes to the cells (Choi et al., 2021; Bae et al.,
2023). To confirm that the morphological characteristics of
Plasmodium were revealed in the blood film prepared in
miLab™, four types of typical stages and species (rings for early
trophozoites, late trophozoites from P. vivax, and gametocytes from
P. falciparum and P. vivax) were collected from patient samples
(Figure 2D). The stained blood film provided a clear morphology of
Plasmodium at each stage, similar to conventional microscopic
examination using Giemsa staining for 100x microscopy images.
When comparing the images of Plasmodium morphologies stained
by the cartridge with manually focused images at the same
resolution using a 50x microscope, the distinctions in
morphology and species were discernible, even in the auto-
focused images within the device. Both automatically stained cells

FIGURE 3
System verification of the miLab™ device. (A) Reproducibility of blood smear was represented with the box plot using RBC counts per FoV in seven
clinical specimens (n= 20). Average RBC counts per FoVwere demonstrated with low, middle, and high hematocrits. The RBC counts of the samples with
the low (<30%) and the middle/high hematocrits (>30%) were selected from Zones B and A, respectively. (B) Reproducibility of blood staining was
represented with the box plot using the red, green, and blue color value, which was obtained from the stained RBCs in FoVs of clinical specimens.
The RGB color values of each RBC was conserved across FoVs (n = 4,000). (C) Cellular level classification performance for Plasmodium (ring,
gametocytes) was represented with the ROC curve. The area under the curve (AUC) was 0.999 with 95% confidence interval in the range of
0.9986–0.9994. The confusion matrix was calculated at the optimal point where maximum accuracy was obtained. (D) Correlation of the detection rate
of malaria positives (ring, gametocytes) between the deep learning algorithm (test group: miLab™) and naked eyes (control group: Microscopy) with the
Pearson’s correlation coefficient (r) of 0.96 (p < 0.0001, n = 3,000).
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and their autofocused digital images not only allow the embedded
deep-learning algorithm to detect malaria on-site but also enable
experts to distinguish between types and stages of malaria through
the result screen in the device or viewer at remote locations.

3.2 System verification of miLab™

To ensure an accurate diagnosis, digital images that demonstrate
reproducible automated preparation processes and effectively depict
the morphology of Plasmodium are crucial. Therefore, when
performing automated preparation processes in miLab™, the
blood film was verified by the consistency of RBC counts for
smearing and the color difference for staining. The screening of
RBCs performed on various hematocrit samples, including 20%–

50%, resulted in a coefficient of variation (CV%) of less than 10%,
even in 20 replicates of seven clinical specimens (Figure 3A).
Because three-color values (red, green, and blue (RGB) levels) are
the most common color spaces for segmenting parasites and RBCs
from thin blood films (Fong Amaris et al., 2022), each color value
was extracted from segmented RBCs to quantitatively analyze the
appropriate blood smear and staining. Thus, hydrogel staining
precisely controls the color of Plasmodium (ring, gametocyte)
and performs blood film preparation efficiently and reproducibly.
Figure 3B displays the color values of the stained images. The %CV
of the three-color values over 4,000 FoVs was less than 5% and was
maintained across 200 FoVs for 20 specimens
(Supplementary Figure S6).

The ROC curve in Figure 3C displays the cellular-level
performance of Plasmodium binary classification. The area under
the curve (AUC) was 0.999, indicating that the proposed classifier
was highly accurate. The magnified graph displays the trade-off
relationship between the true positive and false positive rates. We
selected an optimal point on the curve that achieved the maximum
accuracy and calculated the sensitivity, specificity, and accuracy at
that point as 99.25%, 98.1%, and 98.86% (95% CI: 98.65%–99.04%),
respectively. The infected RBC detection performance was verified
using blood films prepared from 15 malaria-positive clinical
specimens. We randomly selected 200 FoVs for each blood film
and compared the proportion of infected RBCs from miLab™ to
microscopic results obtained visually. The classifier infection branch
applied an empirically determined threshold value to the output. A
cell is classified as malaria-positive if its output value surpasses a
specified threshold. An excellent correlation existed between the
results from both methods, with a Pearson’s correlation coefficient
(r) of 0.96 (p < 0.0001; Figure 3D).

3.3 Evaluation of clinical performance
in Malawi

The clinical performance of miLab™ was evaluated using
555 patients who were selected from patients with fever and
visited the clinical study site, Mzuzu Health Center in Malawi.
The predominant species was P. falciparum (Gaston and
Ramroop, 2020; U.S. President’s Malaria Initiative, 2020). Clinical
information of the patients is summarized in Supplementary Tables
S1, S2. Figure 4A illustrates the study design for the clinical

validation of miLab™ based on the approved study protocol.
Since the miLab™ diagnoses is similar as that of microscopy
examination, the protocol of this study was primarily to compare
the results of a local microscopist with the results of the miLab™.
However, given the widespread use of RDTs in local workflows, we
identified 115 positive and 386 negative samples out of 555 total
enrolled samples when we selected samples where the RDT provided
the same diagnosis as the microscopic result on the Gisma slide.
Additionally, to ensure the reliability of local microscopy results, a
third expert microscopist re-examined the same Giemsa slides. After
excluding 67 samples with discrepancies, the final evaluation of
miLab™ was conducted on the remaining 488 confirmed samples.
On analysis of 488 clinical specimens by miLab™, an overall percent
agreement (OPA) of 92.21% (95% CI; 89.48%–94.43%), positive
percent agreement (PPA) of 95.15% (95% CI; 89.03%–98.41%), and
negative percent agreement (NPA) of 91.43% (95% CI; 88.17%–

94.03%) was observed (Figure 4B).
Figure 4C presents the correlation of parasitemia between

manual microscopic examination by a local microscopist and
miLab™. The mean parasitemia of positive samples is
approximately 26,000 (parasites per µL) from the miLab™ and
approximately 22,000 (parasites per µL) from the local
microscopist. Because miLab™ quantifies parasitemia assuming
5,000,000 RBCs per microliter of the blood, parasitemia in
patients with abnormal RBCs or out-of-range WBCs differs from
quantification based on 8,000WBCs per microliter of blood through
the conventional microscopy examination. Nevertheless, the
Pearson’s correlation coefficient (0.8259, 95% CI: 0.7518–0.8794)
of parasitemia determined by miLab™ exhibited excellent
consistency with the quantification results obtained from Giemsa
slides by the microscopist. According to the results of the
parasitemia level, 200 clinical samples (100 positive,
100 negative) were randomly selected, and the limit of detection
(LOD) for the point at which a positive result is more than 95%
probable using probit regression is approximately 31 parasites
per μL.

4 Discussion

On-site sample-to-answer malaria diagnosis in miLab™ enables
blood film preparation for embedded deep learning-based malaria
detection using digital microscopy images. In miLab™, hydrogel-
stained patches are applied to blood film generation in a highly
reproducible manner. In this on-site diagnostic platform with an
A4 paper-sized footprint, ethanol-based fixation is applied to avoid
the use of methanol and staining patches to reduce liquid waste
without maintaining reagents for user safety and convenience. Thus,
a sophisticated, well-equipped central laboratory is not required for
on-site diagnosis. The miLab™ device functions as a stand-alone
unit that can be used in resource-limited environments. System
validation revealed excellent reproducibility for blood film
preparation (Figure 3; Supplementary Figure S5). The accuracy of
deep-learning-based analysis at the cellular level was comparable to
that of other research groups (Liang et al., 2016; Gopakumar et al.,
2018; Rajaraman et al., 2019; Zhao et al., 2020; Li et al., 2021; Meng
et al., 2022; Madhu et al., 2023). Among those researches, only Zhao
et al. and the proposed method are integrated into the mobile
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platform. Also, the works of Li et al., Ment et al., and ours can detect
multiple stages of malaria infection. Detailed comparison is
summarized in Supplementary Table S3. The consistent
performance and higher accuracy of miLab™ eliminated the
dependency on technicians for manual microscopy-based malaria
diagnosis by providing both blood film preparation and automated
analysis compared with other products (Yoon et al., 2019; Das
et al., 2022).

In this clinical performance evaluation, 555 clinical data samples
were registered during the study period, but only 488 samples were
used for performance evaluation, excluding 67 samples. Since
miLab™ utilizes a microscopy-based diagnostic approach,
microscopy examination is considered the ground truth.
Although the locally prevalent RDT is reported to have issues
such as false negatives due to hrp2/3 deletions and false positives
due to hrp2 antigen persistence (Poti et al., 2020; Hosch et al., 2022),
this study has also considered RDT results to enhance the reliability
of clinical evaluations. Nonetheless, analyzing miLab™ results for
67 cases where there were discrepancies among the three different
diagnostic outcomes reveals the following: For the 50 cases where
RDT was positive and local microscopy results were negative,
miLab™ diagnosed 41 cases as negative. Conversely, for the four
cases where RDT was negative and microscopy results were positive,
miLab™ diagnosed three cases as positive. Additionally, for the
12 cases where both RDT and local microscopy diagnosed positive

but expert microscopy diagnosed negative, miLab™ diagnosed nine
cases as positive. For the case where both RDT and local microscopy
diagnosed negative but expert microscopy diagnosed positive,
miLab™ diagnosed it as negative. In conclusion, the analysis of
miLab™ results for the 67 discrepant cases shows that miLab™
results align more closely with microscopy results than with RDT
results. Furthermore, miLab™ results tend to agree more with the
diagnosis in which two out of the three diagnostic results concurred.
In fact, in regions of Ethiopia where hrp2/3 deletions occur, miLab™
has demonstrated the capability to diagnose samples that RDT has
falsely identified as negative due to hrp2/3 deletions (Ewnetu
et al., 2024).

The clinical performance evaluation of miLab™ using 488 clinical
specimens revealed an OPA of 92.21% before user reviews. Among the
488 samples analyzed, 38 (7.79%) were discordant with the reference
tests as false-negatives or false-positives. The miLab™ device displays
“review needed” or “suspected” morphology of the parasites on its
display to users who aim to review the results either on the device or
web-based software. In this clinical validation study, users were required
to review the raw data and confirm the diagnostic results for 131 of the
488 patient specimens (including 98 true positives and 33 false
positives). To achieve optimal results expected from the device, users
can set a cellular-level threshold based on the situation, such as the
presence of an expert. Althoughwe attained high cellular-level accuracy,
a special strategy is required to provide patient-level recommendations.

FIGURE 4
Clinical validation of miLab™ in Malawi. (A) Design for a clinical study. A total of 555 clinical specimens were enrolled and subjected to microscopy
and analysis by miLab™ for comparison with the reference tests (both local microscopy examination and RDT). Yellow cells indicate samples discordant
with the reference test. (B) Agreement of analysis by miLab™ with the reference tests (microscopy and RDT). Based on the concordance of microscopy
and RDT, overall percent agreement (OPA), positive percent agreement (PPA), and negative percent agreement (NPA) were 92.21%, 95.15%, and
91.43% respectively. (C) Correlation of the parasitemia level between microscopy and the miLab™ on a logarithmic scale. The Pearson’s correlation
coefficient (r) is 0.8259 (95% CI: 0.7518–0.8794).
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Because the number of normal RBCs is greater than the number of
infected RBCs, setting a cellular level threshold for high specificity can
reduce reviewing effort. However, considering the five samples
identified as false negatives, it is crucial that any single cell requiring
review is displayed on the results page. Notably, four out of thefive false-
negative samples were diagnosed by expert microscopists as having low
parasitemia levels, and lowering the threshold could have allowed
miLab™ to flag three of these samples as suspected morphology.
Therefore, to detect Plasmodium in patients with low parasitemia or
to reduce false negatives, it is important not only to increase the
sensitivity of the miLab™ algorithm but also to guide users to
review as many cells as possible. To achieve this, enhancing the
training dataset, lowering the threshold sensitively, or applying post-
processing algorithms may be necessary. By screening more cells or
guiding users to review high-scoring cells, effectively detecting samples
with low parasitemia levels, and also improving the accurate
quantification of parasitemia level are possible. Consequently, all
suspected cells, even a single cell need to be shown on the Results
section. These strategies can be included in patient-level
recommendations.

The first generation of malaria diagnosis using miLab™ was based
on the characteristic morphology of P. falciparum. However, the results
obtained by a local microscopist confirmed that four patients were
infected with P. vivax and Plasmodium malariae in addition to P.
falciparum. On reviewing the digital images of miLab™, experts
observed various distinct morphologies of Plasmodium species. The
current stage classification performance was examined using
11,718 single-cell images acquired from blood films prepared using
miLab™, where the stages were determined independently by expert
microscopists. Figure 5B presents the confusion matrix from the
verification study for multistage malaria parasite classification. The
total accuracy for the classification of infected RBCs was 98.83% (95%
CI: 98.62%–99.01%) and that for the classification of Plasmodium
species and stages was 97.82% (95% CI; 97.53%–98.06%). The
miLab™ algorithm revealed excellent performance in malaria

detection, with the identification of multiple stages of the parasite’s
life cycle in this analytical validation study. If the algorithm is optimized
at patient-level estimation, then the performance of miLab™ can be
improved, allowing the classification or detection of other Plasmodium
species. A deep learning algorithm trained with other types of infected
blood cells would improve the performance of malaria diagnosis by
reducing the interference caused byWBCs, platelets, and other types of
parasites (e.g., Trypanosoma cruzi).

The miLab™ device can provide on-site, sample-to-answer
diagnostics for malaria and enables decentralized patient care in
resource-limited settings, especially low- and middle-income
countries. In future work, the miLab™ cartridge can be applied
to the morphological detection of WBCs because similar methods
derived from Romanowsky-type staining are used for staining for
both WBCs and malaria (Supplementary Figure S7A)(Choi et al.,
2021). Moreover, miLab™ can prepare various types of sample slides
by modifying the composition of the hydrogels in the cartridge.
These slides included cytology slides with Papanicolaou staining
(Supplementary Figure S7B) and tissue sections stained with
hematoxylin and eosin (H&E) for histopathology (Supplementary
Figure S7C) (Chin et al., 2022; Kim et al., 2023). The miLab™ device
can be utilized to diagnose other infections and the detection of
intestinal parasites (Supplementary Figure S7D) that require
microscopic examination without staining (wet preparations).
The use of miLab™ can be extended to the diagnosis of multiple
diseases using the external training of deep-learning algorithms on
various types of digital images.

5 Conclusion

On-site sample-to-answer malaria diagnosis using miLab™
enables blood film preparation for embedded deep learning-based
malaria detection using digital microscopy images. The miLab™
algorithm achieved 98.86% detection accuracy of infected RBCs. The
clinical validation of miLab™ demonstrated an OPA of 92.21% in
Malawi. This on-site malaria diagnostic platform can assist experts
in evaluating the suspected morphology of Plasmodium in
laboratories and remote locations and realize remote diagnosis of
malaria, especially in resource-limited settings.
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